1
|
Tan I, Parikh A, Cohen B. Melanoma Metabolism: Molecular Mechanisms and Therapeutic Implications in Cutaneous Oncology. Cancer Med 2024; 13:e70386. [PMID: 39494561 PMCID: PMC11532834 DOI: 10.1002/cam4.70386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/01/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Melanoma, a highly aggressive skin cancer, is characterized by rapid progression and a high metastatic potential, presenting significant challenges in clinical oncology. A critical aspect of melanoma biology is its metabolic reprogramming, which supports tumor growth, survival, and therapeutic resistance. OBJECTIVE This review aims to explore the key molecular mechanisms driving metabolic alterations in melanoma and their implications for developing therapeutic strategies. METHODS A Pubmed search was conducted to analyze literature discussing key mechanisms of the Warburg effect, mitochondrial dysfunction, enhanced lipid metabolism, epigenetic modifications, and the tumor microenvironment. RESULTS Metabolic reprogramming supports melanoma growth, proliferation, and survival. Understanding these complex metabolic dynamics provides valuable insights for developing targeted therapeutic strategies. CONCLUSION Potential therapeutic interventions aimed at disrupting melanoma metabolism highlight the promise of precision medicine in improving treatment outcomes in cutaneous oncology. By targeting metabolic vulnerabilities, novel treatment approaches could significantly enhance the clinical management and prognosis of melanoma.
Collapse
Affiliation(s)
- Isabella J. Tan
- Rutgers Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| | - Aarushi K. Parikh
- Rutgers Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| | - Bernard A. Cohen
- Department of DermatologyThe Johns Hopkins HospitalBaltimoreMarylandUSA
| |
Collapse
|
2
|
Chan AM, Mitchell A, Grogan L, Shapiro P, Fletcher S. Histone deacetylase (HDAC) inhibitor specificity determinants are preserved in a class of dual HDAC/non-covalent proteasome inhibitors. Bioorg Med Chem 2024; 104:117680. [PMID: 38582047 PMCID: PMC11177207 DOI: 10.1016/j.bmc.2024.117680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/18/2024] [Accepted: 03/06/2024] [Indexed: 04/08/2024]
Abstract
Many disease states require multiple drugs to inhibit multiple targets for their effective treatment/management, i.e. a drug cocktail regimen, or "polypharmacy". Polypharmacology, in contrast, is the development of single agents that can inhibit multiple targets. Each strategy is associated with advantages and disadvantages. Motivated by promising clinical trial data for the treatment of multiple myeloma with the combination of the HDAC6 inhibitor ricolinostat and the proteasome inhibitor bortezomib, we herein describe a focused family of dual HDAC/non-covalent proteasome inhibitors, and explore the impact of linker and zinc-binding group identities on HDAC1/6 isozyme selectivity. In general, previously reported specificity determinants of monovalent HDAC1/6 inhibitors were preserved in our dual HDAC/proteasome inhibitors.
Collapse
Affiliation(s)
- Alexandria M Chan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD 21202, USA
| | - Ashley Mitchell
- University of Maryland Baltimore County, 1000 Hilltop Cir., Baltimore, MD 21250, USA
| | - Lena Grogan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD 21202, USA
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD 21202, USA
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD 21202, USA.
| |
Collapse
|
3
|
Ota Y, Itoh Y, Takada Y, Yamashita Y, Hu C, Horinaka M, Sowa Y, Masuda M, Sakai T, Suzuki T. Design, synthesis, and biological evaluation of phenylcyclopropylamine-entinostat conjugates that selectively target cancer cells. Bioorg Med Chem 2024; 100:117632. [PMID: 38340642 DOI: 10.1016/j.bmc.2024.117632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Small molecule-based selective cancer cell-targeting can be a desirable anticancer therapeutic strategy. Aiming to discover such small molecules, we previously developed phenylcyclopropylamine (PCPA)-drug conjugates (PDCs) that selectively release anticancer agents in cancer cells where lysine-specific demethylase 1 (LSD1) is overexpressed. In this work, we designed PCPA-entinostat conjugates for selective cancer cell targeting. PCPA-entinostat conjugate 12 with a 4-oxybenzyl group linker released entinostat in the presence of LSD1 in in vitro assays and selectively inhibited the growth of cancer cells in preference to normal cells, suggesting the potential of PCPA-entinostat conjugates as novel anticancer drug delivery small molecules.
Collapse
Affiliation(s)
- Yosuke Ota
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamo-hangi-cho, Sakyo-ku, Kyoto 603-0823, Japan
| | - Yukihiro Itoh
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamo-hangi-cho, Sakyo-ku, Kyoto 603-0823, Japan; SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yuri Takada
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | | | - Chenliang Hu
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Mano Horinaka
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamo-hangi-cho, Sakyo-ku, Kyoto 603-0823, Japan
| | - Yoshihiro Sowa
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamo-hangi-cho, Sakyo-ku, Kyoto 603-0823, Japan
| | - Mitsuharu Masuda
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamo-hangi-cho, Sakyo-ku, Kyoto 603-0823, Japan
| | - Toshiyuki Sakai
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamo-hangi-cho, Sakyo-ku, Kyoto 603-0823, Japan
| | - Takayoshi Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamo-hangi-cho, Sakyo-ku, Kyoto 603-0823, Japan; SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
| |
Collapse
|
4
|
Rubatto M, Borriello S, Sciamarrelli N, Pala V, Tonella L, Ribero S, Quaglino P. Exploring the role of epigenetic alterations and non-coding RNAs in melanoma pathogenesis and therapeutic strategies. Melanoma Res 2023; 33:462-474. [PMID: 37788101 DOI: 10.1097/cmr.0000000000000926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Melanoma is a rare but highly lethal type of skin cancer whose incidence is increasing globally. Melanoma is characterized by high resistance to therapy and relapse. Despite significant advances in the treatment of metastatic melanoma, many patients experience progression due to resistance mechanisms. Epigenetic changes, including alterations in chromatin remodeling, DNA methylation, histone modifications, and non-coding RNA rearrangements, contribute to neoplastic transformation, metastasis, and drug resistance in melanoma. This review summarizes current research on epigenetic mechanisms in melanoma and their therapeutic potential. Specifically, we discuss the role of histone acetylation and methylation in gene expression regulation and melanoma pathobiology, as well as the promising results of HDAC inhibitors and DNMT inhibitors in clinical trials. We also examine the dysregulation of non-coding RNA, particularly miRNAs, and their potential as targets for melanoma therapy. Finally, we highlight the challenges of epigenetic therapies, such as the complexity of epigenetic mechanisms combined with immunotherapies and the need for combination therapies to overcome drug resistance. In conclusion, epigenetic changes may be reversible, and the use of combination therapy between traditional therapies and epigenetically targeted drugs could be a viable solution to reverse the increasing number of patients who develop treatment resistance or even prevent it. While several clinical trials are underway, the complexity of these mechanisms presents a significant challenge to the development of effective therapies. Further research is needed to fully understand the role of epigenetic mechanisms in melanoma and to develop more effective and targeted therapies.
Collapse
Affiliation(s)
- Marco Rubatto
- Department of Medical Sciences, Dermatologic Clinic, University of Turin Medical School, Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
5
|
Brănişteanu DE, Porumb-Andrese E, Porumb V, Stărică A, Moraru AD, Nicolescu AC, Zemba M, Brănişteanu CI, Brănişteanu G, Brănişteanu DC. New Treatment Horizons in Uveal and Cutaneous Melanoma. Life (Basel) 2023; 13:1666. [PMID: 37629523 PMCID: PMC10455832 DOI: 10.3390/life13081666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Melanoma is a complex and heterogeneous malignant tumor with distinct genetic characteristics and therapeutic challenges in both cutaneous melanoma (CM) and uveal melanoma (UM). This review explores the underlying molecular features and genetic alterations in these melanoma subtypes, highlighting the importance of employing specific model systems tailored to their unique profiles for the development of targeted therapies. Over the past decade, significant progress has been made in unraveling the molecular and genetic characteristics of CM and UM, leading to notable advancements in treatment options. Genetic mutations in the mitogen-activated protein kinase (MAPK) pathway drive CM, while UM is characterized by mutations in genes like GNAQ, GNA11, BAP1, EIF1AX, and SF3B1. Chromosomal aberrations, including monosomy 3 in UM and monosomy 10 in CM, play significant roles in tumorigenesis. Immune cell infiltration differs between CM and UM, impacting prognosis. Therapeutic advancements targeting these genetic alterations, including oncolytic viruses and immunotherapies, have shown promise in preclinical and clinical studies. Oncolytic viruses selectively infect malignant cells, inducing oncolysis and activating antitumor immune responses. Talimogene laherparepvec (T-VEC) is an FDA-approved oncolytic virus for CM treatment, and other oncolytic viruses, such as coxsackieviruses and HF-10, are being investigated. Furthermore, combining oncolytic viruses with immunotherapies, such as CAR-T cell therapy, holds great potential. Understanding the intrinsic molecular features of melanoma and their role in shaping novel therapeutic approaches provides insights into targeted interventions and paves the way for more effective treatments for CM and UM.
Collapse
Affiliation(s)
- Daciana Elena Brănişteanu
- Department of Medical Specialties (III)-Dermatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Railway Clinical Hospital, 700506 Iasi, Romania;
| | - Elena Porumb-Andrese
- Department of Medical Specialties (III)-Dermatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Railway Clinical Hospital, 700506 Iasi, Romania;
| | - Vlad Porumb
- Department of Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Military Emergency Clinical Hospital “Dr. Iacob Czihac”, 700506 Iasi, Romania
| | | | - Andreea Dana Moraru
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | | | - Mihail Zemba
- Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | | | - George Brănişteanu
- “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.I.B.); (G.B.)
| | - Daniel Constantin Brănişteanu
- Railway Clinical Hospital, 700506 Iasi, Romania;
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
6
|
Gilbert MM, Mathes SC, Mahajan AS, Rohan CA, Travers JB, Thyagarajan A. The role of sirtuins in dermal fibroblast function. Front Med (Lausanne) 2023; 10:1021908. [PMID: 36993812 PMCID: PMC10040577 DOI: 10.3389/fmed.2023.1021908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
The sirtuins are a family of seven proteins that perform a variety of dermatological functions and help maintain both the structure and function of the skin. More specifically, the sirtuins have been shown to be altered in multiple dermal cell types including dermal fibroblasts. The functions of dermal fibroblasts are extensive, and include playing a significant role in wound healing as well as helping to maintain the integrity of the skin. As dermal fibroblasts age, they can undergo a state of permanent cell cycle arrest, known as cellular senescence. This senescent process can occur as a result of various stressors, including oxidative stress, ultraviolet radiation -induced stress, and replicative stress. In recent years, there has been a growing interest in both enhancing the cutaneous fibroblast’s ability to facilitate wound healing and altering fibroblast cellular senescence. Thus, in this review, we examine the relationship between sirtuin signaling and dermal fibroblasts to understand how this family of proteins may modulate skin conditions ranging from the wound healing process to photocarcinogenesis associated with fibroblast senescence. Additionally, we offer supporting data from experiments examining the relationship between fibroblast senescence and sirtuin levels in an oxidative stress model indicating that senescent dermal fibroblasts exhibit diminished sirtuin levels. Furthermore, we survey the research on the role of sirtuins in specific dermatological disease states that where dermal fibroblast function has been implicated. Finally, we conclude with outlining potential clinical applications of sirtuins in dermatology. In sum, we find that the literature on the involvement of sirtuins in dermal fibroblasts is limited, with research still in its early stages. Nevertheless, intriguing preliminary findings merit additional investigation into the clinical implications of sirtuins in dermatology.
Collapse
Affiliation(s)
- Michael M. Gilbert
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Departments of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- *Correspondence: Michael M. Gilbert,
| | | | - Avinash S. Mahajan
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Craig A. Rohan
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Departments of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dayton Veterans Administration Medical Center, Dayton, OH, United States
| | - Jeffrey B. Travers
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Departments of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dayton Veterans Administration Medical Center, Dayton, OH, United States
| | - Anita Thyagarajan
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Anita Thyagarajan,
| |
Collapse
|
7
|
Wu KC, Liao KS, Yeh LR, Wang YK. Drug Repurposing: The Mechanisms and Signaling Pathways of Anti-Cancer Effects of Anesthetics. Biomedicines 2022; 10:biomedicines10071589. [PMID: 35884894 PMCID: PMC9312706 DOI: 10.3390/biomedicines10071589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. There are only limited treatment strategies that can be applied to treat cancer, including surgical resection, chemotherapy, and radiotherapy, but these have only limited effectiveness. Developing a new drug for cancer therapy is protracted, costly, and inefficient. Recently, drug repurposing has become a rising research field to provide new meaning for an old drug. By searching a drug repurposing database ReDO_DB, a brief list of anesthetic/sedative drugs, such as haloperidol, ketamine, lidocaine, midazolam, propofol, and valproic acid, are shown to possess anti-cancer properties. Therefore, in the current review, we will provide a general overview of the anti-cancer mechanisms of these anesthetic/sedative drugs and explore the potential underlying signaling pathways and clinical application of these drugs applied individually or in combination with other anti-cancer agents.
Collapse
Affiliation(s)
- King-Chuen Wu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Kai-Sheng Liao
- Department of Pathology, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Li-Ren Yeh
- Department of Anesthesiology, E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
- Department of Medical Imaging and Radiology, Shu-Zen College of Medicine and Management, Kaohsiung 82144, Taiwan
- Correspondence: (L.-R.Y.); (Y.-K.W.); Tel.: +886-7-6150-022 (L.-R.Y.); +886-6-2353-535 (ext. 5333) (Y.-K.W.)
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: (L.-R.Y.); (Y.-K.W.); Tel.: +886-7-6150-022 (L.-R.Y.); +886-6-2353-535 (ext. 5333) (Y.-K.W.)
| |
Collapse
|
8
|
Hanly A, Gibson F, Nocco S, Rogers S, Wu M, Alani RM. Drugging the Epigenome: Overcoming Resistance to Targeted and Immunotherapies in Melanoma. JID INNOVATIONS 2022; 2:100090. [PMID: 35199090 PMCID: PMC8844701 DOI: 10.1016/j.xjidi.2021.100090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/31/2022] Open
Abstract
This past decade has seen tremendous advances in understanding the molecular pathogenesis of melanoma and the development of novel effective therapies for melanoma. Targeted therapies and immunotherapies that extend survival of patients with advanced disease have been developed; however, the vast majority of patients experience relapse and therapeutic resistance over time. Moreover, cellular plasticity has been demonstrated to be a driver of therapeutic resistance mechanisms in melanoma and other cancers, largely functioning through epigenetic mechanisms, suggesting that targeting of the cancer epigenetic landscape may prove a worthwhile endeavor to ensure durable treatment responses and cures. Here, we review the epigenetic alterations that characterize melanoma development, progression, and resistance to targeted therapies as well as epigenetic therapies currently in use and under development for melanoma and other cancers. We further assess the landscape of epigenetic therapies in clinical trials for melanoma and provide a framework for future advances in epigenetic therapies to circumvent the development of therapeutic resistance in melanoma.
Collapse
Key Words
- BRAFi, BRAF inhibitor
- DNMT, DNA methyltransferase
- DNMTi, DNA methyltransferase inhibitor
- EZH2, enhancer of zeste homolog 2
- EZH2i, enhancer of zeste homolog 2 inhibitor
- HAT, histone acetyltransferase
- HDAC, histone deacetylase
- HDACi, histone deacetylase inhibitor
- MEKi, MAPK/extracellular signal‒regulated kinase inhibitor
- PTM, post-translational modification
- SIRT, sirtuin
- TMZ, temozolomide
- dsRNA, double-stranded RNA
Collapse
Affiliation(s)
- Ailish Hanly
- Department of Dermatology, Boston University School of Medicine|Boston Medical Center, Boston, Massachusetts, USA
| | - Frederick Gibson
- Department of Dermatology, Boston University School of Medicine|Boston Medical Center, Boston, Massachusetts, USA
| | - Sarah Nocco
- Department of Dermatology, Boston University School of Medicine|Boston Medical Center, Boston, Massachusetts, USA
| | - Samantha Rogers
- Department of Dermatology, Boston University School of Medicine|Boston Medical Center, Boston, Massachusetts, USA
| | - Muzhou Wu
- Department of Dermatology, Boston University School of Medicine|Boston Medical Center, Boston, Massachusetts, USA
| | - Rhoda M. Alani
- Department of Dermatology, Boston University School of Medicine|Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Heppt MV, Wessely A, Hornig E, Kammerbauer C, Graf SA, Besch R, French LE, Matthies A, Kuphal S, Kappelmann-Fenzl M, Bosserhoff AK, Berking C. HDAC2 Is Involved in the Regulation of BRN3A in Melanocytes and Melanoma. Int J Mol Sci 2022; 23:ijms23020849. [PMID: 35055045 PMCID: PMC8778714 DOI: 10.3390/ijms23020849] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
The neural crest transcription factor BRN3A is essential for the proliferation and survival of melanoma cells. It is frequently expressed in melanoma but not in normal melanocytes or benign nevi. The mechanisms underlying the aberrant expression of BRN3A are unknown. Here, we investigated the epigenetic regulation of BRN3A in melanocytes and melanoma cell lines treated with DNA methyltransferase (DNMT), histone acetyltransferase (HAT), and histone deacetylase (HDAC) inhibitors. DNMT and HAT inhibition did not significantly alter BRN3A expression levels, whereas panHDAC inhibition by trichostatin A led to increased expression. Treatment with the isoform-specific HDAC inhibitor mocetinostat, but not with PCI-34051, also increased BRN3A expression levels, suggesting that class I HDACs HDAC1, HDAC2, and HDAC3, and class IV HDAC11, were involved in the regulation of BRN3A expression. Transient silencing of HDACs 1, 2, 3, and 11 by siRNAs revealed that, specifically, HDAC2 inhibition was able to increase BRN3A expression. ChIP-Seq analysis uncovered that HDAC2 inhibition specifically increased H3K27ac levels at a distal enhancer region of the BRN3A gene. Altogether, our data suggest that HDAC2 is a key epigenetic regulator of BRN3A in melanocytes and melanoma cells. These results highlight the importance of epigenetic mechanisms in regulating melanoma oncogenes.
Collapse
Affiliation(s)
- Markus V. Heppt
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.W.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-35747
| | - Anja Wessely
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.W.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Eva Hornig
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (E.H.); (C.K.); (S.A.G.); (R.B.); (L.E.F.)
| | - Claudia Kammerbauer
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (E.H.); (C.K.); (S.A.G.); (R.B.); (L.E.F.)
| | - Saskia A. Graf
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (E.H.); (C.K.); (S.A.G.); (R.B.); (L.E.F.)
| | - Robert Besch
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (E.H.); (C.K.); (S.A.G.); (R.B.); (L.E.F.)
| | - Lars E. French
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (E.H.); (C.K.); (S.A.G.); (R.B.); (L.E.F.)
| | - Alexander Matthies
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.M.); (S.K.); (A.K.B.)
| | - Silke Kuphal
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.M.); (S.K.); (A.K.B.)
| | | | - Anja K. Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.M.); (S.K.); (A.K.B.)
| | - Carola Berking
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.W.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
| |
Collapse
|
10
|
Diener J, Baggiolini A, Pernebrink M, Dalcher D, Lerra L, Cheng PF, Varum S, Häusel J, Stierli S, Treier M, Studer L, Basler K, Levesque MP, Dummer R, Santoro R, Cantù C, Sommer L. Epigenetic control of melanoma cell invasiveness by the stem cell factor SALL4. Nat Commun 2021; 12:5056. [PMID: 34417458 PMCID: PMC8379183 DOI: 10.1038/s41467-021-25326-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma cells rely on developmental programs during tumor initiation and progression. Here we show that the embryonic stem cell (ESC) factor Sall4 is re-expressed in the Tyr::NrasQ61K; Cdkn2a-/- melanoma model and that its expression is necessary for primary melanoma formation. Surprisingly, while Sall4 loss prevents tumor formation, it promotes micrometastases to distant organs in this melanoma-prone mouse model. Transcriptional profiling and in vitro assays using human melanoma cells demonstrate that SALL4 loss induces a phenotype switch and the acquisition of an invasive phenotype. We show that SALL4 negatively regulates invasiveness through interaction with the histone deacetylase (HDAC) 2 and direct co-binding to a set of invasiveness genes. Consequently, SALL4 knock down, as well as HDAC inhibition, promote the expression of an invasive signature, while inhibition of histone acetylation partially reverts the invasiveness program induced by SALL4 loss. Thus, SALL4 appears to regulate phenotype switching in melanoma through an HDAC2-mediated mechanism.
Collapse
Affiliation(s)
- Johanna Diener
- University of Zürich, Institute of Anatomy, Zürich, Switzerland
| | - Arianna Baggiolini
- University of Zürich, Institute of Anatomy, Zürich, Switzerland
- Developmental Biology, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mattias Pernebrink
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology; Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Damian Dalcher
- University of Zürich, Department of Molecular Mechanisms of Disease, Zürich, Switzerland
| | - Luigi Lerra
- University of Zürich, Department of Molecular Mechanisms of Disease, Zürich, Switzerland
| | - Phil F Cheng
- University Hospital of Zürich, Department of Dermatology, Zürich, Switzerland
| | - Sandra Varum
- University of Zürich, Institute of Anatomy, Zürich, Switzerland
| | - Jessica Häusel
- University of Zürich, Institute of Anatomy, Zürich, Switzerland
| | - Salome Stierli
- University of Zürich, Institute of Anatomy, Zürich, Switzerland
| | - Mathias Treier
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lorenz Studer
- Developmental Biology, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Konrad Basler
- University of Zürich, Institute of Molecular Life Sciences, Zürich, Switzerland
| | - Mitchell P Levesque
- University Hospital of Zürich, Department of Dermatology, Zürich, Switzerland
| | - Reinhard Dummer
- University Hospital of Zürich, Department of Dermatology, Zürich, Switzerland
| | - Raffaella Santoro
- University of Zürich, Department of Molecular Mechanisms of Disease, Zürich, Switzerland
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology; Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- University of Zürich, Institute of Molecular Life Sciences, Zürich, Switzerland
| | - Lukas Sommer
- University of Zürich, Institute of Anatomy, Zürich, Switzerland.
| |
Collapse
|
11
|
Chanda M, Cohen MS. Advances in the discovery and development of melanoma drug therapies. Expert Opin Drug Discov 2021; 16:1319-1347. [PMID: 34157926 DOI: 10.1080/17460441.2021.1942834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Therapeutic strategies for melanoma have evolved significantly over the last decade shifting from cytotoxic chemotherapies like dacarbazine to targeted therapies and immunotherapies including immune checkpoint inhibitors. These new drug therapies have improved overall as well as progression-free survival, lowering the mortality of this cancer for melanoma patients with advanced disease. Newer strategies incorporate combination therapies that harness synergies between mechanisms of anticancer efficacy as well as help overcome resistance issues of monotherapies, which remain a challenge. AREAS COVERED This review looks at each class of drug therapy for melanoma and provides an overview of the preclinical mechanism of action, the clinical efficacy data, and their applications in combination therapy regimens. NCCN treatment guidelines, safety, toxicity, and immune-related adverse events are also described as well as a note on cost. EXPERT OPINION Numerous ongoing trials continue to evaluate the role of novel therapies and combinations for this challenging disease and understanding their mechanism of action, risks, benefits, and treatment guidelines can help care providers and patients have a more comprehensive and tailored discussion of treatment options and expectations.
Collapse
Affiliation(s)
- Monica Chanda
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Mark S Cohen
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA.,Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Targeting SIRT2 Sensitizes Melanoma Cells to Cisplatin via an EGFR-Dependent Mechanism. Int J Mol Sci 2021; 22:ijms22095034. [PMID: 34068624 PMCID: PMC8126047 DOI: 10.3390/ijms22095034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 01/29/2023] Open
Abstract
Melanoma cells are resistant to most anticancer chemotherapeutics. Despite poor response rates and short-term efficacy, chemotherapy remains the main approach to treating this cancer. The underlying mechanisms of the intrinsic chemoresistance of melanoma remain unclear, but elucidating these mechanisms is important to improve the efficacy of chemotherapy regimens. Increasing evidence suggests that sirtuin 2 (SIRT2) plays a key role in the response of melanoma cells to chemotherapeutics; thus, in the present study, we evaluated the impact of shRNA-mediated and pharmacological inhibition of SIRT2 on the sensitivity of melanoma cells to cisplatin, which is used in several regimens to treat melanoma patients. We found that cells with SIRT2 inhibition revealed increased sensitivity to cisplatin and exhibited increased accumulation of γ-H2AX and reduced EGFR-AKT-RAF-ERK1/2 (epidermal growth factor receptor-protein B kinase-RAF kinase-extracellular signal-regulated kinase 1/2) pathway signaling compared to control cells. Thus, our results show that sirtuin 2 inhibition increased the in vitro efficacy of cisplatin against melanoma cells.
Collapse
|
13
|
Tavares MT, de Almeida LC, Kronenberger T, Monteiro Ferreira G, Fujii de Divitiis T, Franco Zannini Junqueira Toledo M, Mariko Aymoto Hassimotto N, Agostinho Machado-Neto J, Veras Costa-Lotufo L, Parise-Filho R. Structure-activity relationship and mechanistic studies for a series of cinnamyl hydroxamate histone deacetylase inhibitors. Bioorg Med Chem 2021; 35:116085. [PMID: 33668008 DOI: 10.1016/j.bmc.2021.116085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Histone deacetylases (HDACs) are a family of enzymes that modulate the acetylation status histones and non-histone proteins. Histone deacetylase inhibitors (HDACis) have emerged as an alternative therapeutic approach for the treatment of several malignancies. Herein, a series of urea-based cinnamyl hydroxamate derivatives is presented as potential anticancer HDACis. In addition, structure-activity relationship (SAR) studies have been performed in order to verify the influence of the linker on the biological profile of the compounds. All tested compounds demonstrated significant antiproliferative effects against solid and hematological human tumor cell lines. Among them, 11b exhibited nanomolar potency against hematological tumor cells including Jurkat and Namalwa, with IC50 values of 40 and 200 nM, respectively. Cellular and molecular proliferation studies, in presence of compounds 11a-d, showed significant cell growth arrest, apoptosis induction, and up to 43-fold selective cytotoxicity for leukemia cells versus non-tumorigenic cells. Moreover, compounds 11a-d increased acetylated α-tubulin expression levels, which is phenotypically consistent with HDAC inhibition, and indirectly induced DNA damage. In vitro enzymatic assays performed for 11b revealed a potent HDAC6 inhibitory activity (IC50: 8.1 nM) and 402-fold selectivity over HDAC1. Regarding SAR analysis, the distance between the hydroxamate moiety and the aromatic ring as well as the presence of the double bond in the cinnamyl linker were the most relevant chemical feature for the antiproliferative activity of the series. Molecular modeling studies suggest that cinnamyl hydroxamate is the best moiety of the series for binding HDAC6 catalytic pocket whereas exploration of Ser568 by the urea connecting unity (CU) might be related with the selectivity observed for the cinnamyl derivatives. In summary, cinnamyl hydroxamate derived compounds with HDAC6 inhibitory activity exhibited cell growth arrest and increased apoptosis, as well as selectivity to acute lymphoblastic leukemia cells. This study explores interesting compounds to fight against neoplastic hematological cells.
Collapse
Affiliation(s)
- Maurício Temotheo Tavares
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Larissa Costa de Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thales Kronenberger
- Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Straße 10, DE 72076 Tübingen, Germany; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Glaucio Monteiro Ferreira
- Laboratory of Molecular Biology Applied to Diagnosis (LBMAD), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Thainá Fujii de Divitiis
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Neuza Mariko Aymoto Hassimotto
- Food Research Center-(FoRC-CEPID) and Department of Food Science and Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
| | | | - Letícia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Roberto Parise-Filho
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
14
|
Overcome the tumor immunotherapy resistance by combination of the HDAC6 inhibitors with antitumor immunomodulatory agents. Bioorg Chem 2021; 109:104754. [PMID: 33677416 DOI: 10.1016/j.bioorg.2021.104754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 11/21/2022]
Abstract
Tumor immunotherapy is currently subject of intense scientific and clinical developments. In previous decade, therapists used natural immune system from the human body to treat several diseases. Although tumor immune disease is a big challenge, combinatorial therapeutic strategy has been succeeded to show the clinical significance. In this context, we discuss the HDAC6 and tumor immune diseases relationship. Also, we summarized the current state of knowledge that based on the combination treatments of the HDAC6 inhibitors (HDAC6is) with antitumor immunomodulatory agents. We observed that, the combination therapies slow down the tumor immune diseases by blocking the aggresome and proteasome pathway. The combination therapy was able to reduce M2 macrophage and increasing PD-L1 blockade sensitivity. Most importantly, multiple combinations of HDAC6is with other agents may consider as potential strategies to treat tumor immune diseases, by reducing the side effects and improve efficacy for the future clinical development.
Collapse
|
15
|
Wang Z, Zhao YT, Zhao TC. Histone deacetylases in modulating cardiac disease and their clinical translational and therapeutic implications. Exp Biol Med (Maywood) 2020; 246:213-225. [PMID: 32727215 DOI: 10.1177/1535370220944128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular diseases are the leading cause of mortality and morbidity worldwide. Histone deacetylases (HDACs) play an important role in the epigenetic regulation of genetic transcription in response to stress or pathological conditions. HDACs interact with a complex co-regulatory network of transcriptional regulators, deacetylate histones or non-histone proteins, and modulate gene expression in the heart. The selective HDAC inhibitors have been considered to be a critical target for the treatment of cardiac disease, especially for ameliorating cardiac dysfunction. In this review, we discuss our current knowledge of the cellular and molecular basis of HDACs in mediating cardiac development and hypertrophy and related pharmacologic interventions in heart disease.
Collapse
Affiliation(s)
- Zhengke Wang
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center, Providence, RI 02908, USA
| | - Yu Tina Zhao
- University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Ting C Zhao
- Departments of Surgery and Plastic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| |
Collapse
|
16
|
Association of Valproic Acid Use, a Potent Histone Deacetylase Inhibitor, and Melanoma Risk. J Invest Dermatol 2020; 140:2353-2358. [PMID: 32353448 DOI: 10.1016/j.jid.2020.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/24/2022]
Abstract
Histone deacetylase inhibitors, including valproic acid, selectively induce cellular differentiation and apoptosis in melanoma cells. No published pharmacoepidemiologic studies have explored the association between valproic acid use and melanoma risk. We conducted a retrospective cohort study of adult white Kaiser Permanente Northern California members (n = 2,213,845) from 1997 to 2012 to examine the association between valproic acid use and melanoma risk. Melanoma hazard ratios (HRs) and 95% CIs were estimated using Cox proportional hazards models, adjusted for age, sex, calendar year, and healthcare use. Melanoma incidence was lower among exposed individuals (64.0 exposed vs. 96.2 unexposed per 100,000 person-years, P < 0.001). Exposed individuals had a lower incident melanoma risk (HR = 0.64; 95% CI = 0.51-0.79) in unadjusted analysis, and the estimate was attenuated but significant in adjusted analysis (HR = 0.76, 95% CI = 0.61-0.94). Cumulative exposure based on the number of fills revealed a biologically implausible inverse dose-effect. Exposed individuals were more likely to present with local than regional or distant disease at diagnosis (80/82; 97.6% exposed vs. 12,940/13,971; 92.6% unexposed). Our findings suggest that valproic acid exposure may be associated with decreased melanoma risk and progression, but the cumulative exposure analyses suggest that the observation may be owing to residual confounding.
Collapse
|
17
|
Abstract
LC3-associated phagocytosis, a distinct form of autophagy, plays a key role in antigen presentation. Autophagy itself plays a central role in the regulation of cellular metabolism. Proteins that regulate autophagy include the AMPK which senses high levels of AMP, and mTOR, which integrates amino acid and fatty acid metabolism with autophagy. More recently, autophagy has been demonstrated to regulate tumor cell immunogenicity via the degradation of histone deacetylase proteins. Individual drugs and drug combinations that activate the ATM-AMPK pathway and inactivate mTOR, cause autophagosome formation. The maturation of autophagosomes into autolysosomes causes the autophagic degradation of histone deacetylase proteins who regulate the transcription of PD-L1, Class I MHCA, ODC and IDO1. Indeed, drug combinations that do not contain an HDAC inhibitor can nevertheless act as de facto HDAC inhibitors, via autophagic degradation of HDAC proteins. Such drug combinations simultaneously kill tumor cells via immunogenic autophagy and in parallel opsonize tumor cells to checkpoint inhibitor immunotherapies via reduced expression of PD-L1, ODC and IDO1, and increased expression of Class I MHCA.
Collapse
|
18
|
Chattopadhyay SK, Ghosh S, Sarkar S, Bhadra K. α,ß-Didehydrosuberoylanilide hydroxamic acid (DDSAHA) as precursor and possible analogue of the anticancer drug SAHA. Beilstein J Org Chem 2019; 15:2524-2533. [PMID: 31728166 PMCID: PMC6839567 DOI: 10.3762/bjoc.15.245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/08/2019] [Indexed: 11/23/2022] Open
Abstract
An alternate synthetic route to the important anticancer drug suberoylanilide hydroxamic acid (SAHA) from its α,ß-didehydro derivative is described. The didehydro derivative is obtained through a cross metathesis reaction between a suitable terminal alkene and N-benzyloxyacrylamide. Some of the didehydro derivatives of SAHA were preliminarily evaluated for anticancer activity towards HeLa cells. The administration of the analogues caused a significant decrease in the proliferation of HeLa cells. Furthermore, one of the analogues showed a maximum cytotoxicity with a minimum GI50 value of 2.5 µg/mL and the generation of reactive oxygen species (ROS) as some apoptotic features.
Collapse
Affiliation(s)
| | - Subhankar Ghosh
- Department of Chemistry, University of Kalyani, Kalyani - 741235, West Bengal, India
| | - Sarita Sarkar
- Department of Zoology, University of Kalyani, Kalyani - 741235, West Bengal, India
| | - Kakali Bhadra
- Department of Zoology, University of Kalyani, Kalyani - 741235, West Bengal, India
| |
Collapse
|
19
|
Shen S, Hadley M, Ustinova K, Pavlicek J, Knox T, Noonepalle S, Tavares MT, Zimprich CA, Zhang G, Robers MB, Bařinka C, Kozikowski AP, Villagra A. Discovery of a New Isoxazole-3-hydroxamate-Based Histone Deacetylase 6 Inhibitor SS-208 with Antitumor Activity in Syngeneic Melanoma Mouse Models. J Med Chem 2019; 62:8557-8577. [PMID: 31414801 DOI: 10.1021/acs.jmedchem.9b00946] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Isoxazole is a five-membered heterocycle that is widely used in drug discovery endeavors. Here, we report the design, synthesis, and structural and biological characterization of SS-208, a novel HDAC6-selective inhibitor containing the isoxazole-3-hydroxamate moiety as a zinc-binding group as well as a hydrophobic linker. A crystal structure of the Danio rerio HDAC6/SS-208 complex reveals a bidentate coordination of the active-site zinc ion that differs from the preferred monodentate coordination observed for HDAC6 complexes with phenylhydroxamate-based inhibitors. While SS-208 has minimal effects on the viability of murine SM1 melanoma cells in vitro, it significantly reduced in vivo tumor growth in a murine SM1 syngeneic melanoma mouse model. These findings suggest that the antitumor activity of SS-208 is mainly mediated by immune-related antitumor activity as evidenced by the increased infiltration of CD8+ and NK+ T cells and the enhanced ratio of M1 and M2 macrophages in the tumor microenvironment.
Collapse
Affiliation(s)
- Sida Shen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | - Melissa Hadley
- Department of Biochemistry and Molecular Medicine , The George Washington University , Washington, District of Columbia 20052 , United States
| | - Kseniya Ustinova
- Laboratory of Structural Biology , Institute of Biotechnology of the Czech Academy of Sciences , Prumyslova 595 , 252 50 Vestec , Czech Republic.,Department of Biochemistry, Faculty of Natural Science , Charles University , Albertov 6 , 128 43 Prague 2 , Czech Republic
| | - Jiri Pavlicek
- Laboratory of Structural Biology , Institute of Biotechnology of the Czech Academy of Sciences , Prumyslova 595 , 252 50 Vestec , Czech Republic
| | - Tessa Knox
- Department of Biochemistry and Molecular Medicine , The George Washington University , Washington, District of Columbia 20052 , United States
| | - Satish Noonepalle
- Department of Biochemistry and Molecular Medicine , The George Washington University , Washington, District of Columbia 20052 , United States
| | - Mauricio T Tavares
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | - Chad A Zimprich
- Promega Corporation , Madison , Wisconsin 53711 , United States
| | - Guiping Zhang
- Bontac Bio-Engineering (Shenzhen) Co., Ltd , Shenzhen , Guangdong 518102 , China
| | | | - Cyril Bařinka
- Laboratory of Structural Biology , Institute of Biotechnology of the Czech Academy of Sciences , Prumyslova 595 , 252 50 Vestec , Czech Republic
| | - Alan P Kozikowski
- StarWise Therapeutics LLC, University Research Park, Inc. , Madison , Wisconsin 53719 , United States
| | - Alejandro Villagra
- Department of Biochemistry and Molecular Medicine , The George Washington University , Washington, District of Columbia 20052 , United States
| |
Collapse
|
20
|
Gupta R, Bhatt LK, Momin M. Potent antitumor activity of Laccaic acid and Phenethyl isothiocyanate combination in colorectal cancer via dual inhibition of DNA methyltransferase-1 and Histone deacetylase-1. Toxicol Appl Pharmacol 2019; 377:114631. [DOI: 10.1016/j.taap.2019.114631] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
|
21
|
Li X, Yuan M, Yin R, Liu X, Zhang Y, Sun S, Han L, He S. Histone deacetylase inhibitor attenuates experimental fungal keratitis in mice. Sci Rep 2019; 9:9859. [PMID: 31285488 PMCID: PMC6614500 DOI: 10.1038/s41598-019-46361-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
Abstract
Fungal keratitis is one of the leading causes of blindness of infected corneal diseases, but the pathogenesis of fungal keratitis is not fully understood and therefore the treatment of the disease by medication is still under investigation. In the current study, we sought to study the effect of HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) on experimental fungal keratitis in mice. SAHA (25 mg/kg) (n = 30) or vehicle (DMSO) (n = 30) was delivered through intraperitoneal injection (IP) 24 hours after the fungal inoculation, and the same amount of SAHA injection or DMSO was followed at day 2. The expression of histone H3 (H3), acetylated histone H3 (AC-H3), histone deacetylase 1 (HDAC)1, tumor necrosis factor-α (TNFα), and Toll-like receptor 4 (TLR4) in surgically excised specimens from the patients and mice with fungal keratitis were detected by immunohistochemistry. The expression of mRNAs for Interleukin-1β (IL-1β), TNFα, and TLR4 were evaluated in the corneas of the mice with fungal infection and the control corneas by real-time PCR. The quantification of IL-1β and TNFα in the corneas of the mice with fungal infection was determined by ELISA. The inhibitory effect of SAHA on mice fungal keratitis was revealed by GMS and H&E staining. We found that the downregulation of histone acetylation and upregulation of HDAC1 expression were associated with the increased inflammation response in fungal keratitis not only in humans but also in experimental animals. SAHA was able to inhibit experimental fungal keratitis in mouse by suppressing TLR4 and inflammatory cytokines such as TNFα and IL-1β; the inhibition of HDAC may be a potential therapeutic approach for the treatment of fungal keratitis.
Collapse
Affiliation(s)
- Xiaohua Li
- Henan Provincial People's Hospital, Zhengzhou, 450003, China. .,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, China. .,People's Hospital of Zhengzhou University, Zhengzhou, 450003, China. .,People's Hospital of Henan University, Zhengzhou, 450003, China.
| | - Min Yuan
- Henan Provincial People's Hospital, Zhengzhou, 450003, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Ruijie Yin
- Henan Provincial People's Hospital, Zhengzhou, 450003, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Xiaohui Liu
- Henan Provincial People's Hospital, Zhengzhou, 450003, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Yu Zhang
- Henan Provincial People's Hospital, Zhengzhou, 450003, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Shengtao Sun
- Henan Provincial People's Hospital, Zhengzhou, 450003, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Lei Han
- Henan Provincial People's Hospital, Zhengzhou, 450003, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Shikun He
- Departments of Pathology and Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
22
|
van der Kooij MK, Speetjens FM, van der Burg SH, Kapiteijn E. Uveal Versus Cutaneous Melanoma; Same Origin, Very Distinct Tumor Types. Cancers (Basel) 2019; 11:E845. [PMID: 31248118 PMCID: PMC6627906 DOI: 10.3390/cancers11060845] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023] Open
Abstract
Here, we critically evaluated the knowledge on cutaneous melanoma (CM) and uveal melanoma (UM). Both cancer types derive from melanocytes that share the same embryonic origin and display the same cellular function. Despite their common origin, both CM and UM display extreme differences in their genetic alterations and biological behavior. We discuss the differences in genetic alterations, metastatic routes, tumor biology, and tumor-host interactions in the context of their clinical responses to targeted- and immunotherapy.
Collapse
Affiliation(s)
- Monique K van der Kooij
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Frank M Speetjens
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
23
|
Liu J, Zhu Y, He Y, Zhu H, Gao Y, Li Z, Zhu J, Sun X, Fang F, Wen H, Li W. Combined pharmacophore modeling, 3D-QSAR and docking studies to identify novel HDAC inhibitors using drug repurposing. J Biomol Struct Dyn 2019; 38:533-547. [PMID: 30938574 DOI: 10.1080/07391102.2019.1590241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Histone deacetylases (HDACs), a critical family of epigenetic enzymes, has emerged as a promising target for antitumor drugs. Here, we describe our protocol of virtual screening in identification of novel potential HDAC inhibitors through pharmacophore modeling, 3D-QSAR, molecular docking and molecular dynamics (MD) simulation. Considering the limitation of current virtual screening works, drug repurposing strategy was applied to discover druggable HDAC inhibitor. The ligand-based pharmacophore and 3D-QSAR models were established, and their reliability was validated by different methods. Then, the DrugBank database was screened, followed by molecular docking. MD simulation (100 ns) was performed to further study the stability of ligand binding modes. Finally, results indicated the hit DB03889 with high in silico inhibitory potency was suitable for further experimental analysis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Functional Substances of Chinese Medicine Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yehua Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yufang He
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haohao Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junru Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinjie Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Fang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Functional Substances of Chinese Medicine Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Functional Substances of Chinese Medicine Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
24
|
Ogawa M, Yaginuma T, Nakatomi C, Nakajima T, Tada-Shigeyama Y, Addison WN, Urata M, Matsubara T, Watanabe K, Matsuo K, Sato T, Honda H, Hikiji H, Watanabe S, Kokabu S. Transducin-like enhancer of split 3 regulates proliferation of melanoma cells via histone deacetylase activity. Oncotarget 2019; 10:404-414. [PMID: 30719233 PMCID: PMC6349449 DOI: 10.18632/oncotarget.26552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 12/20/2018] [Indexed: 11/25/2022] Open
Abstract
Melanoma, one of the most aggressive neoplasms, is characterized by rapid cell proliferation. Transducin-like Enhancer of Split (TLE) is an important regulator of cell proliferation via Histone deacetylase (HDAC) recruitment. Given that HDAC activity is associated with melanoma progression, we examined the relationship between TLE3, a TLE family member, and melanoma. TLE3 expression was increased during the progression of human patient melanoma (p < 0.05). Overexpression of Tle3 in B16 murine melanoma cells led to an increase in cell proliferation (p < 0.01) as well as the number of cyclinD1-positive cells. in vivo injection of mice with B16 cells overexpressing Tle3 resulted in larger tumor formation than in mice injected with control cells (p < 0.05). In contrast, siRNA-mediated knockdown of Tle3 in B16 cells or TLE3 in HMV-II human melanoma cells decreased proliferation (p < 0.01). Treatment of B16 cells with trichostatin A (2.5 μM), a class I and II HDAC inhibitor, prevented the effect s of Tle3 on proliferation. In conclusion, these data indicate that Tle3 is required, at least in part, for proliferation in the B16 mouse melanoma model.
Collapse
Affiliation(s)
- Masahiro Ogawa
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.,Division of Dental Anesthesiology, Department of Science of Physical Functions, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Tatsuki Yaginuma
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Chihiro Nakatomi
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Tsuyoshi Nakajima
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Yukiyo Tada-Shigeyama
- Division of Dental Anesthesiology, Department of Science of Physical Functions, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - William N Addison
- Research Unit, Shriners Hospitals for Children-Canada, Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Mariko Urata
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Koji Watanabe
- Division of Developmental Stomatognathic Function Science, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Kou Matsuo
- Division of Oral Pathology, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Tsuyoshi Sato
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Hiromi Honda
- School of Oral Health Sciences, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Hisako Hikiji
- School of Oral Health Sciences, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Seiji Watanabe
- Division of Dental Anesthesiology, Department of Science of Physical Functions, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
25
|
Lu CT, Leong PY, Hou TY, Huang SJ, Hsiao YP, Ko JL. Ganoderma immunomodulatory protein and chidamide down-regulate integrin-related signaling pathway result in migration inhibition and apoptosis induction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 51:39-47. [PMID: 30466626 DOI: 10.1016/j.phymed.2018.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/18/2018] [Accepted: 06/18/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND In terms of melanoma, recent advances have been made in target therapies and immune checkpoint inhibitors, but durable remission is rare. Ganoderma immunomodulatory proteins (GMI) induce a cytotoxic effect in cancer cells via autophagy. However, the role of GMI in melanoma is not clear. PURPOSE The aims of this study are to investigate the inhibiting effects of GMI combined with chidamide on survival and metastases of melanoma cells via integrin-related signaling pathway and to propose strategies for combining GMI and chidamide using animal model. METHODS Cell viability was measured by cell CCK-8. The activities of apoptosis- and migration-related proteins were detected on Western blot. Flow cytometry was used to analyze cell cycle distribution and sub-G1 fraction in treated melanoma cells. To evaluate the activity of combination GMI and chidamide treatment, an in vivo anti-tumor metastasis study was performed. RESULTS GMI combined with chidamide additively induced apoptosis. GMI inhibited the expressions of Integrin α5, αV, β1, and β3. The level of p-FAK was inhibited by GMI. Combination treatment of GMI and chidamide decreased survivin and increased cleaved caspase-7 and LC3 II/I. Integrin-αV overexpression activated p-FAK pathways in A375.S2 cells. GMI significantly inhibited cell growth and migration of A375.S2 cells on wound healing assay. In vivo, GMI combined with chidamide suppressed distal tumor metastasis. CONCLUSION GMI inhibits the migration and growth of melanoma cells via integrin-related signaling pathway. GMI and chidamide induces apoptosis. In vivo, GMI and chidamide additively reduce distant metastases. GMI and chidamide are potential immunotherapeutic adjuvant for metastatic melanoma.
Collapse
Affiliation(s)
- Chun-Te Lu
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Division of Plastic and Reconstructive Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Pui-Ying Leong
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Rheumatology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Ting-Yi Hou
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sheng-Jia Huang
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Dermatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Ping Hsiao
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Dermatology, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Jiunn-Liang Ko
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| |
Collapse
|
26
|
Mazzio EA, Soliman KFA. Whole-transcriptomic Profile of SK-MEL-3 Melanoma Cells Treated with the Histone Deacetylase Inhibitor: Trichostatin A. Cancer Genomics Proteomics 2018; 15:349-364. [PMID: 30194076 DOI: 10.21873/cgp.20094] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Malignant melanoma cells can rapidly acquire phenotypic properties making them resistant to radiation and mainline chemotherapies such as decarbonize or kinase inhibitors that target RAS-proto-oncogene independent auto-activated mitogen-activated protein kinases (MAPK)/through dual specificity mitogen-activated protein kinase (MEK). Both drug resistance and inherent transition from melanocytic nevi to malignant melanoma involve the overexpression of histone deacetylases (HDACs) and a B-Raf proto-oncogene (BRAF) mutation. MATERIALS AND METHODS In this work, the effects of an HDAC class I and II inhibitor trichostatin A (TSA) on the whole transcriptome of SK-MEL-3 cells carrying a BRAF mutation was examined. RESULTS The data obtained show that TSA was an extremely potent HDAC inhibitor within SK-MEL-3 nuclear lysates, where TSA was then optimized for appropriate sub-lethal concentrations for in vitro testing. The whole-transcriptome profile shows a basic phenotype dominance in the SK-MEL-3 cell line for i) synthesis of melanin, ii) phagosome acidification, iii) ATP hydrolysis-coupled proton pumps and iv) iron transport systems. While TSA did not affect the aforementioned major systems, it evoked a dramatic change to the transcriptome: reflected by a down-regulation of 810 transcripts and up-regulation of 833, with fold-change from -15.27 to +31.1 FC (p<0.00001). Largest differentials were found for the following transcripts: Up-regulated: Tetraspanin 13 (TSPAN13), serpin family i member 1 (SERPINI1), ATPase Na+/K+ transporting subunit beta 2 (ATP1B2), nicotinamide nucleotide adenylyl transferase 2 (NMNAT2), platelet-derived growth factor receptor-like (PDGFRL), cytochrome P450 family 1 subfamily A member 1 (CYP1A1), prostate androgen-regulated mucin-like protein 1 (PARM1), secretogranin II (SCG2), SYT11 (synaptotagmin 11), rhophilin associated tail protein 1 like (ROPN1L); down-regulated: polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3), carbonic anhydrase 14 (CAXIV), BCL2-related protein A1 (BCL2A1), protein kinase C delta (PRKCD), transient receptor potential cation channel subfamily M member 1 (TRPM1), ubiquitin associated protein 1 like (UBAP1L), glutathione peroxidase 8 (GPX8), interleukin 16 (IL16), tumor protein p53 (TP53), and serpin family H member 1 (SERPINH1). There was no change to any of the HDAC transcripts (class I, II and IV), the sirtuin HDAC family (1-6) or the BRAF proto-oncogene v 599 transcripts. However, the data showed that TSA down-regulated influential transcripts that drive the BRAF-extracellular signal-regulated kinase (ERK)1/2 oncogenic pathway (namely PRKCD and MYC proto-oncogene which negatively affected the cell-cycle distribution. Mitotic inhibition was corroborated by functional pathway analysis and flow cytometry confirming halt at the G2 phase, occurring in the absence of toxicity. CONCLUSION TSA does not alter HDAC transcripts nor BRAF itself, but down-regulates critical components of the MAPK/MEK/BRAF oncogenic pathway, initiating a mitotic arrest.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida A and M University, Tallahassee, FL, U.S.A
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A and M University, Tallahassee, FL, U.S.A.
| |
Collapse
|
27
|
Wang B, Lyu H, Pei S, Song D, Ni J, Liu B. Cladribine in combination with entinostat synergistically elicits anti-proliferative/anti-survival effects on multiple myeloma cells. Cell Cycle 2018; 17:985-996. [PMID: 29969371 PMCID: PMC6197031 DOI: 10.1080/15384101.2018.1464849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/08/2018] [Indexed: 12/28/2022] Open
Abstract
Cladribine (2CdA), a synthetic purine analog interfering with DNA synthesis, is a medication used to treat hairy cell leukemia (HCL) and B-cell chronic lymphocytic leukemia. Entinostat, a selective class I histone deacetylase (HDAC) inhibitor, shows antitumor activity in various human cancers, including hematological malignancies. The therapeutic potential of cladribine and entinostat against multiple myeloma (MM) remains unclear. Here we investigate the combinatorial effects of cladribine and entinostat within the range of their clinical achievable concentrations on MM cells. While either agent alone inhibited MM cell proliferation in a dose-dependent manner, their combinations synergistically induced anti-proliferative/anti-survival effects on all MM cell lines (RPMI8226, U266, and MM1.R) tested. Further studies showed that the combinations of cladribine and entinostat as compared to either agent alone more potently induced mitotic catastrophe in the MM cells, and resulted in a marked increase of the cells at G1 phase associated with decrease of Cyclin D1 and E2F-1 expression and upregulation of p21waf-1. Apoptotic ELISA and western blot analyses revealed that the combinations of cladribine and entinostat exerted a much more profound activity to induce apoptosis and DNA damage response, evidenced by enhanced phosphorylation of histone H2A.X and the DNA repair enzymes Chk1 and Chk2. Collectively, our data demonstrate that the combinations of cladribine and entinostat exhibit potent activity to induce anti-proliferative/anti-survival effects on MM cells via induction of cell cycle G1 arrest, apoptosis, and DNA damage response. Regimens consisting of cladribine and/or entinostat may offer a new treatment option for patients with MM. ABBREVIATIONS MM, multiple myeloma; HCL, hairy cell leukemia; HDAC, histone deacetylase; Ab, antibody; mAb, monoclonal Ab; FBS, fetal bovine serum; CI, combination index; PAGE, polyacrylamide gel electrophoresis; ELISA, enzyme-linked immunosorbent assay; PARP, poly(ADP-ribose) polymerase; MTS, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium,inner salt.
Collapse
Affiliation(s)
- Bolun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hui Lyu
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shanshan Pei
- Department of Hematology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deye Song
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiangdong Ni
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bolin Liu
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
28
|
Helgadottir H, Rocha Trocoli Drakensjö I, Girnita A. Personalized Medicine in Malignant Melanoma: Towards Patient Tailored Treatment. Front Oncol 2018; 8:202. [PMID: 29946532 PMCID: PMC6006716 DOI: 10.3389/fonc.2018.00202] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/21/2018] [Indexed: 12/24/2022] Open
Abstract
Despite enormous international efforts, skin melanoma is still a major clinical challenge. Melanoma takes a top place among the most common cancer types and it has one of the most rapidly increasing incidences in many countries around the world. Until recent years, there have been limited options for effective systemic treatment of disseminated melanoma. However, lately, we have experienced a rapid advancement in the understanding of the biology and molecular background of the disease. This has led to new molecular classifications and the development of more effective targeted therapies adapted to distinct melanoma subtypes. Not only are these treatments more effective but they can be rationally prescribed to the patients standing to benefit. As such, melanoma management has now become one of the most developed for personalized medicine. The aim of the present paper is to summarize the current knowledge on melanoma molecular classification, predictive markers, combination therapies, as well as emerging new treatments.
Collapse
Affiliation(s)
- Hildur Helgadottir
- Skin Tumor Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden.,Cancer Centrum Karolinska, Karolinska Institutet Stockholm, Stockholm, Sweden
| | - Iara Rocha Trocoli Drakensjö
- Skin Tumor Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden.,Cancer Centrum Karolinska, Karolinska Institutet Stockholm, Stockholm, Sweden
| | - Ada Girnita
- Skin Tumor Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden.,Cancer Centrum Karolinska, Karolinska Institutet Stockholm, Stockholm, Sweden
| |
Collapse
|
29
|
Householder KT, DiPerna DM, Chung EP, Luning AR, Nguyen DT, Stabenfeldt SE, Mehta S, Sirianni RW. pH driven precipitation of quisinostat onto PLA-PEG nanoparticles enables treatment of intracranial glioblastoma. Colloids Surf B Biointerfaces 2018. [PMID: 29533842 PMCID: PMC6581030 DOI: 10.1016/j.colsurfb.2018.02.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Histone deacetylases (HDACs) are known to be key enzymes in cancer development and progression through their modulation of chromatin structure and the expression and post-translational modification of numerous proteins. Aggressive dedifferentiated tumors, like glioblastoma, frequently overexpress HDACs, while HDAC inhibition can lead to cell cycle arrest, promote cellular differentiation and induce apoptosis. Although multiple HDAC inhibitors, such as quisinostat, are of interest in oncology due to their potent in vitro efficacy, their failure in the clinic as monotherapies against solid tumors has been attributed to poor delivery. Thus, we were motivated to develop quisinostat loaded poly(D,L-lactide)-b-methoxy poly(ethylene glycol) nanoparticles (NPs) to test their ability to treat orthotopic glioblastoma. In developing our NP formulation, we identified a novel, pH-driven approach for achieving over 9% (w/w) quisinostat loading. We show quisinostat-loaded NPs maintain drug potency in vitro and effectively slow tumor growth in vivo, leading to a prolonged survival compared to control mice.
Collapse
Affiliation(s)
- Kyle T Householder
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, 85013, USA; School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ, 85287, USA
| | - Danielle M DiPerna
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, 85013, USA
| | - Eugene P Chung
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, 85013, USA
| | - Anne Rosa Luning
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, 85013, USA
| | - Duong T Nguyen
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ, 85287, USA
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ, 85287, USA
| | - Shwetal Mehta
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, 85013, USA
| | - Rachael W Sirianni
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, 85013, USA; School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ, 85287, USA.
| |
Collapse
|
30
|
Booth L, Roberts JL, Kirkwood J, Poklepovic A, Dent P. Unconventional Approaches to Modulating the Immunogenicity of Tumor Cells. Adv Cancer Res 2018; 137:1-15. [PMID: 29405973 DOI: 10.1016/bs.acr.2017.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For several years, it has been known that histone deacetylase inhibitors have the potential to alter the immunogenicity of tumor cells exposed to checkpoint inhibitory immunotherapy antibodies. HDAC inhibitors can rapidly reduce expression of PD-L1 and increase expression of MHCA in various tumor types that subsequently facilitate the antitumor actions of checkpoint inhibitors. Recently, we have discovered that drug combinations which cause a rapid and intense autophagosome formation also can modulate the expression of HDAC proteins that control tumor cell immunogenicity via their regulation of PD-L1 and MHCA. These drug combinations, in particular those using the irreversible ERBB1/2/4 inhibitor neratinib, can result in parallel in the internalization of growth factor receptors as well as fellow-traveler proteins such as mutant K-RAS and mutant N-RAS into autophagosomes. The drug-induced autophagosomes contain HDAC proteins/signaling proteins whose expression is subsequently reduced by lysosomal degradation processes. These findings argue that cancer therapies which strongly promote autophagosome formation and autophagic flux may facilitate the subsequent use of additional antitumor modalities using checkpoint inhibitor antibodies.
Collapse
Affiliation(s)
- Laurence Booth
- Virginia Commonwealth University, Richmond, VA, United States
| | - Jane L Roberts
- Virginia Commonwealth University, Richmond, VA, United States
| | - John Kirkwood
- University of Pittsburgh Cancer Institute Melanoma and Skin Cancer Program, Hillman Cancer Research Pavilion Laboratory, Pittsburgh, PA, United States
| | | | - Paul Dent
- Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
31
|
Heijkants R, Willekens K, Schoonderwoerd M, Teunisse A, Nieveen M, Radaelli E, Hawinkels L, Marine JC, Jochemsen A. Combined inhibition of CDK and HDAC as a promising therapeutic strategy for both cutaneous and uveal metastatic melanoma. Oncotarget 2017; 9:6174-6187. [PMID: 29464063 PMCID: PMC5814203 DOI: 10.18632/oncotarget.23485] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/25/2017] [Indexed: 12/11/2022] Open
Abstract
Very little to no improvement in overall survival has been seen in patients with advanced non-resectable cutaneous melanoma or metastatic uveal melanoma in decades, highlighting the need for novel therapeutic options. In this study we investigated as a potential novel therapeutic intervention for both cutaneous and uveal melanoma patients a combination of the broad spectrum HDAC inhibitor quisinostat and pan-CDK inhibitor flavopiridol. Both drugs are currently in clinical trials reducing time from bench to bedside. Combining quisinostat and flavopiridol shows a synergistic reduction in cell viability of all melanoma cell lines tested, irrespective of their driver mutations. This synergism was also observed in BRAFV600E mutant melanoma that had acquired resistance to BRAF inhibition. Mechanistically, loss of cell viability was, at least partly, due to induction of apoptotic cell death. The combination was also effectively inducing tumor regression in a preclinical setting, namely a patient-derived tumor xenograft (PDX) model of cutaneous melanoma, without increasing adverse effects. We propose that the quisinostat/flavopiridol combination is a promising therapeutic option for both cutaneous and uveal metastatic melanoma patients, independent of their mutational status or (acquired) resistance to BRAF inhibition.
Collapse
Affiliation(s)
- Renier Heijkants
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karen Willekens
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Mark Schoonderwoerd
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Amina Teunisse
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike Nieveen
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Enrico Radaelli
- Mouse Histopathology Core Facility, VIB Center for the Biology of Disease, KU Leuven, Leuven, Belgium
| | - Luuk Hawinkels
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Aart Jochemsen
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
32
|
Moran B, Silva R, Perry AS, Gallagher WM. Epigenetics of malignant melanoma. Semin Cancer Biol 2017; 51:80-88. [PMID: 29074395 DOI: 10.1016/j.semcancer.2017.10.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/12/2017] [Accepted: 10/20/2017] [Indexed: 01/18/2023]
Abstract
Patients with malignant melanoma generally have a good prognosis if the disease presents prior to metastasis. Due to progress with targeted and immunotherapies, the median survival of metastatic melanoma patients is now over 2 years. The disease is characterised by one of the highest somatic mutation rates observed amongst cancer types, with a specific mutational signature based on UV radiation damage evident. Highly prevalent mutations, such as the BRAFV600E, in the MAPK cascade indicate truncal involvement of this pathway in the earliest stage of melanoma. The molecular sub-classification of melanoma based on genetic alterations is now well established. This has paved the way for researchers in epigenetics to investigate specific pathways of known importance, and the involvement of the diverse range of epigenetic mechanisms. Herein, we review the literature to highlight that epigenetic alterations are integrally involved in this malignancy. We focus on the most current evidence around the epigenetic mechanisms: DNA methylation and demethylation including 5-hydroxy-methylcytosine; histone post-translational modifications including variant histones; chromatin remodelling complexes and in particular the polycomb-repressive complex PRC2 and its histone methyltransferase subunit EZH2; and non-coding RNAs. Each mechanism is described generally, studies involving melanoma are assessed and clinical relevance is highlighted where possible.
Collapse
Affiliation(s)
- Bruce Moran
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Research, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland; OncoMark Limited, NovaUCD, Belfield Innovation Park, Dublin 4, Ireland
| | - Romina Silva
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Research, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland; OncoMark Limited, NovaUCD, Belfield Innovation Park, Dublin 4, Ireland
| | - Antoinette S Perry
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Research, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - William M Gallagher
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Research, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland; OncoMark Limited, NovaUCD, Belfield Innovation Park, Dublin 4, Ireland.
| |
Collapse
|
33
|
Tavares MT, Shen S, Knox T, Hadley M, Kutil Z, Bařinka C, Villagra A, Kozikowski AP. Synthesis and Pharmacological Evaluation of Selective Histone Deacetylase 6 Inhibitors in Melanoma Models. ACS Med Chem Lett 2017; 8:1031-1036. [PMID: 29057046 DOI: 10.1021/acsmedchemlett.7b00223] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 09/05/2017] [Indexed: 12/18/2022] Open
Abstract
Only a handful of therapies offer significant improvement in the overall survival in cases of melanoma, a cancer whose incidence has continued to rise in the past 30 years. In our effort to identify potent and isoform-selective histone deacetylase (HDAC) inhibitors as a therapeutic approach to melanoma, a series of new HDAC6 inhibitors based on the nexturastat A scaffold were prepared. The new analogues 4d, 4e, and 7b bearing added hydrophilic substituents, so as to establish additional hydrogen bonding on the rim of the HDAC6 catalytic pocket, exhibit improved potency against HDAC6 and retain selectivity over HDAC1. Compound 4d exhibits antiproliferative effects on several types of melanoma and lymphoma cells. Further studies indicates that 4d selectively increases acetylated tubulin levels in vitro and elicits an immune response through down-regulating cytokine IL-10. A preliminary in vivo efficacy study indicates that 4d possesses improved capability to inhibit melanoma tumor growth and that this effect is based on the regulation of inflammatory and immune responses.
Collapse
Affiliation(s)
- Maurício T. Tavares
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Sida Shen
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Tessa Knox
- Department
of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20052, United States
| | - Melissa Hadley
- Department
of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20052, United States
| | - Zsófia Kutil
- Institute
of Biotechnology, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Cyril Bařinka
- Institute
of Biotechnology, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Alejandro Villagra
- Department
of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20052, United States
| | - Alan P. Kozikowski
- StarWise
Therapeutics LLC, University Research Park, Inc., 510 Charmany Drive, Madison, Wisconsin 53719, United States
| |
Collapse
|
34
|
Wilms C, Kroeger CM, Hainzl AV, Banik I, Bruno C, Krikki I, Farsam V, Wlaschek M, Gatzka MV. MYSM1/2A-DUB is an epigenetic regulator in human melanoma and contributes to tumor cell growth. Oncotarget 2017; 8:67287-67299. [PMID: 28978033 PMCID: PMC5620173 DOI: 10.18632/oncotarget.18617] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/31/2017] [Indexed: 01/12/2023] Open
Abstract
Histone modifying enzymes, such as histone deacetylases (HDACs) and polycomb repressive complex (PRC) components, have been implicated in regulating tumor growth, epithelial-mesenchymal transition, tumor stem cell maintenance, or repression of tumor suppressor genes - and may be promising targets for combination therapies of melanoma and other cancers. According to recent findings, the histone H2A deubiquitinase 2A-DUB/Mysm1 interacts with the p53-axis in hematopoiesis and tissue differentiation in mice, in part by modulating DNA-damage responses in stem cell and progenitor compartments. Based on the identification of alterations in skin pigmentation and melanocyte specification in Mysm1-deficient mice, we hypothesized that MYSM1 may be involved in melanoma formation. In human melanoma samples, expression of MYSM1 was increased compared with normal skin melanocytes and nevi and co-localized with melanocyte markers such as Melan-A and c-KIT. Similarly, in melanoma cell lines A375 and SK-MEL-28 and in murine skin, expression of the deubiquitinase was detectable at the mRNA and protein level that was inducible by growth factor signals and UVB exposure, respectively. Upon stable silencing of MYSM1 in A375 and SK-MEL-28 melanoma cells by lentivirally-mediated shRNA expression, survival and proliferation were significantly reduced in five MYSM1 shRNA cell lines analyzed compared with control cells. In addition, MYSM1-silenced melanoma cells proliferated less well in softagar assays. In context with our finding that MYSM1 bound to the c-MET promoter region in close vicinity to PAX3 in melanoma cells, our data indicate that MYSM1 is an epigenetic regulator of melanoma growth and potentially promising new target for tumor therapy.
Collapse
Affiliation(s)
- Christina Wilms
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Carsten M Kroeger
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Adelheid V Hainzl
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Ishani Banik
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany.,ETH, 8092 Zurich, Switzerland
| | - Clara Bruno
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany.,Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Ioanna Krikki
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Vida Farsam
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Martina V Gatzka
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
35
|
Hegedüs L, Padányi R, Molnár J, Pászty K, Varga K, Kenessey I, Sárközy E, Wolf M, Grusch M, Hegyi Z, Homolya L, Aigner C, Garay T, Hegedüs B, Tímár J, Kállay E, Enyedi Á. Histone Deacetylase Inhibitor Treatment Increases the Expression of the Plasma Membrane Ca 2+ Pump PMCA4b and Inhibits the Migration of Melanoma Cells Independent of ERK. Front Oncol 2017; 7:95. [PMID: 28596940 PMCID: PMC5442207 DOI: 10.3389/fonc.2017.00095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/27/2017] [Indexed: 12/13/2022] Open
Abstract
Several new therapeutic options emerged recently to treat metastatic melanoma; however, the high frequency of intrinsic and acquired resistance among patients shows a need for new therapeutic options. Previously, we identified the plasma membrane Ca2+ ATPase 4b (PMCA4b) as a metastasis suppressor in BRAF-mutant melanomas and found that mutant BRAF inhibition increased the expression of the pump, which then inhibited the migratory and metastatic capability of the cells. Earlier it was also demonstrated that histone deacetylase inhibitors (HDACis) upregulated PMCA4b expression in gastric, colon, and breast cancer cells. In this study, we treated one BRAF wild-type and two BRAF-mutant melanoma cell lines with the HDACis, SAHA and valproic acid, either alone, or in combination with the BRAF inhibitor, vemurafenib. We found that HDACi treatment strongly increased the expression of PMCA4b in all cell lines irrespective of their BRAF mutational status, and this effect was independent of ERK activity. Furthermore, HDAC inhibition also enhanced the abundance of the housekeeping isoform PMCA1. Combination of HDACis with vemurafenib, however, did not have any additive effects on either PMCA isoform. We demonstrated that the HDACi-induced increase in PMCA abundance was coupled to an enhanced [Ca2+]i clearance rate and also strongly inhibited both the random and directional movements of A375 cells. The primary role of PMCA4b in these characteristic changes was demonstrated by treatment with the PMCA4-specific inhibitor, caloxin 1c2, which was able to restore the slower Ca2+ clearance rate and higher motility of the cells. While HDAC treatment inhibited cell motility, it decreased only modestly the ratio of proliferative cells and cell viability. Our results show that in melanoma cells the expression of both PMCA4b and PMCA1 is under epigenetic control and the elevation of PMCA4b expression either by HDACi treatment or by the decreased activation of the BRAF-MEK-ERK pathway can inhibit the migratory capacity of the highly motile A375 cells.
Collapse
Affiliation(s)
- Luca Hegedüs
- Department of Thoracic Surgery, Ruhrlandklinik, University Clinic Essen, Essen, Germany.,Department of Pathophysiology and Allergy Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Rita Padányi
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary
| | - Judit Molnár
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary
| | - Katalin Pászty
- Molecular Biophysics Research Group of the Hungarian Academy of Sciences, Department of Biophysics, Semmelweis University, Budapest, Hungary
| | - Karolina Varga
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary.,MTA-SE-NAP Brain Metastasis Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - István Kenessey
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary
| | - Eszter Sárközy
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary
| | - Matthias Wolf
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Michael Grusch
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Zoltán Hegyi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Clemens Aigner
- Department of Thoracic Surgery, Ruhrlandklinik, University Clinic Essen, Essen, Germany
| | - Tamás Garay
- Molecular Oncology Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Balázs Hegedüs
- Department of Thoracic Surgery, Ruhrlandklinik, University Clinic Essen, Essen, Germany.,Molecular Oncology Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - József Tímár
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary.,Molecular Oncology Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Enikö Kállay
- Department of Pathophysiology and Allergy Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Ágnes Enyedi
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary.,Molecular Oncology Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
36
|
HDAC inhibitors enhance the immunotherapy response of melanoma cells. Oncotarget 2017; 8:83155-83170. [PMID: 29137331 PMCID: PMC5669957 DOI: 10.18632/oncotarget.17950] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/03/2017] [Indexed: 12/11/2022] Open
Abstract
We focused on the ability of the pan-histone deacetylase (HDAC) inhibitors AR42 and sodium valproate to alter the immunogenicity of melanoma cells. Treatment of melanoma cells with HDAC inhibitors rapidly reduced the expression of multiple HDAC proteins as well as the levels of PD-L1, PD-L2 and ODC, and increased expression of MHCA. In a cell-specific fashion, melanoma isolates released the immunogenic protein HMGB1 into the extracellular environment. Very similar data were obtained in ovarian and H&NSCC PDX isolates, and in established tumor cell lines from the lung and kidney. Knock down of HDAC1, HDAC3, HDAC8 and HDAC10, but not HDAC6, recapitulated the effects of the HDAC inhibitors on the immunotherapy biomarkers. Using B16 mouse melanoma cells we discovered that pre-treatment with AR42 or sodium valproate enhanced the anti-tumor efficacy of an anti-PD-1 antibody and of an anti-CTLA4 antibody. In the B16 model, both AR42 and sodium valproate enhanced the anti-tumor efficacy of the multi-kinase inhibitor pazopanib. In plasma from animals exposed to [HDAC inhibitor + anti-PD-1], but not [HDAC inhibitor + anti-CTLA4], the levels of CCL2, CCL5, CXCL9 and CXCL2 were increased. The cytokine data from HDAC inhibitor plus anti-PD-1 exposed tumors correlated with increased activated T cell, M1 macrophage, neutrophil and NK cell infiltration. Collectively, our data support the use of pan-HDAC inhibitors in combination with kinase inhibitors or with checkpoint inhibitor antibodies as novel melanoma therapeutic strategies.
Collapse
|
37
|
Bis-anthracycline WP760 abrogates melanoma cell growth by transcription inhibition, p53 activation and IGF1R downregulation. Invest New Drugs 2017; 35:545-555. [PMID: 28417283 PMCID: PMC5613070 DOI: 10.1007/s10637-017-0465-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/29/2017] [Indexed: 11/01/2022]
Abstract
Anthracycline chemotherapeutics, e.g. doxorubicin and daunorubicin, are active against a broad spectrum of cancers. Their cytotoxicity is mainly attributed to DNA intercalation, interference with topoisomerase activity, and induction of double-stranded DNA breaks. Since modification of anthracyclines can profoundly affect their pharmacological properties we attempted to elucidate the mechanism of action, and identify possible molecular targets, of bis-anthracycline WP760 which previously demonstrated anti-melanoma activity at low nanomolar concentrations. We studied the effect of WP760 on several human melanoma cell lines derived from tumors in various development stages and having different genetic backgrounds. WP760 inhibited cell proliferation (IC50 = 1-99 nM), impaired clonogenic cell survival (100 nM), and inhibited spheroid growth (≥300 nM). WP760 did not induce double-stranded DNA breaks but strongly inhibited global transcription. Moreover, WP760 caused nucleolar stress and led to activation of the p53 pathway. PCR array analysis showed that WP760 suppressed transcription of ten genes (ABCC1, MTOR, IGF1R, EGFR, GRB2, PRKCA, PRKCE, HDAC4, TXNRD1, AKT1) associated with, inter alia, cytoprotective mechanisms initiated in cancer cells during chemotherapy. Furthermore, WP760 downregulated IGF1R and upregulated PLK2 expression in most of the tested melanoma cell lines. These results suggest that WP760 exerts anti-melanoma activity by targeting global transcription and activation of the p53 pathway and could become suitable as an effective therapeutic agent.
Collapse
|