1
|
Xie Y, Gong C, Xia Y, Zhou Y, Ye T, Mei T, Chen H, Chen J. α-Mangostin Suppresses Melanoma Growth, Migration, and Invasion and Potentiates the Anti-tumor Effect of Chemotherapy. Int J Med Sci 2023; 20:1220-1234. [PMID: 37575275 PMCID: PMC10416720 DOI: 10.7150/ijms.80940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/27/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose: Melanoma is a highly malignant tumor, which metastasizes and has poor prognosis in late-stage cancer patients. α-Mangostin possesses pharmacological properties, including antioxidant, anti-infective, and anticarcinogenic activities. We investigated α-Mangostin effect on melanoma growth, migration, and invasion and its possible molecular mechanism. Methods: Melanoma cells growth inhibition was determined by the colorimetric 4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay. Morphological changes of α-Mangostin-treated melanoma cells were evaluated by transmission electron microscopy and JC-1 staining. Cell apoptosis and cell cycle arrest were assessed by flow cytometry. The effect of α-Mangostin on tumor cells migration and invasion was observed by migration and invasion in vitro assay. Furthermore, the nude and C57BL/6 mouse subcutaneous melanoma models were used to evaluate the in vivo anti-tumor effect of α-Mangostin. Western blot and real time-PCR were performed to analyze the influence of α-Mangostin on some of the common signaling pathways in melanoma cell lines. Signaling pathways were further verified in dissected tumor tissues. Results: α-Mangostin inhibited in vitro melanoma cells proliferation, migration, and invasion of melanoma cells, induced cell cycle arrest in G0/G1 phase, and caused mitochondrial swelling and membrane depolarization, whereas it effectively suppressed melanoma growth in xenografted mice. In addition, α-Mangostin potentiated the in vitro and in vivo anti-tumor effects of cisplatin both in vitro and in vivo. Mechanistically, α-Mangostin down-regulated expression of RAS protein and mRNA, as well as phosphorylation of PI3K in A375, B16F10, M14 and SK-MEL-2 cells. MITF protein and mRNA were inhibited only in M14 cells. Conclusion: α-Mangostin suppresses melanoma cells growth, migration and invasion, and synergistically enhances the anti-tumor effect of chemotherapy, whose mechanism may be mediated through inhibiting Ras, PI3K and MITF.
Collapse
Affiliation(s)
- Yuxiu Xie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chongwen Gong
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Xia
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Ye
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Mei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Park S, Choi EJ, Kim JY, Lee EJ, Bae YJ, Seong SH, Lee J, Oh SH. 7-desacetoxy-6,7-dehydrogedunin discovered by high-throughput screening system suppresses melanogenesis through ATP-P2X7 signaling inhibition. J Dermatol Sci 2022; 108:157-166. [PMID: 36610940 DOI: 10.1016/j.jdermsci.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/25/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hyperpigmented skin disorders such as melasma and lentigo are common photoaging diseases that cause cosmetic problems. The pigmentation is usually exacerbated by ultraviolet (UV) radiation, and various factors and pathways are involved in UV-mediated melanogenesis. Adenosine 5'-triphosphate (ATP), a well-known molecular unit of intracellular energy, is also regarded as a mediator of UV-mediated melanogenesis via the P2X7 purinergic receptor. OBJECTIVE To discover natural substances with an anti-melanogenic effect through inhibition of ATP-P2X7 axis by high-throughput screening (HTS). METHODS Among natural compounds provided by the Korea Chemical Bank, chemical compounds with a P2X7 inhibiting effect were screened through an HTS system. Then the selected compounds were verified for their anti-melanogenic effect after treating primary human epidermal melanocytes (PHEMs) with and without ATP. The expression of MITF, tyrosinase, and PMEL/gp100 was analyzed by Western blot, and melanin content was measured as 405 nm absorbance. RESULTS Among 962 natural compounds, 58 showed greater than 80% suppression of YO-PRO-1 fluorescence, representing P2X7 activity. Among them, considering cell viability, chemical stability, and availability, 7-desaxacetoxy-6,7-dehydrogedunin (7DG), a limonoid natural compound, was selected. The expression of MITF, tyrosinase, and PMEL/gp100; tyrosinase enzyme activity; and melanin content, which were increased by ATP treatment were abrogated by 7DG. Even when 7DG was treated in PHEMs without addition of ATP, tyrosinase expression and melanin content were significantly decreased. Hypopigmenting effect of 7DG was confirmed in ex vivo culture of human skins. CONCLUSIONS 7DG has an anti-melanogenic effect through ATP-P2X7 pathway inhibition and could be a potential skin whitening material.
Collapse
Affiliation(s)
- Sujin Park
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Ju Choi
- College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - Ji Young Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jung Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Jeong Bae
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seol Hwa Seong
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jinu Lee
- College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea.
| | - Sang Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
Zhou S, Yotsumoto H, Tian Y, Sakamoto K. α-Mangostin suppressed melanogenesis in B16F10 murine melanoma cells through GSK3β and ERK signaling pathway. Biochem Biophys Rep 2021; 26:100949. [PMID: 33665379 PMCID: PMC7900676 DOI: 10.1016/j.bbrep.2021.100949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 01/03/2021] [Accepted: 02/03/2021] [Indexed: 01/06/2023] Open
Abstract
Mangosteen (Garcinia mangostana L) fruit contains many xanthones in its pericarp, such as α-mangostin. Here, we aimed to elucidate the physiological effect of α-mangostin and the mechanism on melanogenesis in mouse B16F10 cells. The melanin production in B16F10 cells was decreased by α-mangostin treatment. α-Mangostin also suppressed the enzymatic activity of tyrosinase, the critical enzyme for melanin synthesis. Furthermore, Western blot analysis revealed that α-mangostin down-regulated the protein quantity of tyrosinase, tyrosinase relative protein (TRP)-2, and microphthalmia-associated transcription factor (MITF). We also used inhibitors of the extracellular signal-regulated kinase (ERK), and glycogen synthase kinase 3 (GSK-3β) to identify the upstream signaling cascade of MITF. Results showed us GSK3β plays a more important role in α-mangostin regulated melanogenesis. Further, the de-pigmentation effect on normal human epidermal melanocytes (NHEMs) of α-mangostin was also confirmed. These results suggested that α-mangostin is a reagent for depigmentation and it has the potential to be applied as a component of cosmetics or pharmaceuticals for the therapy of spots, chloasma, or melanosis. α-Mangostin suppressed the melanin production in B16F10 cells. α-Mangostin suppressed the activity of tyrosinase. α-Mangostin suppressed the protein expression of tyrosinase, TRP-2 and MITF. GSK3β is involved in α-mangostin-regulated melanogenesis. α-Mangostin suppressed the melanin production in normal human melanocytes.
Collapse
Affiliation(s)
- Siqi Zhou
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Haruka Yotsumoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yuan Tian
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kazuichi Sakamoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
4
|
Parat V, Onteniente B, Maruotti J. A high-throughput screening platform for pigment regulating agents using pluripotent stem cell-derived melanocytes. Exp Dermatol 2020; 30:691-697. [PMID: 33347653 DOI: 10.1111/exd.14261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/17/2020] [Accepted: 12/05/2020] [Indexed: 12/16/2022]
Abstract
In this study, we describe a simple and straightforward assay using induced pluripotent stem cell-derived melanocytes and high-throughput flow cytometry, to identify the effect induced by pigment regulating agents on melanin content. The assay is based on the correlation between forward light-scatter characteristics and melanin content, with pigmented cells displaying high light absorption/low forward light scatter, while the opposite is true for lowly pigmented melanocytes, as a result of genetic background or chemical treatments. Orthogonal validation is then performed by regular melanin quantification. Such approach was validated using a set of 80 small molecules and yielded a confirmed hit. The assay described in this study may prove a useful tool to identify modulators of melanogenesis in human melanocytes.
Collapse
|
5
|
HDAC2 Inhibitor Valproic Acid Increases Radiation Sensitivity of Drug-Resistant Melanoma Cells. Med Sci (Basel) 2019; 7:medsci7030051. [PMID: 30909413 PMCID: PMC6473314 DOI: 10.3390/medsci7030051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 01/22/2023] Open
Abstract
Resistance to anticancer drugs limits the effectiveness of chemotherapy in cancers. Melanoma cell lines B16F10C and A375C (parental) and B16F10R and A375R (drug-resistant sublines) were used to test radiation sensitization potential of valproic acid (VPA), an inhibitor of Histone deacetylase2 (HDAC2) and LDN193189 (BMP inhibitor). Inhibitors of other signaling pathways were tested for cross-resistance with the resistant cell lines. Cells were pretreated with low concentrations of VPA/ LDN193189 and exposed to 2 Gy radiation for radiation sensitization experiments. Assays-3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT), live/dead, clonogenic, and melanin estimation were performed to test the effects of radiation sensitization. Interactions of VPA and HDAC2 were studied in silico. Dose-dependent growth inhibition was observed with all tested drugs. Radiation sensitization of melanoma cells with low dose of VPA induced synergistic cell death, decreased clonogenicity, and decreased melanin content. In silico docking showed two stable interactions between Arg39 of HDAC2 and VPA. In conclusion, pretreatment with low doses of VPA has a potential for sensitizing melanoma cells to low doses of radiation. The binding of VPA to HDAC2 reverses the drug resistance in melanoma and induces the cell death. Sensitization effects of VPA can be used for targeting drug-resistant cancers.
Collapse
|
6
|
Na JI, Shin JW, Choi HR, Kwon SH, Park KC. Resveratrol as a Multifunctional Topical Hypopigmenting Agent. Int J Mol Sci 2019; 20:ijms20040956. [PMID: 30813264 PMCID: PMC6412432 DOI: 10.3390/ijms20040956] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022] Open
Abstract
Melanin is produced in melanocytes and stored in melanosomes, after which it is transferred to keratinocytes and, thus, determines skin color. Despite its beneficial sun-protective effects, abnormal accumulation of melanin results in esthetic problems. A range of topical hypopigmenting agents have been evaluated for their use in the treatment of pigmentary disorders with varying degrees of success. Hydroquinone (HQ), which competes with tyrosine, is the main ingredient in topical pharmacological agents. However, frequent occurrence of adverse reactions is an important factor that limits its use. Thus, efforts to discover effective topical hypopigmenting agents with less adverse effects continue. Here, we describe the potential of resveratrol to function as an effective hypopigmenting agent based on its mechanism of action. Resveratrol is not only a direct tyrosinase inhibitor but an indirect inhibitor as well. Additionally, it can affect keratinocytes, which regulate the function of melanocytes. Resveratrol regulates the inflammatory process of keratinocytes and protects them from oxidative damage. In this way, it prevents keratinocyte-induced melanocyte stimulation. Furthermore, it has a rescuing effect on the stemness of interfollicular epidermal cells that can repair signs of photoaging in the melasma, a typical pigmentary skin disorder. Overall, resveratrol is a promising potent hypopigmenting agent.
Collapse
Affiliation(s)
- Jung-Im Na
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| | - Jung-Won Shin
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| | - Hye-Ryung Choi
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| | - Soon-Hyo Kwon
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| | - Kyung-Chan Park
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| |
Collapse
|
7
|
Abaci HE, Guo Z, Doucet Y, Jacków J, Christiano A. Next generation human skin constructs as advanced tools for drug development. Exp Biol Med (Maywood) 2017; 242:1657-1668. [PMID: 28592171 DOI: 10.1177/1535370217712690] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many diseases, as well as side effects of drugs, manifest themselves through skin symptoms. Skin is a complex tissue that hosts various specialized cell types and performs many roles including physical barrier, immune and sensory functions. Therefore, modeling skin in vitro presents technical challenges for tissue engineering. Since the first attempts at engineering human epidermis in 1970s, there has been a growing interest in generating full-thickness skin constructs mimicking physiological functions by incorporating various skin components, such as vasculature and melanocytes for pigmentation. Development of biomimetic in vitro human skin models with these physiological functions provides a new tool for drug discovery, disease modeling, regenerative medicine and basic research for skin biology. This goal, however, has long been delayed by the limited availability of different cell types, the challenges in establishing co-culture conditions, and the ability to recapitulate the 3D anatomy of the skin. Recent breakthroughs in induced pluripotent stem cell (iPSC) technology and microfabrication techniques such as 3D-printing have allowed for building more reliable and complex in vitro skin models for pharmaceutical screening. In this review, we focus on the current developments and prevailing challenges in generating skin constructs with vasculature, skin appendages such as hair follicles, pigmentation, immune response, innervation, and hypodermis. Furthermore, we discuss the promising advances that iPSC technology offers in order to generate in vitro models of genetic skin diseases, such as epidermolysis bullosa and psoriasis. We also discuss how future integration of the next generation human skin constructs onto microfluidic platforms along with other tissues could revolutionize the early stages of drug development by creating reliable evaluation of patient-specific effects of pharmaceutical agents. Impact statement Skin is a complex tissue that hosts various specialized cell types and performs many roles including barrier, immune, and sensory functions. For human-relevant drug testing, there has been a growing interest in building more physiological skin constructs by incorporating different skin components, such as vasculature, appendages, pigment, innervation, and adipose tissue. This paper provides an overview of the strategies to build complex human skin constructs that can faithfully recapitulate human skin and thus can be used in drug development targeting skin diseases. In particular, we discuss recent developments and remaining challenges in incorporating various skin components, availability of iPSC-derived skin cell types and in vitro skin disease models. In addition, we provide insights on the future integration of these complex skin models with other organs on microfluidic platforms as well as potential readout technologies for high-throughput drug screening.
Collapse
Affiliation(s)
- H E Abaci
- 1 Department of Dermatology, Columbia University Medical Center, New York, NY 10032, USA
| | - Zongyou Guo
- 1 Department of Dermatology, Columbia University Medical Center, New York, NY 10032, USA
| | - Yanne Doucet
- 1 Department of Dermatology, Columbia University Medical Center, New York, NY 10032, USA
| | - Joanna Jacków
- 1 Department of Dermatology, Columbia University Medical Center, New York, NY 10032, USA
| | - Angela Christiano
- 1 Department of Dermatology, Columbia University Medical Center, New York, NY 10032, USA.,2 Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
8
|
Lee KW, Ryu HW, Oh SS, Park S, Madhi H, Yoo J, Park KH, Kim KD. Depigmentation of α-melanocyte-stimulating hormone-treated melanoma cells by β-mangostin is mediated by selective autophagy. Exp Dermatol 2016; 26:585-591. [PMID: 27714857 DOI: 10.1111/exd.13233] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 01/07/2023]
Abstract
Melanogenesis is a key pathway for the regulation of skin pigmentation and the development of skin-lightening/skin-whitening drugs or cosmetics. In this study, we found that β-mangostin from seedcases of Garcinia mangostana inhibited α-melanocyte-stimulating hormone (α-MSH)-mediated melanogenesis in B16F10 melanoma cells and a three-dimensional human skin model. β-Mangostin significantly inhibited the protein level of tyrosinase induced by α-MSH in UPS (ubiquitin proteasome system)-independent and lysosome-dependent manner. The inhibition of autophagy by 3-methyladenine treatment or ATG5 knockdown effectively recovered premelanosome protein as well as tyrosinase degraded by the β-mangostin treatment. However, rapamycin, a representative non-selective autophagy inducer, triggered autophagy in α-MSH-stimulated cells, which was characterized by a considerable decrease in p62, but it was unable to inhibit melanogenesis. Melanosome-engulfing autophagosomes were observed using transmission electron microscopy. Furthermore, previously formed melanin could be degraded effectively in an autophagy-dependent manner in β-mangostin-treated cells. Taken together, our results suggest that β-mangostin inhibits the melanogenesis induced by α-MSH via an autophagy-dependent mechanism, and thus, the depigmentation effect of β-mangostin may depend on autophagy targeted at the melanosome rather than non-selective autophagy.
Collapse
Affiliation(s)
- Ki Won Lee
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, KRIBB, Cheongwon, Korea
| | - Sang-Seok Oh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, Korea
| | - Soojong Park
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, Korea
| | - Hamadi Madhi
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, Korea
| | - Jiyun Yoo
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, Korea
| | - Ki-Hun Park
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, Korea
| | - Kwang Dong Kim
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, Korea.,PMBBRC, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
9
|
Isolation of 4,5-O-Dicaffeoylquinic Acid as a Pigmentation Inhibitor Occurring in Artemisia capillaris Thunberg and Its Validation In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7823541. [PMID: 27528883 PMCID: PMC4977398 DOI: 10.1155/2016/7823541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 06/05/2016] [Accepted: 06/23/2016] [Indexed: 01/30/2023]
Abstract
There is a continual need to develop novel and effective melanogenesis inhibitors for the prevention of hyperpigmentation disorders. The plant Artemisia capillaris Thunberg (Oriental Wormwood) was screened for antipigmentation activity using murine cultured cells (B16-F10 malignant melanocytes). Activity-based fractionation using HPLC and NMR analyses identified the compound 4,5-O-dicaffeoylquinic acid as an active component in this plant. 4,5-O-Dicaffeoylquinic acid significantly reduced melanin synthesis and tyrosinase activity in a dose-dependent manner in the melanocytes. In addition, 4,5-O-dicaffeoylquinic acid treatment reduced the expression of tyrosinase-related protein-1. Significantly, we could validate the antipigmentation activity of this compound in vivo, using a zebrafish model. Moreover, 4,5-O-dicaffeoylquinic acid did not show toxicity in this animal model. Our discovery of 4,5-O-dicaffeoylquinic acid as an inhibitor of pigmentation that is active in vivo shows that this compound can be developed as an active component for formulations to treat pigmentation disorders.
Collapse
|
10
|
Xia Y, Li Y, Westover KD, Sun J, Chen H, Zhang J, Fisher DE. Inhibition of Cell Proliferation in an NRAS Mutant Melanoma Cell Line by Combining Sorafenib and α-Mangostin. PLoS One 2016; 11:e0155217. [PMID: 27152946 PMCID: PMC4859503 DOI: 10.1371/journal.pone.0155217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/26/2016] [Indexed: 12/19/2022] Open
Abstract
α-Mangostin is a natural product commonly used in Asia for cosmetic and medicinal applications including topical treatment of acne and skin cancer. Towards finding new pharmacological strategies that overcome NRAS mutant melanoma, we performed a cell proliferation-based combination screen using a collection of well-characterized small molecule kinase inhibitors and α-Mangostin. We found that α-Mangostin significantly enhances Sorafenib pharmacological efficacy against an NRAS mutant melanoma cell line. The synergistic effects of α-Mangostin and Sorafenib were associated with enhanced inhibition of activated AKT and ERK, induced ER stress, and reduced autophagy, eventually leading to apoptosis. The structure of α-Mangostin resembles several inhibitors of the Retinoid X receptor (RXR). MITF expression, which is regulated by RXR, was modulated by α-Mangostin. Molecular docking revealed that α-Mangostin can be accommodated by the ligand binding pocket of RXR and may thereby compete with RXR-mediated control of MITF expression. In summary, these data demonstrate an unanticipated synergy between α-Mangostin and sorafenib, with mechanistic actions that convert a known safe natural product to a candidate combinatorial therapeutic agent.
Collapse
Affiliation(s)
- Yun Xia
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cutaneous Biology Research Center, Massachusetts General Hospital, 149 Building 13th ST, Charlestown, Massachusetts, United States of America
| | - Ying Li
- Cutaneous Biology Research Center, Massachusetts General Hospital, 149 Building 13th ST, Charlestown, Massachusetts, United States of America
- Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, No.7 Front Kangfu ST, Zhengzhou 450052, China
| | - Kenneth D. Westover
- Departments of Biochemistry and Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongxiang Chen
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cutaneous Biology Research Center, Massachusetts General Hospital, 149 Building 13th ST, Charlestown, Massachusetts, United States of America
| | - Jianming Zhang
- Cutaneous Biology Research Center, Massachusetts General Hospital, 149 Building 13th ST, Charlestown, Massachusetts, United States of America
| | - David E. Fisher
- Cutaneous Biology Research Center, Massachusetts General Hospital, 149 Building 13th ST, Charlestown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
11
|
Xia Y, Chen J, Gong C, Chen H, Sun J. α-Mangostin, a Natural Agent, Enhances the Response of NRAS Mutant Melanoma to Retinoic Acid. Med Sci Monit 2016; 22:1360-7. [PMID: 27104669 PMCID: PMC4844330 DOI: 10.12659/msm.898204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The identification and use of novel compounds alone or in combination hold promise for the fight against NRAS mutant melanoma. MATERIAL AND METHODS We screened a kinase-specific inhibitor library through combining it with α-Mangostin in NRAS mutant melanoma cell line, and verified the enhancing effect of α-Mangostin through inhibition of the tumorigenesis pathway. RESULTS Within the kinase inhibitors, retinoic acid showed a significant synergistic effect with α-Mangostin. α-Mangostin also can reverse the drug resistance of retinoic acid in RARa siRNA-transduced sk-mel-2 cells. Colony assay, TUNEL staining, and the expressions of several apoptosis-related genes revealed that a-Mangostin enhanced the effect of retinoic acid-induced apoptosis. The combination treatment resulted in marked induction of ROS generation and inhibition of the AKT/S6 pathway. CONCLUSIONS These results indicate that the combination of these novel natural agents with retinoid acid may be clinically effective in NRAS mutant melanoma.
Collapse
Affiliation(s)
- Yun Xia
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Jing Chen
- Department of Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Chongwen Gong
- Department of Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
12
|
Callahan SJ, Mica Y, Studer L. Feeder-free Derivation of Melanocytes from Human Pluripotent Stem Cells. J Vis Exp 2016:e53806. [PMID: 26967464 PMCID: PMC4828213 DOI: 10.3791/53806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) represent a platform to study human development in vitro under both normal and disease conditions. Researchers can direct the differentiation of hPSCs into the cell type of interest by manipulating the culture conditions to recapitulate signals seen during development. One such cell type is the melanocyte, a pigment-producing cell of neural crest (NC) origin responsible for protecting the skin against UV irradiation. This protocol presents an extension of a currently available in vitro Neural Crest differentiation protocol from hPSCs to further differentiate NC into fully pigmented melanocytes. Melanocyte precursors can be enriched from the Neural Crest protocol via a timed exposure to activators of WNT, BMP, and EDN3 signaling under dual-SMAD-inhibition conditions. The resultant melanocyte precursors are then purified and matured into fully pigmented melanocytes by culture in a selective medium. The resultant melanocytes are fully pigmented and stain appropriately for proteins characteristic of mature melanocytes.
Collapse
Affiliation(s)
- Scott J Callahan
- The Center for Stem Cell Biology, Developmental Biology Program, Memorial Sloan-Kettering Cancer Center; Cancer Biology and Genetics Program, Gerstner Sloan-Kettering Graduate School, Sloan-Kettering Institute for Cancer Research
| | | | - Lorenz Studer
- The Center for Stem Cell Biology, Developmental Biology Program, Memorial Sloan-Kettering Cancer Center;
| |
Collapse
|