1
|
Gross N, Marketon J, Mousavi S, Kalies K, Ludwig RJ, Bieber K. Inhibition of interferon gamma impairs induction of experimental epidermolysis bullosa acquisita. Front Immunol 2024; 15:1343299. [PMID: 38799441 PMCID: PMC11116581 DOI: 10.3389/fimmu.2024.1343299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
Epidermolysis bullosa acquisita (EBA) is a muco-cutaneous autoimmune disease characterized and caused by autoantibodies targeting type VII collagen (COL7). The treatment of EBA is notoriously difficult, with a median time to remission of 9 months. In preclinical EBA models, we previously discovered that depletion of regulatory T cells (Treg) enhances autoantibody-induced, neutrophil-mediated inflammation and blistering. Increased EBA severity in Treg-depleted mice was accompanied by an increased cutaneous expression of interferon gamma (IFN-γ). The functional relevance of IFN-γ in EBA pathogenesis had been unknown. Given that emapalumab, an anti-IFN-γ antibody, is approved for primary hemophagocytic lymphohistiocytosis patients, we sought to assess the therapeutic potential of IFN-γ inhibition in EBA. Specifically, we evaluated if IFN-γ inhibition has modulatory effects on skin inflammation in a pre-clinical EBA model, based on the transfer of COL7 antibodies into mice. Compared to isotype control antibody, anti-IFN-γ treatment significantly reduced clinical disease manifestation in experimental EBA. Clinical improvement was associated with a reduced dermal infiltrate, especially Ly6G+ neutrophils. On the molecular level, we noted few changes. Apart from reduced CXCL1 serum concentrations, which has been demonstrated to promote skin inflammation in EBA, the expression of cytokines was unaltered in the serum and skin following IFN-γ blockade. This validates IFN-γ as a potential therapeutic target in EBA, and possibly other diseases with a similar pathogenesis, such as bullous pemphigoid and mucous membrane pemphigoid.
Collapse
Affiliation(s)
- Natalie Gross
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Jana Marketon
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Sadegh Mousavi
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Kathrin Kalies
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, University Hospital Schleswig-Holstein Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
2
|
Pigors M, Patzelt S, Reichhelm N, Dworschak J, Khil'chenko S, Emtenani S, Bieber K, Hofrichter M, Kamaguchi M, Goletz S, Köhl G, Köhl J, Komorowski L, Probst C, Vanderheyden K, Balbino B, Ludwig RJ, Verheesen P, Schmidt E. Bullous pemphigoid induced by IgG targeting type XVII collagen non-NC16A/NC15A extracellular domains is driven by Fc gamma receptor- and complement-mediated effector mechanisms and is ameliorated by neonatal Fc receptor blockade. J Pathol 2024; 262:161-174. [PMID: 37929639 DOI: 10.1002/path.6220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/18/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023]
Abstract
Bullous pemphigoid (BP) is an autoimmune blistering disease characterized by autoantibodies targeting type XVII collagen (Col17) with the noncollagenous 16A (NC16A) ectodomain representing the immunodominant site. The role of additional extracellular targets of Col17 outside NC16A has not been unequivocally demonstrated. In this study, we showed that Col17 ectodomain-reactive patient sera depleted in NC16A IgG induced dermal-epidermal separation in a cryosection model indicating the pathogenic potential of anti-Col17 non-NC16A extracellular IgG. Moreover, injection of IgG targeting the murine Col17 NC14-1 domains (downstream of NC15A, the murine homologue of human NC16A) into C57BL/6J mice resulted in erythematous skin lesions and erosions. Clinical findings were accompanied by IgG/C3 deposits along the basement membrane and subepidermal blistering with inflammatory infiltrates. Disease development was significantly reduced in either Fc-gamma receptor (FcγR)- or complement-5a receptor-1 (C5aR1)-deficient mice. Inhibition of the neonatal FcR (FcRn), an atypical FcγR regulating IgG homeostasis, with the murine Fc fragment IgG2c-ABDEG, a derivative of efgartigimod, reduced anti-NC14-1 IgG levels, resulting in ameliorated skin inflammation compared with isotype-treated controls. These data demonstrate that the pathogenic effects of IgG targeting the Col17 domain outside human NC16A/murine NC15A are partly attributable to antibody-mediated FcγR- and C5aR1 effector mechanisms while pharmacological inhibition of the FcRn represents a promising treatment for BP. The mouse model of BP will be instrumental in further investigating the role of Col17 non-NC16A/NC15A extracellular epitopes and validating new therapies for this disease. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Manuela Pigors
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Sabrina Patzelt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Niklas Reichhelm
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Jenny Dworschak
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | | | - Shirin Emtenani
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Maxi Hofrichter
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Mayumi Kamaguchi
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Stephanie Goletz
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Gabriele Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lars Komorowski
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | - Christian Probst
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | | | | | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | | | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
3
|
Akbarzadeh R, Czyz C, Thomsen SY, Schilf P, Murthy S, Sadik CD, König P. Monocyte populations are involved in the pathogenesis of experimental epidermolysis bullosa acquisita. Front Immunol 2023; 14:1241461. [PMID: 38116004 PMCID: PMC10728641 DOI: 10.3389/fimmu.2023.1241461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Monocytes play a significant role in the pathogenesis of most inflammatory diseases, including autoimmune diseases. Herein, different subpopulations of monocytes often play differential, partially antagonistic roles, in the regulation of tissue populations. Pemphigoid diseases constitute a group of autoimmune blistering skin diseases featuring a marked infiltration of the dermis with immune cells, including monocytes. The monocyte subsets infiltrating the skin, however, have largely remained elusive. Monocyte adhesion and recruitment into the inflamed tissues are regulated by chemokine receptors, most prominently by CCR2 and CX3CR1. To delineate the involvement of monocyte populations in autoimmune blistering skin diseases, we spatiotemporally monitored the dynamic spectrum of monocyte populations that infiltrate the inflamed skin using multiphoton intravital imaging and reporter mice for chemokine receptors. Experimental epidermolysis bullosa acquisita (EBA) was induced by injection of anti-murine type VII collagen (amCOLVII) IgG into the Csf1rEGFP-reporter mice, where circulating myeloid cells, such as monocytes and neutrophils, express an EGFP. EGFP+ cells, including neutrophils and monocytes, were present in the skin, immediately after the deposition of the amCOLVII antibody at the dermal-epidermal junction. To investigate the recruitment and involvement of different monocyte-derived cell populations in the disease course further, EBA was induced in CCR2RFP/+-reporter and CX3CR1GFP/+-reporter mice. A comparable distribution of red fluorescent protein (RFP)+ or green fluorescent protein (GFP)+ was found in both diseased mice and their respective controls over time, indicating the similar recruitment of monocytes into the skin following the binding of autoantibodies. Experiments were extended to the CCR2RFP/RFP-deficient and CX3CR1GFP/GFP-deficient mice to determine whether monocyte recruitment and disease severity are compromised in the absence of the receptor. A comparable pattern was seen in the recruitment of monocytes into the skin in both reporter and deficient mice. However, in contrast to similar disease severity between CX3CR1-deficient and reporter mice, CCR2-deficient mice developed significantly less disease than CCR2-reporter mice, as indicated by the percentage of affected area of ears. Collectively, our observations indicate that while CCR2 and CX3CR1 receptors are not involved in the recruitment of monocytes into the skin, CCR2 deficiency is associated with improved disease outcomes in experimental EBA in mice.
Collapse
Affiliation(s)
- Reza Akbarzadeh
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | | | - Sarah-Yasmin Thomsen
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Paul Schilf
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Sripriya Murthy
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Christian D. Sadik
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Peter König
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| |
Collapse
|
4
|
Seiler DL, Kähler KH, Kleingarn M, Sadik CD, Bieber K, Köhl J, Ludwig RJ, Karsten CM. The complement receptor C5aR2 regulates neutrophil activation and function contributing to neutrophil-driven epidermolysis bullosa acquisita. Front Immunol 2023; 14:1197709. [PMID: 37275893 PMCID: PMC10235453 DOI: 10.3389/fimmu.2023.1197709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction The function of the second receptor for the complement cleavage product C5a, C5aR2, is poorly understood and often neglected in the immunological context. Using mice with a global deficiency of C5aR2, we have previously reported an important role of this receptor in the pathogenesis of the neutrophil-driven autoimmune disease epidermolysis bullosa acquisita (EBA). Based on in vitro analyses, we hypothesized that the absence of C5aR2 specifically on neutrophils is the cause of the observed differences. Here, we report the generation of a new mouse line with a LysM-specific deficiency of C5aR2. Methods LysM-specific deletion of C5aR2 was achieved by crossing LysMcre mice with tdTomato-C5ar2fl/fl mice in which the tdTomato-C5ar2 gene is flanked by loxP sites. Passive EBA was induced by subcutaneous injection of rabbit anti-mouse collagen type VII IgG. The effects of targeted deletion of C5ar2 on C5a-induced effector functions of neutrophils were examined in in vitro assays. Results We confirm the successful deletion of C5aR2 at both the genetic and protein levels in neutrophils. The mice appeared healthy and the expression of C5aR1 in bone marrow and blood neutrophils was not negatively affected by LysM-specific deletion of C5aR2. Using the antibody transfer mouse model of EBA, we found that the absence of C5aR2 in LysM-positive cells resulted in an overall amelioration of disease progression, similar to what we had previously found in mice with global deficiency of C5aR2. Neutrophils lacking C5aR2 showed decreased activation after C5a stimulation and increased expression of the inhibitory Fcγ receptor FcγRIIb. Discussion Overall, with the data presented here, we confirm and extend our previous findings and show that C5aR2 in neutrophils regulates their activation and function in response to C5a by potentially affecting the expression of Fcγ receptors and CD11b. Thus, C5aR2 regulates the finely tuned interaction network between immune complexes, Fcγ receptors, CD11b, and C5aR1 that is important for neutrophil recruitment and sustained activation. This underscores the importance of C5aR2 in the pathogenesis of neutrophil-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Daniel L. Seiler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Katja H. Kähler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Marie Kleingarn
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Christian D. Sadik
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Katja Bieber
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University Hospital Schleswig-Holstein, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Centre, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ralf J. Ludwig
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University Hospital Schleswig-Holstein, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Christian M. Karsten
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Papara C, Karsten CM, Ujiie H, Schmidt E, Schmidt-Jiménez LF, Baican A, Freire PC, Izumi K, Bieber K, Peipp M, Verschoor A, Ludwig RJ, Köhl J, Zillikens D, Hammers CM. The relevance of complement in pemphigoid diseases: A critical appraisal. Front Immunol 2022; 13:973702. [PMID: 36059476 PMCID: PMC9434693 DOI: 10.3389/fimmu.2022.973702] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Pemphigoid diseases are autoimmune chronic inflammatory skin diseases, which are characterized by blistering of the skin and/or mucous membranes, and circulating and tissue-bound autoantibodies. The well-established pathomechanisms comprise autoantibodies targeting various structural proteins located at the dermal-epidermal junction, leading to complement factor binding and activation. Several effector cells are thus attracted and activated, which in turn inflict characteristic tissue damage and subepidermal blistering. Moreover, the detection of linear complement deposits in the skin is a diagnostic hallmark of all pemphigoid diseases. However, recent studies showed that blistering might also occur independently of complement. This review reassesses the importance of complement in pemphigoid diseases based on current research by contrasting and contextualizing data from in vitro, murine and human studies.
Collapse
Affiliation(s)
- Cristian Papara
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Christian M. Karsten
- Institute of Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | | | - Adrian Baican
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Patricia C. Freire
- Institute of Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Kentaro Izumi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Admar Verschoor
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Department of Otorhinolaryngology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Ralf J. Ludwig
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute of Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Christoph M. Hammers
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- *Correspondence: Christoph M. Hammers,
| |
Collapse
|
6
|
Patzelt S, Pigors M, Steenbock H, Diel L, Boch K, Chakievska L, Künzel S, Busch H, Fähnrich A, Brinckmann J, Schmidt E. Increased Fibrosis in a Mouse Model of Anti-Laminin 332 Mucous Membrane Pemphigoid Remains Unaltered by Inhibition of Aldehyde Dehydrogenase. Front Immunol 2022; 12:812627. [PMID: 35197965 PMCID: PMC8858800 DOI: 10.3389/fimmu.2021.812627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/31/2021] [Indexed: 12/30/2022] Open
Abstract
Mucous membrane pemphigoid (MMP) is an autoimmune blistering disease characterized by autoantibodies against the basal membrane zone of skin and surface-close epithelia and predominant mucosal lesions. The oral cavity and conjunctivae are most frequently affected, albeit clinical manifestations can also occur on the skin. MMP-associated lesions outside the oral cavity typically lead to scarring. Mechanisms underlying scarring are largely unknown in MMP and effective treatment options are limited. Herein, we assessed the collagen architecture in tissue samples of an antibody-transfer mouse model of anti-laminin-332 MMP. In MMP mice, increased collagen fibril density was observed in skin and conjunctival lesions compared to mice injected with normal rabbit IgG. The extracellular matrix of MMP skin samples also showed altered post-translational collagen cross-linking with increased levels of both lysine- and hydroxylysine-derived collagen crosslinks supporting the fibrotic phenotype in experimental MMP compared to control animals. In addition, we evaluated a potential anti-fibrotic therapy in experimental anti-laminin-332 MMP using disulfiram, an inhibitor of the aldehyde dehydrogenase (ALDH), which has been implicated in immune-mediated mucosal scarring. In addition, disulfiram also acts as a copper chelator that was shown to block lysyl oxidase activity, an enzyme involved in formation of collagen crosslinks. Topical use of disulfiram (300 μM in 2% [w/v] methocel) did not improve ocular lesions in experimental MMP over the 12-day treatment period in disulfiram-treated mice compared to vehicle-treated mice (n=8/group). Furthermore, C57BL6/J mice (n=8/group) were treated prophylactically with 200 mg/kg p.o. disulfiram or the solvent once daily over a period of 12 days. Systemic treatment did not show any reduction in the severity of oral and ocular lesions in MMP mice, albeit some improvement in skin lesions was observed in disulfiram- vs. vehicle-treated mice (p=0.052). No reduction in fibrosis was seen, as assessed by immunohistochemistry. Whilst blocking of ALDH failed to significantly ameliorate disease activity, our data provide new insight into fibrotic processes highlighting changes in the collagenous matrix and cross-linking patterns in IgG-mediated MMP.
Collapse
Affiliation(s)
- Sabrina Patzelt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Manuela Pigors
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Heiko Steenbock
- Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Leonard Diel
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Katharina Boch
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - Lenche Chakievska
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Anke Fähnrich
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Jürgen Brinckmann
- Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
7
|
Seiler DL, Kleingarn M, Kähler KH, Gruner C, Schanzenbacher J, Ehlers-Jeske E, Kenno S, Sadik CD, Schmidt E, Bieber K, Köhl J, Ludwig RJ, Karsten CM. C5aR2 deficiency ameliorates inflammation in murine epidermolysis bullosa acquisita by regulating FcγRIIb expression on neutrophils. J Invest Dermatol 2022; 142:2715-2723.e2. [PMID: 35007559 DOI: 10.1016/j.jid.2021.12.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022]
Abstract
Epidermolysis bullosa acquisita (EBA) is a rare blistering skin disease induced by autoantibodies directed against type VII collagen (COL7). Transfer of antibodies against murine COL7 (mCOL7) into mice mimics the effector phase of EBA and results in a subepidermal blistering phenotype. Activation of the complement system, and especially the C5a/C5aR1 axis driving neutrophil activation, are critical for EBA pathogenesis. However, the role of the alternative C5a receptor, C5aR2, which is commonly thought to be more immunosuppressive, in the pathogenesis of EBA is still elusive. Therefore, we sought to delineate the functional relevance of C5aR2 during the effector phase of EBA. Unexpectedly, C5aR2-deficient (C5ar2-/-) mice showed an attenuated disease phenotype, suggesting a pathogenic contribution of C5aR2 to disease progression. In vitro, C5ar2-/- neutrophils exhibited significantly reduced (Ca2+)i flux, reactive oxygen species release, and migratory capacity when activated with immune complexes or exposed to C5a. These functions were completely absent when C5ar1-/- neutrophils were activated. Moreover, C5aR2 deficiency more than tripled FcγRIIb expression on neutrophils thus lowering the A/I ratio of FcγRs and impeding the sustainment of inflammation. Collectively, we demonstrate here a pro-inflammatory contribution of C5aR2 to the pathogenesis of antibody-induced tissue damage in experimental EBA.
Collapse
Affiliation(s)
- Daniel L Seiler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany; Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Marie Kleingarn
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Katja H Kähler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Caroline Gruner
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Jovan Schanzenbacher
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Elvira Ehlers-Jeske
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Samyr Kenno
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Christian D Sadik
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany; Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany; Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany; Division of Immunobiology, Cincinnati Children's Hospital Medical Centre, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ralf J Ludwig
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany; Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany.
| |
Collapse
|
8
|
Multiple modes of action mediate the therapeutic effect of IVIg in experimental epidermolysis bullosa acquisita. J Invest Dermatol 2021; 142:1552-1564.e8. [PMID: 34793820 DOI: 10.1016/j.jid.2021.08.448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/30/2021] [Accepted: 08/16/2021] [Indexed: 12/31/2022]
Abstract
Substitution of IgG in antibody deficiency or application of high-dose intravenous IgG (IVIg) in patients with autoimmunity are well-established treatments. Data on the mode of action of IVIg are, however, controversial and may differ for distinct diseases. In this study, we investigated the impact and molecular mechanism of high-dose IgG treatment in murine autoantibody-induced skin inflammation, namely, epidermolysis bullosa acquisita (EBA). EBA is caused by antibodies directed against type VII collagen (COL7) and is mediated by complement activation, release of reactive oxygen species, and proteases by myeloid cells. In murine experimental EBA the disease can be induced by injection of anti-COL7 IgG. Here, we substantiate that treatment with high-dose IgG improves clinical disease manifestation. Mechanistically, high-dose IgG reduced the amount of anti-COL7 in skin and sera, which is indicative for an FcRn-dependent mode-of-action. Furthermore, in a non-receptor-mediated fashion, high-dose IgG showed antioxidative properties by scavenging extracellular reactive oxygen species. High-dose IgG also impaired complement activation and served as substrate for proteases, both key events during EBA pathogenesis. Collectively, the non-receptor-mediated anti-inflammatory properties of high-dose IgG may explain the therapeutic benefit of IVIg treatment in skin autoimmunity.
Collapse
|
9
|
Wen L, Dong X, Li Q, Schramm G, Zhang B, Zillikens D, Ludwig RJ, Petersen F, Yu X. Preventive but Not Therapeutic Topical Application of Local Anesthetics Can Inhibit Experimental Epidermolysis Bullosa Acquisita in Mice. Front Immunol 2021; 12:750160. [PMID: 34712239 PMCID: PMC8546209 DOI: 10.3389/fimmu.2021.750160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022] Open
Abstract
Epidermolysis bullosa acquisita (EBA) is an autoimmune blistering disorder characterized and caused by autoantibodies against type VII collagen (COL7). Although it has been noticed that EBA in both patients and mice is associated with an increased scratching, it is not clear whether and how the scratching contributes to disease manifestation. Hence, we here aimed to validate this clinical observation and also to investigate the potential contribution of increased scratching in EBA pathogenesis in mice. Longitudinal assessment of scratching behavior revealed an increased frequency of scratching as early as 12 hours after injection of anti-COL7 IgG into the skin of mice. Subsequently, scratching events became even more frequent in mice. In contrast, mice injected with a control antibody showed an unaltered scratching behavior throughout the observation period. Based on these observations, we hypothesized that mechanical irritation may promote the induction of inflammation in experimental EBA. To challenge this assumption, the local anesthetic dyclonine hydrochloride was topically applied before injection of anti-COL7 IgG. Dyclonine hydrochloride reduced the scratching events and impaired clinical disease manifestation. In therapeutic experimental settings, i.e. administration of the local anesthetic 24 hours after injection of anti-COL7 IgG, dyclonine hydrochloride only inhibited the scratching behavior, but had no significant effect on clinical disease development. In addition, eosinophils were detected in the skin before the injection of anti-COL7 IgG and significantly increased 48 hours after the antibody injection. Collectively, our results suggest that scratching behavior contributes to the initiation phase of disease manifestation in experimental EBA.
Collapse
Affiliation(s)
- Lifang Wen
- Department of Basic Medical Science, The Medical College of Xiamen University, Xiamen, China
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Borstel, Germany
| | - Xiaoru Dong
- Department of Basic Medical Science, The Medical College of Xiamen University, Xiamen, China
- Clinical Laboratory, Boai Hospital of Zhongshan, Zhongshan, China
| | - Qing Li
- Department of Basic Medical Science, The Medical College of Xiamen University, Xiamen, China
| | - Gabriele Schramm
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Borstel, Germany
| | - Bing Zhang
- Department of Basic Medical Science, The Medical College of Xiamen University, Xiamen, China
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Frank Petersen
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Borstel, Germany
| | - Xinhua Yu
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Borstel, Germany
| |
Collapse
|
10
|
Zillikens H, Kasprick A, Osterloh C, Gross N, Radziewitz M, Hass C, Hartmann V, Behnen-Härer M, Ernst N, Boch K, Vidarsson G, Visser R, Laskay T, Yu X, Petersen F, Ludwig RJ, Bieber K. Topical Application of the PI3Kβ-Selective Small Molecule Inhibitor TGX-221 Is an Effective Treatment Option for Experimental Epidermolysis Bullosa Acquisita. Front Med (Lausanne) 2021; 8:713312. [PMID: 34557502 PMCID: PMC8452940 DOI: 10.3389/fmed.2021.713312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022] Open
Abstract
Class I phosphoinositide 3-kinases (PI3K) have been implemented in pathogenesis of experimental epidermolysis bullosa acquisita (EBA), an autoimmune skin disease caused by type VII collagen (COL7) autoantibodies. Mechanistically, inhibition of specific PI3K isoforms, namely PI3Kβ or PI3Kδ, impaired immune complex (IC)-induced neutrophil activation, a key prerequisite for EBA pathogenesis. Data unrelated to EBA showed that neutrophil activation is also modulated by PI3Kα and γ, but their impact on the EBA has, so far, remained elusive. To address this and to identify potential therapeutic targets, we evaluated the impact of a panel of PI3K isoform-selective inhibitors (PI3Ki) on neutrophil function in vitro, and in pre-clinical EBA mouse models. We document that distinctive, and EBA pathogenesis-related activation-induced neutrophil in vitro functions depend on distinctive PI3K isoforms. When mice were treated with the different PI3Ki, selective blockade of PI3Kα (alpelisib), PI3Kγ (AS-604850), or PI3Kβ (TGX-221) impaired clinical disease manifestation. When applied topically, only TGX-221 impaired induction of experimental EBA. Ultimately, multiplex kinase activity profiling in the presence of disease-modifying PI3Ki identified unique signatures of different PI3K isoform-selective inhibitors on the kinome of IC-activated human neutrophils. Collectively, we here identify topical PI3Kβ inhibition as a potential therapeutic target for the treatment of EBA.
Collapse
Affiliation(s)
- Hannah Zillikens
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Anika Kasprick
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Colin Osterloh
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Natalie Gross
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Michael Radziewitz
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Cindy Hass
- Priority Area Asthma and Allergy, Research Center Borstel, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Veronika Hartmann
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Martina Behnen-Härer
- Department for Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Nancy Ernst
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Katharina Boch
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Gestur Vidarsson
- Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Remco Visser
- Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Tamás Laskay
- Department for Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Xinhua Yu
- Priority Area Asthma and Allergy, Research Center Borstel, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Frank Petersen
- Priority Area Asthma and Allergy, Research Center Borstel, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| |
Collapse
|
11
|
Clauder AK, Kordowski A, Bartsch YC, Köhl G, Lilienthal GM, Almeida LN, Lindemann T, Petry J, Rau CN, Gramalla-Schmitz A, Dühring L, Elbracht C, Kenno S, Tillmann J, Wuhrer M, Ludwig RJ, Ibrahim SM, Bieber K, Köhl J, Ehlers M, Manz RA. IgG Fc N-Glycosylation Translates MHCII Haplotype into Autoimmune Skin Disease. J Invest Dermatol 2020; 141:285-294. [PMID: 32653301 DOI: 10.1016/j.jid.2020.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022]
Abstract
The major histocompatibility complex haplotype represents the most prevalent genetic risk factor for the development of autoimmune diseases. However, the mechanisms by which major histocompatibility complex-associated genetic susceptibility translates into autoimmune disease are not fully understood. Epidermolysis bullosa acquisita is an autoimmune skin-blistering disease driven by autoantibodies to type VII collagen. Here, we investigated autoantigen-specific plasma cells, CD4+ T cells, and IgG fraction crystallizable glycosylation in murine epidermolysis bullosa acquisita in congenic mouse strains with the disease-permitting H2s or disease-nonpermitting H2b major histocompatibility complex II haplotypes. Mice with an H2s haplotype showed increased numbers of autoreactive CD4+ T cells and elevated IL-21 and IFN-γ production, associated with a higher frequency of IgG autoantibodies with an agalactosylated, proinflammatory N-glycan moiety. Mechanistically, we show that the altered antibody glycosylation leads to increased ROS release from neutrophils, the main drivers of autoimmune inflammation in this model. These results indicate that major histocompatibility complex II-associated susceptibility to autoimmune diseases acuminates in a proinflammatory IgG fraction crystallizable N-glycosylation pattern and provide a mechanistic link to increased ROS release by neutrophils.
Collapse
Affiliation(s)
- Ann-Katrin Clauder
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Anna Kordowski
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany; Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Yannic C Bartsch
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Gabriele Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Gina-Maria Lilienthal
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Larissa N Almeida
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Timo Lindemann
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Janina Petry
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Christina N Rau
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | | | - Lara Dühring
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Claudia Elbracht
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Samyr Kenno
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jenny Tillmann
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Saleh M Ibrahim
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
12
|
Stüssel P, Schulze Dieckhoff K, Künzel S, Hartmann V, Gupta Y, Kaiser G, Veldkamp W, Vidarsson G, Visser R, Ghorbanalipoor S, Matsumoto K, Krause M, Petersen F, Kalies K, Ludwig RJ, Bieber K. Propranolol Is an Effective Topical and Systemic Treatment Option for Experimental Epidermolysis Bullosa Acquisita. J Invest Dermatol 2020; 140:2408-2420. [PMID: 32450072 DOI: 10.1016/j.jid.2020.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/30/2020] [Accepted: 04/12/2020] [Indexed: 12/14/2022]
Abstract
Propranolol is an ADRB2 blocker that regulates heart muscle contractions, smooth muscle relaxation, and glycogenolysis. In addition, an increasing number of applications in dermatology have been described, most prominently, the use as a first-line treatment for infantile hemangiomas. We here show that propranolol enhances IL-8-induced neutrophil chemotaxis and reduces the release of ROS after immune complex stimulation. To obtain further molecular insights into the modulatory effects of propranolol in activated neutrophils, we performed RNA sequencing of immune complex-stimulated neutrophils in the absence and presence of the drug. We identified the transcriptomic signature of propranolol and demonstrated an ADR2-independent immunomodulatory effect. To determine if the anti-inflammatory transcriptomic signature of propranolol also translates into clinical effects, we next evaluated the impact of propranolol in a prototypical neutrophil-dependent skin disease, specifically, antibody transfer-induced epidermolysis bullosa acquisita in mice. To validate the identified propranolol gene signature obtained in human neutrophils, we analyzed a selection of genes by RT-PCR in mouse epidermolysis bullosa acquisita skin and confirmed TNF, among others, to be differentially regulated by propranolol treatment. Our data clearly indicate that, based on its molecular impact on immune complex-activated neutrophils, propranolol is a potential treatment option for neutrophil-mediated inflammatory skin diseases.
Collapse
Affiliation(s)
- Pia Stüssel
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Germany
| | | | - Sven Künzel
- Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - Veronika Hartmann
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Germany
| | - Yask Gupta
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Germany
| | - Georg Kaiser
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Germany
| | | | - Gestur Vidarsson
- Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Remco Visser
- Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| | | | - Kazuko Matsumoto
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Germany
| | - Malin Krause
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Germany
| | - Frank Petersen
- Priority Area Asthma and Allergy, Members of the German Center for Lung Research, Research Center Borstel, Borstel, Germany
| | | | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Germany.
| |
Collapse
|
13
|
Visualization of autoantibodies and neutrophils in vivo identifies novel checkpoints in autoantibody-induced tissue injury. Sci Rep 2020; 10:4509. [PMID: 32161277 PMCID: PMC7066238 DOI: 10.1038/s41598-020-60233-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/21/2019] [Indexed: 12/29/2022] Open
Abstract
In several autoimmune diseases, e.g., pemphigoid disease (PD), autoantibodies are the direct cause of pathology. Albeit key requirements for antibody-mediated diseases were identified, their interactions and exact temporal and spatial interactions remained elusive. The skin is easily accessible for imaging. Thus, we selected epidermolysis bullosa acquisita (EBA), a PD with autoantibodies to type VII collagen (COL7), to visualize interactions of autoantibodies, target tissue and effector cells (neutrophils). Following injection into mice, anti-COL7 IgG bound to the dermal-epidermal junction (DEJ) within minutes. We unexpectedly observed an inhomogeneous distribution of autoantibodies along the DEJ. Thus, we hypothesized that specific external triggers may affect autoantibody distribution. Indeed, mechanical irritation led to an increased autoantibody binding along the DEJ. Subsequently, anti-COL7 IgG was injected into mice expressing green fluorescent protein under the LysM promoter (LysM-eGFP) mice. This allows to visualize myeloid cells in vivo in these animals. Using multiphoton imaging, we observed a limited extravasation of LysM-eGFP+ cells into skin was observed within 24 hours. Intriguingly, LysM-eGFP+ cells did not immediately co-localize with autoantibodies, which was only noted at later time points. Of note, interactions of LysM-eGFP+ with the autoantibodies at the DEJ were short-lived. Collectively, our results define the following checkpoints for autoantibody-induced tissue injury: (i) autoantibody egress to target tissue influenced by mechanical trigger factors, (ii) neutrophil recruitment into the vicinity of autoantibody deposits and (iii) short-term neutrophil localization to these deposits, as well as (iv) delayed recruitment of neutrophils with subsequent autoantibody-induced inflammation.
Collapse
|
14
|
Kasprick A, Hofrichter M, Smith B, Ward P, Bieber K, Shock A, Ludwig RJ, Schmidt E. Treatment with anti-neonatal Fc receptor (FcRn) antibody ameliorates experimental epidermolysis bullosa acquisita in mice. Br J Pharmacol 2020; 177:2381-2392. [PMID: 31975370 PMCID: PMC7174883 DOI: 10.1111/bph.14986] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/04/2019] [Accepted: 12/14/2019] [Indexed: 02/06/2023] Open
Abstract
Background and Purpose Pemphigus and pemphigoid diseases are characterized and caused predominantly by IgG autoantibodies targeting structural proteins of the skin. Their current treatment relies on general and prolonged immunosuppression that causes severe adverse events, including death. Hence, novel safe and more effective treatments are urgently needed. Due to its' physiological functions, the neonatal Fc receptor (FcRn) has emerged as a potential therapeutic target for pemphigus and pemphigoid, primarily because IgG is protected from proteolysis after uptake into endothelial cells. Thus, blockade of FcRn would reduce circulating autoantibody concentrations. However, long‐term effects of pharmacological FcRn inhibition in therapeutic settings of autoimmune diseases are unknown. Experimental Approach Therapeutic effects of FcRn blockade were investigated in a murine model of the prototypical autoantibody‐mediated pemphigoid disease, epidermolysis bullosa acquisita (EBA). B6.SJL‐H2s C3c/1CyJ mice with clinically active disease were randomized to receive either an anti‐FcRn monoclonal antibody (4470) or an isotype control over 4 weeks. Key Results While clinical disease continued to worsen in isotype control‐treated mice, overall disease severity continuously decreased in mice injected with 4470, leading to almost complete remission in over 25% of treated mice. These clinical findings were paralleled by a reduction of autoantibody concentrations. Reduction of autoantibody concentrations, rather than modulating neutrophil activation, was responsible for the observed therapeutic effects. Conclusion and Implications The clinical efficacy of anti‐FcRn treatment in this prototypical autoantibody‐mediated disease encourages further development of anti‐FcRn antibodies for clinical use in pemphigoid diseases and potentially in other autoantibody mediated diseases.
Collapse
Affiliation(s)
- Anika Kasprick
- Lübeck Institute of Experimental Dermatology, and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Maxi Hofrichter
- Lübeck Institute of Experimental Dermatology, and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | | | | | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | | | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| |
Collapse
|
15
|
Niebuhr M, Bieber K, Banczyk D, Maass S, Klein S, Becker M, Ludwig R, Zillikens D, Westermann J, Kalies K. Epidermal Damage Induces Th1 Polarization and Defines the Site of Inflammation in Murine Epidermolysis Bullosa Acquisita. J Invest Dermatol 2020; 140:1713-1722.e9. [PMID: 32057838 DOI: 10.1016/j.jid.2020.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/10/2020] [Accepted: 01/26/2020] [Indexed: 12/15/2022]
Abstract
Epidermolysis bullosa acquisita is an autoimmune skin disease characterized by subepidermal blisters. The pathogenesis is mediated by deposits of autoantibodies directed against type VII collagen in the skin, but the sequence of events regulating the localization of skin blisters is not fully understood. In this study, using the immunization-induced mouse model of epidermolysis bullosa acquisita, we demonstrate that epidermal disruption induces not only an infiltration of CD4+ T cells but also a T helper type 1 phenotype as it has been described for delayed-type hypersensitivity reactions. This T helper type 1 reaction was not found when different antigens were applied. Deep T-cell receptor β profiling revealed shifts in the V/J gene usage only in epidermolysis bullosa acquisita, suggesting an infiltration of autoantigen-specific T cells. To target these autoantigen-specific T cells, we established an approach with which skin inflammation could be prevented without impairing the functionality of autoantibodies. We conclude that T-cell involvement in skin blistering diseases such as epidermolysis bullosa acquisita relates not only to T-cell help for B cells that produce pathogenic autoantibodies but also to autoreactive T helper type 1 effector cells that migrate into injured skin sites, exacerbate inflammation through production of inflammatory cytokines such as IFNγ, and prevent wound healing.
Collapse
Affiliation(s)
- Markus Niebuhr
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Institute of Anatomy, University of Lübeck, Lübeck, Germany; Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - David Banczyk
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | | | | | - Mareike Becker
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | | | - Kathrin Kalies
- Institute of Anatomy, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
16
|
Kovacs B, Tillmann J, Freund LC, Nimmerjahn F, Sadik CD, Bieber K, Ludwig RJ, Karsten CM, Köhl J. Fcγ Receptor IIB Controls Skin Inflammation in an Active Model of Epidermolysis Bullosa Acquisita. Front Immunol 2020; 10:3012. [PMID: 31993051 PMCID: PMC6971089 DOI: 10.3389/fimmu.2019.03012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022] Open
Abstract
Epidermolysis bullosa acquisita (EBA) is an autoimmune skin blistering disease characterized by IgG autoantibodies (aAb) against type VII collagen (COL7). The mechanisms controlling the formation of such aAbs and their effector functions in the skin tissue are incompletely understood. Here, we assessed whether the inhibitory IgG Fc receptor, FcγRIIB, controls the development of autoimmune skin blistering disease in an active model of EBA. For this purpose, we immunized congenic EBA-susceptible B6.SJL-H2s (B6.s) and B6.s-Fcgr2b−/− mice with the immunodominant vWFA2 region of COL7. B6.s-Fcgr2b−/− mice developed a strong clinical phenotype with 15 ± 3.3% of affected body surface area at week 4. In contrast, the body surface area in B6.s mice was affected to a maximum of 5% at week 6 with almost no disease signs at week 4. Surprisingly, we already found strong but similar COL7-specific serum IgG1 and IgG2b aAb production at week 2. Further, aAb and C3b deposition in the skin of B6.s and B6.s-Fcgr2b−/− mice increased between weeks 2 and 6 after vWFA2 immunization. Importantly, neutrophil skin infiltration and activation was much stronger in B6s-Fcgr2b−/− than in B6.s mice and already present at week 2. Also, the early aAb response in B6.s-Fcgr2b−/− mice was more diverse than in wt B6.s mice. Reactive oxygen species (ROS) release from infiltrating neutrophils play a crucial role as mediator of skin inflammation in EBA. In line, sera from B6.s and B6.s-Fcgr2b−/− mice induced strong ROS release from bone marrow-neutrophils in vitro. In contrast to the antibody-transfer-induced EBA model, individual targeting of FcγRIII or FcγRIV decreased ROS release to 50%. Combined FcγR blocking abrogated ROS release from BM neutrophils. Also, ROS release induced by COL7-specific serum IgG aAbs was significantly higher using BM neutrophils from B6.s-Fcgr2b−/− than from B6.s mice. Together, our findings identified FcγRIIB as a suppressor of skin inflammation in the active EBA model through inhibition of early epitope spreading, protection from strong early neutrophil infiltration to and activation of neutrophils in the skin and suppression of FcγRIII activation by IgG1 aAbs which drive strong ROS release from neutrophils leading to tissue destruction at the dermal-epidermal junction.
Collapse
Affiliation(s)
- Balint Kovacs
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Jenny Tillmann
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Lisa-Christin Freund
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Falk Nimmerjahn
- Department of Biology, Chair of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Katja Bieber
- Lübeck Institute for Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute for Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital and College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
17
|
Abstract
Pemphigoid diseases are a group of autoimmune blistering skin diseases defined by an immune response against certain components of the dermal-epidermal adhesion complex. They are prototypical, autoantibody-driven, organ-specific diseases with the emergence of inflammatory skin lesions dependent on the recruitment of immune cells, particularly granulocytes, into the skin. During an acute flare of disease, inflammatory skin lesions typically progressing from erythema through urticarial plaques to subepidermal blisters erosions erupt and, finally, completely resolve, thus illustrating that resolution of inflammation is continuously executed in pemphigoid disease patients and can be directly monitored on the skin. Despite these superb conditions for examining resolution in pemphigoid diseases as paradigm diseases for antibody-induced tissue inflammation, the mechanisms of resolution in pemphigoid are underinvestigated and still largely elusive. In the last decade, mouse models for pemphigoid diseases were developed, which have been instrumental to identify several key pathways for the initiation of inflammation in these diseases. More recently, also protective pathways, specifically IL-10 and C5aR2 signalling on the molecular level and Tregs on the cellular level, counteracting skin inflammation have been highlighted and may contribute to the continuous execution of resolution in pemphigoid diseases. The upstream orchestrators of this process are currently under investigation. Pemphigoid disease patients, particularly bullous pemphigoid patients, who are predominantly above 75 years of age, often succumb to the side effects of the immunosuppressive therapeutics nowadays still required to suppress the disease. Pemphigoid disease patients may therefore represent a group of patients benefiting most substantially from the introduction of non-immunosuppressive, proresolving therapeutics into the treatment regimens for their disease.
Collapse
Affiliation(s)
- Christian D Sadik
- Department of Dermatology, Allergy, and Venerology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Department of Dermatology, Allergy, and Venerology, University of Lübeck, Lübeck, Germany.
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| |
Collapse
|
18
|
The Sphingosine-1-Phosphate Receptor Modulator Fingolimod Aggravates Murine Epidermolysis Bullosa Acquisita. J Invest Dermatol 2019; 139:2381-2384.e3. [DOI: 10.1016/j.jid.2019.03.1159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/04/2019] [Accepted: 03/14/2019] [Indexed: 02/04/2023]
|
19
|
Kridin K, Kowalski EH, Kneiber D, Laufer-Britva R, Amber KT. From bench to bedside: evolving therapeutic targets in autoimmune blistering disease. J Eur Acad Dermatol Venereol 2019; 33:2239-2252. [PMID: 31314932 DOI: 10.1111/jdv.15816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
Abstract
Autoimmune blistering diseases comprise a group of heterogenous conditions characterized by the loss of tolerance and subsequent development of autoantibodies targeting epidermal and subepidermal adhesion proteins. Blisters and erosions form on the skin and mucous membranes leading to significant morbidity and mortality. Traditional therapies rely on systemic immunosuppression. Advancements in our understanding of the pathophysiology of pemphigus and pemphigoid have led to the development of molecules which target specific pathways involved in induction and perpetuation of disease. In this review, we outline the novel therapeutic strategies including B-cell depletion, T-regulatory cell repletion, cell signalling inhibitors and small molecular inhibitors, inhibitory monoclonal antibodies, as well as complement inhibition. We additionally review their current level of clinical evidence. We lastly review therapeutics targets gleaned from the experimental epidermolysis bullosa acquisita mouse model. These emerging treatments offer an exciting progression from basic science discoveries that have the potential to transform the treatment paradigm in autoimmune blistering diseases.
Collapse
Affiliation(s)
- K Kridin
- Department of Dermatology, Rambam Healthcare Campus, Haifa, Israel
| | - E H Kowalski
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| | - D Kneiber
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| | - R Laufer-Britva
- Department of Dermatology, Rambam Healthcare Campus, Haifa, Israel
| | - K T Amber
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
20
|
Natsuga K, Watanabe M, Nishie W, Shimizu H. Life before and beyond blistering: The role of collagen XVII in epidermal physiology. Exp Dermatol 2019; 28:1135-1141. [PMID: 29604146 DOI: 10.1111/exd.13550] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2018] [Indexed: 12/15/2022]
Abstract
Type XVII collagen (COL17) is a transmembranous protein that is mainly expressed in the epidermal basal keratinocytes. Epidermal-dermal attachment requires COL17 expression at the hemidesmosomes of the epidermal basement membrane zone because congenital COL17 deficiency leads to junctional epidermolysis bullosa and acquired autoimmunity to COL17 induces bullous pemphigoid. Recently, in addition to facilitating epidermal-dermal attachment, COL17 has been reported to serve as a niche for hair follicle stem cells, to regulate proliferation in the interfollicular epidermis and to be present along the non-hemidesmosomal plasma membrane of epidermal basal keratinocytes. This review focuses on the physiological properties of COL17 in the epidermis, its role in maintaining stem cells and its association with signalling pathways. We propose possible solutions to unanswered questions in this field.
Collapse
Affiliation(s)
- Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Mika Watanabe
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
21
|
Genovese G, Di Zenzo G, Cozzani E, Berti E, Cugno M, Marzano AV. New Insights Into the Pathogenesis of Bullous Pemphigoid: 2019 Update. Front Immunol 2019; 10:1506. [PMID: 31312206 PMCID: PMC6614376 DOI: 10.3389/fimmu.2019.01506] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022] Open
Abstract
There are several lines of evidence indicating that the physiopathological bases of bullous pemphigoid (BP), the most common subepidermal autoimmune bullous disease, are hallmarked by the production of autoantibodies directed against the hemidesmosomal anchoring proteins BP180 and BP230. In contrast to the robustness of the latter assumption, the multifaceted complexity of upstream and downstream mechanisms implied in the pathogenesis of BP remains an area of intense speculation. So far, an imbalance between T regulatory cells and autoreactive T helper (Th) cells has been regarded as the main pathogenic factor triggering the autoimmune response in BP patients. However, the contributory role of signaling pathways fostering the B cell stimulation, such as Toll-like receptor activation, as well as that of ancillary inflammatory mechanisms responsible for blister formation, such as Th17 axis stimulation and the activation of the coagulation cascade, are still a matter of debate. In the same way, the pathomechanisms implied in the loss of dermal-epidermal adhesion secondary to autoantibodies binding are not fully understood. Herein, we review in detail the current concepts and controversies on the complex pathogenesis of BP, shedding light on the most recent theories emerging from the literature.
Collapse
Affiliation(s)
- Giovanni Genovese
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Physiopathology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Di Zenzo
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | - Emanuele Cozzani
- DISSAL Section of Dermatology, Università degli Studi di Genova, Genoa, Italy
| | - Emilio Berti
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Physiopathology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Massimo Cugno
- Department of Physiopathology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Internal Medicine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Physiopathology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
22
|
Ludwig RJ. Type VII collagen IgE autoantibodies in epidermolysis bullosa acquisita: more common than suspected. Br J Dermatol 2019; 180:981-983. [PMID: 31025734 DOI: 10.1111/bjd.17770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- R J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| |
Collapse
|
23
|
Giusti D, Bini E, Terryn C, Didier K, Le Jan S, Gatouillat G, Durlach A, Nesmond S, Muller C, Bernard P, Antonicelli F, Pham BN. NET Formation in Bullous Pemphigoid Patients With Relapse Is Modulated by IL-17 and IL-23 Interplay. Front Immunol 2019; 10:701. [PMID: 31019514 PMCID: PMC6458298 DOI: 10.3389/fimmu.2019.00701] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/14/2019] [Indexed: 12/13/2022] Open
Abstract
Background: DNA extracellular traps (ETs), released by neutrophils (NETs), or eosinophils (EETs), play a pathogenic role in several autoimmune disorders. However, to date, NETs have never been investigated in bullous pemphigoid (BP) with respect to clinical and immunological activities, both at baseline and at time of relapse which have been characterized with specific IL-17 and IL-23 patterns. Objective: We sought to assess whether ETs were associated with BP as well as the relative contribution of IL-17 axis cytokines to NET induction. Methods: Skin biopsy specimens were obtained from 11 patients with BP. Immuno-detection of neutrophils and eosinophils combined to DNA staining allowed us to investigate the in-situ presence of NETs and EETs using confocal scanning microscopy. NETs release was evaluated ex vivo by stimulating polymorphonuclear cells from BP patients with BP biological fluids in presence of IL-17A and IL-23 or of glucocorticoids. Results: At baseline, ETs were observed in BP lesions at the site of dermal-epidermal cleavage. Despite an important infiltrate of eosinophils, ETs were essentially associated with neutrophils in situ and were not related to BP clinical activity at diagnosis. In situ observation of NETs was associated in 6 among 8 patients with serum capacity of NET induction. Notably both blister fluid and sera from BP patients at diagnosis and at time of relapse could induce NET formation ex vivo. In contrast, a longitudinal investigation showed a decrease of NET formation with time of treatment in patients undergoing remission. Mimicking relapse, complementation of sera from BP patients with ongoing remission with either IL-17A or IL-23 increased NET formation. Conversely, IL-17A inhibited NET formation induced by serum from BP patients with relapse supplemented or not with IL-23. Finally, glucocorticoids also inhibited NET formation ex vivo in BP. Conclusion: NET formation is an associated phenomenon with BP. Furthermore, we showed that IL-23 favored NET formation, whereas the effects of IL-17A are environment dependent. Indeed, IL-17A displayed a protective effect on NET formation when associated with IL-23, showing for the first-time differential effects of these two cytokines in BP.
Collapse
Affiliation(s)
- Delphine Giusti
- Laboratory of Dermatology, Faculty of Medicine of Reims, University of Champagne-Ardenne, Reims, France.,Laboratory of Immunology, Reims University Hospital, University of Champagne-Ardenne, Reims, France
| | - Estela Bini
- Laboratory of Dermatology, Faculty of Medicine of Reims, University of Champagne-Ardenne, Reims, France
| | - Christine Terryn
- PICT Platform, University of Reims Champagne-Ardenne, Reims, France
| | - Kevin Didier
- Laboratory of Dermatology, Faculty of Medicine of Reims, University of Champagne-Ardenne, Reims, France
| | - Sébastien Le Jan
- Laboratory of Dermatology, Faculty of Medicine of Reims, University of Champagne-Ardenne, Reims, France
| | - Grégory Gatouillat
- Laboratory of Dermatology, Faculty of Medicine of Reims, University of Champagne-Ardenne, Reims, France.,Laboratory of Immunology, Reims University Hospital, University of Champagne-Ardenne, Reims, France
| | - Anne Durlach
- Laboratory of Pathology, Reims University Hospital, Reims, France
| | - Stéphane Nesmond
- Laboratory of Dermatology, Faculty of Medicine of Reims, University of Champagne-Ardenne, Reims, France
| | - Celine Muller
- Laboratory of Dermatology, Faculty of Medicine of Reims, University of Champagne-Ardenne, Reims, France
| | - Philippe Bernard
- Laboratory of Dermatology, Faculty of Medicine of Reims, University of Champagne-Ardenne, Reims, France.,Department of Dermatology, Reims University Hospital, University of Champagne-Ardenne, Reims, France
| | - Frank Antonicelli
- Laboratory of Dermatology, Faculty of Medicine of Reims, University of Champagne-Ardenne, Reims, France.,Department of Biological Sciences, Immunology, UFR Odontology, University of Reims Champagne-Ardenne, Reims, France
| | - Bach Nga Pham
- Laboratory of Dermatology, Faculty of Medicine of Reims, University of Champagne-Ardenne, Reims, France.,Laboratory of Immunology, Reims University Hospital, University of Champagne-Ardenne, Reims, France
| |
Collapse
|
24
|
Abstract
Pemphigoid diseases (PDs) are a group of autoimmune bullous diseases characterized and caused by autoantibodies targeting structural proteins of the skin and mucous membranes. Chronic inflammation, subepidermal blistering, and often scaring are the clinical characteristics of PDs. Itching and, in severe cases, disabilities resulting from scaring (i.e., blindness, esophageal strictures) are the leading subjective symptoms. Treatment of PDs, which is based on nonspecific immunosuppression, is challenging because of frequent relapses, lack of efficacy, and numerous adverse events. In addition, the incidence of PDs is increasing. Given the high morbidity, limited therapeutic options, and increasing incidence, there is a growing urgency for drug discovery to help treat this condition. The recent development of PD model systems has added to the understanding of PD pathogenesis and, based on these insights, new clinical trials will soon be launched. The (auto-)antibody transfer PD models allow for investigations into autoantibody-mediated tissue pathology, while immunization-induced PD models more closely resemble the clinical situation. The latter duplicate all aspects of the human disease and are useful for investigating PD pathogenesis and testing therapeutic interventions. This article describes antibody transfer and immunization-induced PD mouse models currently employed for translational PD research. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Anika Kasprick
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
25
|
Kamaguchi M, Iwata H. The Diagnosis and Blistering Mechanisms of Mucous Membrane Pemphigoid. Front Immunol 2019; 10:34. [PMID: 30740099 PMCID: PMC6357922 DOI: 10.3389/fimmu.2019.00034] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/08/2019] [Indexed: 12/30/2022] Open
Abstract
Mucous membrane pemphigoid (MMP) is a mucous membrane-dominated autoimmune subepithelial blistering disease that is caused by autoantibodies against various autoantigens in basement membrane zone (BMZ) proteins, including collagen XVII (COL17). Clinicians face diagnostic problems in detecting circulating antibodies and targeted antigens in MMP. The diagnostic difficulties are mainly attributed to the low titers of MMP autoantibodies in sera and to heterogeneous autoantigens. Additionally, no unanimous diagnostic criteria have been drawn for MMP, which can result in delayed diagnoses or misdiagnoses. This review aims to integrate and present currently available data to clarify diagnostic strategies and to present diagnostic criteria for MMP. The ultimate blistering mechanism in MMP has not been elucidated, and such mechanism is especially obscure in COL17-type MMP. In bullous pemphigoid (BP), which is the most common autoimmune subepidermal blistering disease, some patients show oral lesion as well as predominant skin lesions. However, there is no fundamental explanation for the onset of oral lesions in BP. This article summarizes innovative research perspectives on the pathogenesis of oral lesions in pemphigoid. Finally, we propose a potential pathogenesis for COL17-type MMP.
Collapse
Affiliation(s)
- Mayumi Kamaguchi
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Hiroaki Iwata
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
26
|
Wu Q, Patocka J, Kuca K. Beauvericin, A Fusarium Mycotoxin: Anticancer Activity, Mechanisms, and Human Exposure Risk Assessment. Mini Rev Med Chem 2019; 19:206-214. [DOI: 10.2174/1389557518666180928161808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 04/19/2018] [Accepted: 04/22/2018] [Indexed: 12/28/2022]
Abstract
Beauvericin (BEA) is a cyclic hexadepsipeptide, which derives from Cordyceps cicadae. It is also produced by Fusarium species, which are parasitic to maize, wheat, rice and other important commodities. BEA increases ion permeability in biological membranes by forming a complex with essential cations, which may affect ionic homeostasis. Its ion-complexing capability allows BEA to transport alkaline earth metal and alkali metal ions across cell membranes. Importantly, increasing lines of evidence show that BEA has an anticancer effect and can be potentially used in cancer therapeutics. Normally, BEA performs the anticancer effect due to the induced cancer cell apoptosis via a reactive oxygen species-dependent pathway. Moreover, BEA increases the intracellular Ca2+ levels and subsequently regulates the activity of a series of signalling pathways including MAPK, JAK/STAT, and NF-κB, and finally causes cancer cell apoptosis. In vivo studies further show that BEA reduces tumour volumes and weights. BEA especially targets differentiated and invasive cancer types. Currently, the anticancer activity of BEA is a hot topic; however, there is no review article to discuss the anticancer activity of BEA. Therefore, in this review, we have mainly summarized the anticancer activity of BEA and thoroughly discussed its underlying mechanisms. In addition, the human exposure risk assessment of BEA is also discussed. We hope that this review will provide further information for understanding the anticancer mechanisms of BEA.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou 434025, China
| | - Jiri Patocka
- Institute of Radiology, Toxicology and Civil Protection, Faculty of Health and Social Studies, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
27
|
Koga H, Prost-Squarcioni C, Iwata H, Jonkman MF, Ludwig RJ, Bieber K. Epidermolysis Bullosa Acquisita: The 2019 Update. Front Med (Lausanne) 2019; 5:362. [PMID: 30687710 PMCID: PMC6335340 DOI: 10.3389/fmed.2018.00362] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/19/2018] [Indexed: 11/13/2022] Open
Abstract
Epidermolysis bullosa acquisita (EBA) is an orphan autoimmune disease. Patients with EBA suffer from chronic inflammation as well as blistering and scarring of the skin and mucous membranes. Current treatment options rely on non-specific immunosuppression, which in many cases, does not lead to a remission of treatment. Hence, novel treatment options are urgently needed for the care of EBA patients. During the past decade, decisive clinical observations, and frequent use of pre-clinical model systems have tremendously increased our understanding of EBA pathogenesis. Herein, we review all of the aspects of EBA, starting with a detailed description of epidemiology, clinical presentation, diagnosis, and current treatment options. Of note, pattern analysis via direct immunofluorescence microscopy of a perilesional skin lesion and novel serological test systems have significantly facilitated diagnosis of the disease. Next, a state-of the art review of the current understanding of EBA pathogenesis, emerging treatments and future perspectives is provided. Based on pre-clinical model systems, cytokines and kinases are among the most promising therapeutic targets, whereas high doses of IgG (IVIG) and the anti-CD20 antibody rituximab are among the most promising "established" EBA therapeutics. We also aim to raise awareness of EBA, as well as initiate basic and clinical research in this field, to further improve the already improved but still unsatisfactory conditions for those diagnosed with this condition.
Collapse
Affiliation(s)
- Hiroshi Koga
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Fukuoka, Japan
| | - Catherine Prost-Squarcioni
- Department of Dermatology, APHP, Avicenne Hospital, Referral Center for Autoimmune Bullous Diseases, Bobigny, France
| | - Hiroaki Iwata
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Marcel F Jonkman
- Department of Dermatology, Center for Blistering Diseases, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
28
|
Lee J, Werth VP, Hall RP, Eming R, Fairley JA, Fajgenbaum DC, Harman KE, Jonkman MF, Korman NJ, Ludwig RJ, Murrell DF, Musette P, Naik HB, Sadik CD, Yamagami J, Yale ML, Payne AS. Perspective From the 5th International Pemphigus and Pemphigoid Foundation Scientific Conference. Front Med (Lausanne) 2018; 5:306. [PMID: 30467542 PMCID: PMC6236000 DOI: 10.3389/fmed.2018.00306] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022] Open
Abstract
The 5th Scientific Conference of the International Pemphigus and Pemphigoid Foundation (IPPF), “Pemphigus and Pemphigoid: A New Era of Clinical and Translational Science” was held in Orlando, Florida, on May 15–16, 2018. Scientific sessions covered recent, ongoing, and future clinical trials in pemphigus and bullous pemphigoid, disease activity and quality of life instruments, and the IPPF Natural History Study. Furthermore, the meeting provided an opportunity to hear firsthand from patients, investigators, and industry about their experience enrolling for clinical trials.
Collapse
Affiliation(s)
- Jinmin Lee
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, United States
| | - Victoria P Werth
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, United States.,Corporal Michael J. Crescenz VAMC, Philadelphia, PA, United States
| | - Russell P Hall
- Department of Dermatology, Duke University, Durham, NC, United States
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Janet A Fairley
- Department of Dermatology, University of Iowa, Iowa City, IA, United States
| | - David C Fajgenbaum
- Orphan Disease Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Karen E Harman
- Centre of Evidence Based Dermatology, University of Nottingham, Nottingham, United Kingdom
| | - Marcel F Jonkman
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Neil J Korman
- Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Ralf J Ludwig
- Department of Dermatology, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Dedee F Murrell
- Department of Dermatology, University of New South Wales, Sydney, NSW, Australia
| | - Philippe Musette
- Department of Dermatology, Rouen University Hospital, Rouen, France
| | - Haley B Naik
- Program for Clinical Research, Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States
| | - Christian D Sadik
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Jun Yamagami
- Department of Dermatology, Keio University, Tokyo, Japan
| | - Marc L Yale
- International Pemphigus and Pemphigoid Foundation, Sacramento, CA, United States
| | - Aimee S Payne
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
29
|
Iwata H, Vorobyev A, Koga H, Recke A, Zillikens D, Prost-Squarcioni C, Ishii N, Hashimoto T, Ludwig RJ. Meta-analysis of the clinical and immunopathological characteristics and treatment outcomes in epidermolysis bullosa acquisita patients. Orphanet J Rare Dis 2018; 13:153. [PMID: 30180870 PMCID: PMC6122731 DOI: 10.1186/s13023-018-0896-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/22/2018] [Indexed: 12/31/2022] Open
Abstract
Background Epidermolysis bullosa acquisita (EBA) is an orphan autoimmune disease. Several clinical phenotypes have been described, but subepidermal blistering is characteristic of all variants. Limited data on clinical and immunopathological characteristics and treatment outcomes in EBA are available. To fill this gap, we collected this information from EBA cases, meeting current diagnostic criteria, published between 1971 and 2016. Results We identified 1159 EBA cases. This number must be, however, interpreted with caution, as it is not possible to check for multiple reporting. The analysis of all cases indicated that EBA affects all age groups (median: 50 years, range: 1 to 94 years) at an equal gender distribution. Non-mechanobullous (non-MB) forms of EBA were observed in 55% of patients, whereas the mechanobullous variant (MB-EBA) or a combination of both variants was described in 38 or 7% of patients, respectively. Type VII collagen (COL7)-specific autoantibodies were primarily of the IgG isotype, but anti-COL7 IgA, IgM and IgE were also documented. Comparison of the 2 clinical EBA types showed a higher frequency of IgA deposits in non-MB EBA as opposed to MB EBA. Mucous membrane involvement was observed in 23% of patients, and 4.4% of cases were associated with other chronic inflammatory diseases. Of note, IgA deposits were more frequently observed in cases with mucous membrane involvement. Our analysis indicated that EBA is difficult to treat and that the choice of treatment varies widely. Chi square was applied to identify medications associated with complete remission (CR). Considering all EBA cases, intravenous immunoglobulin (IVIG, p = 0.0047) and rituximab (p = 0.0114) were associated with CR. Subgroup analysis demonstrated that no treatment was associated with CR for non-MB EBA, while IVIG (p = 0.003) was associated with CR in MB EBA. Conclusions Within the limitations of the study, we here document the clinical and immunopathological characteristics and treatment outcomes in a large cohort of EBA patients. The observed associations of single drugs with treatment outcome may serve as a guide to develop clinical trials. Electronic supplementary material The online version of this article (10.1186/s13023-018-0896-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hiroaki Iwata
- Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, D-23538, Lübeck, Germany.,Present address: Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Artem Vorobyev
- Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, D-23538, Lübeck, Germany
| | - Hiroshi Koga
- Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, D-23538, Lübeck, Germany.,Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, Japan
| | - Andreas Recke
- Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, D-23538, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, D-23538, Lübeck, Germany
| | - Catherine Prost-Squarcioni
- Referral center for auto-immune bullous diseases, Department of Dermatology, APHP, Avicenne Hospital, Bobigny, France
| | - Norito Ishii
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, Japan
| | - Takashi Hashimoto
- Department of Dermatology, Faculty of Medicine, Osaka City University, Osaka, Japan
| | - Ralf J Ludwig
- Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, D-23538, Lübeck, Germany. .,Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
30
|
Wannick M, Assmann JC, Vielhauer JF, Offermanns S, Zillikens D, Sadik CD, Schwaninger M. The Immunometabolomic Interface Receptor Hydroxycarboxylic Acid Receptor 2 Mediates the Therapeutic Effects of Dimethyl Fumarate in Autoantibody-Induced Skin Inflammation. Front Immunol 2018; 9:1890. [PMID: 30154797 PMCID: PMC6102353 DOI: 10.3389/fimmu.2018.01890] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/31/2018] [Indexed: 11/13/2022] Open
Abstract
The drug dimethyl fumarate (DMF) is in clinical use for the treatment of psoriasis and multiple sclerosis. In addition, it has recently been demonstrated to ameliorate skin pathology in mouse models of pemphigoid diseases, a group of autoimmune blistering diseases of the skin and mucous membranes. However, the mode of action of DMF in inflammatory skin diseases has remained elusive. Therefore, we have investigated here the mechanisms by which DMF improves skin pathology, using the antibody transfer model of bullous pemphigoid-like epidermolysis bullosa acquisita (EBA). Experimental EBA was induced by transfer of antibodies against collagen VII that triggered the infiltration of immune cells into the skin and led to inflammatory skin lesions. DMF treatment reduced the infiltration of neutrophils and monocytes into the skin explaining the improved disease outcome in DMF-treated animals. Upon ingestion, DMF is converted to monomethyl fumarate that activates the hydroxycarboxylic acid receptor 2 (HCA2). Interestingly, neutrophils and monocytes expressed Hca2. To investigate whether the therapeutic effect of DMF in EBA is mediated by HCA2, we administered oral DMF to Hca2-deficient mice (Hca2−/−) and wild-type littermates (Hca2+/+) and induced EBA. DMF treatment ameliorated skin lesions in Hca2+/+ but not in Hca2−/− animals. These findings demonstrate that HCA2 is a molecular target of DMF treatment in EBA and suggest that HCA2 activation limits skin pathology by inhibiting the infiltration of neutrophils and monocytes into the skin.
Collapse
Affiliation(s)
- Melanie Wannick
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Julian C Assmann
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Jakob F Vielhauer
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Detlef Zillikens
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Christian D Sadik
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
31
|
Koga H, Kasprick A, López R, Aulí M, Pont M, Godessart N, Zillikens D, Bieber K, Ludwig RJ, Balagué C. Therapeutic Effect of a Novel Phosphatidylinositol-3-Kinase δ Inhibitor in Experimental Epidermolysis Bullosa Acquisita. Front Immunol 2018; 9:1558. [PMID: 30050528 PMCID: PMC6052048 DOI: 10.3389/fimmu.2018.01558] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Epidermolysis bullosa acquisita (EBA) is a rare, but prototypical, organ-specific autoimmune disease, characterized and caused by autoantibodies against type VII collagen (COL7). Mucocutaneous inflammation, blistering, and scarring are the clinical hallmarks of the disease. Treatment of EBA is difficult and mainly relies on general immunosuppression. Hence, novel treatment options are urgently needed. The phosphatidylinositol-3-kinase (PI3K) pathway is a putative target for the treatment of inflammatory diseases, including EBA. We recently discovered LAS191954, an orally available, selective PI3Kδ inhibitor. PI3Kδ has been shown to be involved in B cell and neutrophil cellular functions. Both cell types critically contribute to EBA pathogenesis, rendering LAS191954 a potential drug candidate for EBA treatment. We, here, demonstrate that LAS191954, when administered chronically, dose-dependently improved the clinical phenotype of mice harboring widespread skin lesions secondary to immunization-induced EBA. Direct comparison with high-dose corticosteroid treatment indicated superiority of LAS191954. Interestingly, levels of circulating autoantibodies were unaltered in all groups, indicating a mode of action independent of the inhibition of B cell function. In line with this, LAS191954 also hindered disease progression in antibody transfer-induced EBA, where disease develops dependent on myeloid, but independent of B cells. We further show that, in vitro, LAS191954 dose-dependently impaired activation of human myeloid cells by relevant disease stimuli. Specifically, immune complex-mediated and C5a-mediated ROS release were inhibited in a PI3Kδ-dependent manner. Accordingly, LAS191954 also modulated the dermal–epidermal separation induced in vitro by co-incubation of immune complexes with polymorph nuclear cells, thus pointing to an important role of PI3Kδ in EBA effector functions. Altogether, these results suggest a new potential mechanism for the treatment of EBA and potentially also other autoimmune bullous diseases.
Collapse
Affiliation(s)
- Hiroshi Koga
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Anika Kasprick
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Rosa López
- Skin Biology and Pharmacology, Almirall R&D, Barcelona, Spain
| | - Mariona Aulí
- Preclinical Safety and Toxicology, Almirall R&D, Barcelona, Spain
| | - Mercè Pont
- Skin Biology and Pharmacology, Almirall R&D, Barcelona, Spain
| | - Núria Godessart
- Skin Biology and Pharmacology, Almirall R&D, Barcelona, Spain
| | | | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Department of Dermatology University of Lübeck, Lübeck, Germany
| | | |
Collapse
|
32
|
Giusti D, Gatouillat G, Le Jan S, Plée J, Bernard P, Antonicelli F, Pham BN. Anti-Type VII Collagen Antibodies Are Identified in a Subpopulation of Bullous Pemphigoid Patients With Relapse. Front Immunol 2018; 9:570. [PMID: 29619029 PMCID: PMC5871753 DOI: 10.3389/fimmu.2018.00570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/06/2018] [Indexed: 11/19/2022] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune bullous skin disease characterized by anti-BP180 and anti-BP230 autoantibodies (AAbs). Mucous membrane involvement is an uncommon clinical feature of BP which may evoke epidermolysis bullosa acquisita, another skin autoimmune disease characterized by anti-type VII collagen AAbs. We therefore evaluated the presence of anti-type VII collagen AAbs in the serum of BP patients with and without mucosal lesions at time of diagnosis and under therapy. Anti-BP180, anti-BP230, and anti-type VII collagen AAbs were measured by ELISA in the serum of unselected patients fulfilling clinical and histo/immunopathological BP criteria at baseline (n = 71) and at time of relapse (n = 24). At baseline, anti-type VII collagen AAbs were detected in 2 out of 24 patients with BP presenting with mucosal involvement, but not in patients without mucosal lesions (n = 47). At the time of relapse, 10 out of 24 BP patients either displayed a significant induction or increase of concentrations of anti-type VII collagen AAbs (P < 0.01), independently of mucosal involvement. Those 10 relapsing BP patients were also characterized by a sustained high concentration of anti-BP180 AAb, whereas the serum anti-BP230 AAb concentrations did not vary in BP patients with relapse according to the presence of anti-type VII collagen AAbs. Thus, our study showed that anti-type VII collagen along with anti-BP180 AAbs detection stratified BP patients at time of relapse, illustrating a still dysregulated immune response that could reflect a potential epitope spreading mechanism in those BP patients.
Collapse
Affiliation(s)
- Delphine Giusti
- Laboratory of Dermatology, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France.,Laboratory of Immunology, Reims University Hospital, University of Reims Champagne-Ardenne, Reims, France
| | - Grégory Gatouillat
- Laboratory of Dermatology, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France.,Laboratory of Immunology, Reims University Hospital, University of Reims Champagne-Ardenne, Reims, France
| | - Sébastien Le Jan
- Laboratory of Dermatology, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France
| | - Julie Plée
- Laboratory of Dermatology, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France.,Department of Dermatology, Reims University Hospital, University of Reims Champagne-Ardenne, Reims, France
| | - Philippe Bernard
- Laboratory of Dermatology, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France.,Department of Dermatology, Reims University Hospital, University of Reims Champagne-Ardenne, Reims, France
| | - Frank Antonicelli
- Laboratory of Dermatology, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France.,Department of Biological Sciences, Immunology, Faculty of Odontology, University of Reims Champagne-Ardenne, Reims, France
| | - Bach-Nga Pham
- Laboratory of Dermatology, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France.,Laboratory of Immunology, Reims University Hospital, University of Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
33
|
Mihai S, Hirose M, Wang Y, Thurman JM, Holers VM, Morgan BP, Köhl J, Zillikens D, Ludwig RJ, Nimmerjahn F. Specific Inhibition of Complement Activation Significantly Ameliorates Autoimmune Blistering Disease in Mice. Front Immunol 2018; 9:535. [PMID: 29616034 PMCID: PMC5865061 DOI: 10.3389/fimmu.2018.00535] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/02/2018] [Indexed: 11/13/2022] Open
Abstract
Epidermolysis bullosa acquisita (EBA) is an antibody-mediated blistering skin disease associated with tissue-bound and circulating autoantibodies to type VII collagen (COL7). Transfer of antibodies against COL7 into mice results in a subepidermal blistering phenotype, strictly depending on the complement component C5. Further, activation predominantly by the alternative pathway is required to induce experimental EBA, as blistering was delayed and significantly ameliorated only in factor B-/- mice. However, C5 deficiency not only blocked the activation of terminal complement components and assembly of the membrane attack complex (MAC) but also eliminated the formation of C5a. Therefore, in the present study, we first aimed to elucidate which molecules downstream of C5 are relevant for blister formation in this EBA model and could be subsequently pharmaceutically targeted. For this purpose, we injected mice deficient in C5a receptor 1 (C5aR1) or C6 with antibodies to murine COL7. Importantly, C5ar1-/- mice were significantly protected from experimental EBA, demonstrating that C5a-C5aR1 interactions are critical intermediates linking pathogenic antibodies to tissue damage in this experimental model of EBA. By contrast, C6-/- mice developed widespread blistering disease, suggesting that MAC is dispensable for blister formation in this model. In further experiments, we tested the therapeutic potential of inhibitors of complement components which were identified to play a key role in this experimental model. Complement components C5, factor B (fB), and C5aR1 were specifically targeted using complement inhibitors both prophylactically and in mice that had already developed disease. All complement inhibitors led to a significant improvement of the blistering phenotype when injected shortly before anti-COL7 antibodies. To simulate a therapeutic intervention, anti-fB treatment was first administered in full-blown EBA (day 5) and induced significant amelioration only in the final phase of disease evolution, suggesting that early intervention in disease development may be necessary to achieve higher efficacy. Anti-C5 treatment in incipient EBA (day 2) significantly ameliorated disease during the whole experiment. This finding is therapeutically relevant, since the humanized anti-C5 antibody eculizumab is already successfully used in patients. In conclusion, in this study, we have identified promising candidate molecules for complement-directed therapeutic intervention in EBA and similar autoantibody-mediated diseases.
Collapse
Affiliation(s)
- Sidonia Mihai
- Lübeck Institute of Experimental Dermatology and Department of Dermatology, University of Lübeck, Lübeck, Germany.,Institute of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Misa Hirose
- Lübeck Institute of Experimental Dermatology and Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Yi Wang
- Alexion Pharmaceuticals, Cheshire, CT, United States
| | - Joshua M Thurman
- Departments of Medicine and Immunology, University of Colorado Health Sciences Center, Denver, CO, United States
| | - V Michael Holers
- Departments of Medicine and Immunology, University of Colorado Health Sciences Center, Denver, CO, United States
| | - B Paul Morgan
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Detlef Zillikens
- Lübeck Institute of Experimental Dermatology and Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Falk Nimmerjahn
- Institute of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
34
|
Karsten CM, Beckmann T, Holtsche MM, Tillmann J, Tofern S, Schulze FS, Heppe EN, Ludwig RJ, Zillikens D, König IR, Köhl J, Schmidt E. Tissue Destruction in Bullous Pemphigoid Can Be Complement Independent and May Be Mitigated by C5aR2. Front Immunol 2018; 9:488. [PMID: 29599777 PMCID: PMC5862877 DOI: 10.3389/fimmu.2018.00488] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/23/2018] [Indexed: 12/12/2022] Open
Abstract
Bullous pemphigoid (BP), the most frequent autoimmune bullous disorder, is a paradigmatic autoantibody-mediated disease associated with autoantibodies against BP180 (type XVII collagen, Col17). Several animal models have been developed that reflect important clinical and immunological features of human BP. Complement activation has been described as a prerequisite for blister formation, however, the recent finding that skin lesions can be induced by anti-Col17 F(ab')2 fragments indicates complement-independent mechanisms to contribute to blister formation in BP. Here, C5-/- mice injected with anti-Col17 IgG showed a reduction of skin lesions by about 50% associated with significantly less skin-infiltrating neutrophils compared to wild-type mice. Reduction of skin lesions and neutrophil infiltration was seen independently of the employed anti-Col17 IgG dose. Further, C5ar1-/- mice were protected from disease development, whereas the extent of skin lesions was increased in C5ar2-/- animals. Pharmacological inhibition of C5a receptor 1 (C5aR1) by PMX53 led to reduced disease activity when applied in a prophylactic setting. In contrast, PMX-53 treatment had no effect when first skin lesions had already developed. While C5aR1 was critically involved in neutrophil migration in vitro, its role for Col17-anti-Col17 IgG immune complex-mediated release of reactive oxygen species from neutrophils was less pronounced. Our data demonstrate that complement-dependent and -independent mechanisms coexist in anti-Col17-autoantibody-mediated tissue destruction. C5aR1 and C5aR2 seem to play opposing roles in this process with C5aR1 exerting its primary effect in recruiting inflammatory cells to the skin during the early phase of the disease. Further studies are required to fully understand the role of C5aR2 in autoantibody-mediated skin inflammation.
Collapse
MESH Headings
- Animals
- Autoantibodies/genetics
- Autoantibodies/immunology
- Autoantigens/genetics
- Autoantigens/immunology
- Complement C5/genetics
- Complement C5/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Neutrophil Infiltration
- Neutrophils/immunology
- Neutrophils/pathology
- Non-Fibrillar Collagens/genetics
- Non-Fibrillar Collagens/immunology
- Pemphigoid, Bullous/chemically induced
- Pemphigoid, Bullous/genetics
- Pemphigoid, Bullous/immunology
- Pemphigoid, Bullous/pathology
- Peptides, Cyclic/pharmacology
- Reactive Oxygen Species/immunology
- Receptor, Anaphylatoxin C5a/antagonists & inhibitors
- Receptor, Anaphylatoxin C5a/genetics
- Receptor, Anaphylatoxin C5a/immunology
- Skin/immunology
- Skin/pathology
- Collagen Type XVII
Collapse
Affiliation(s)
| | - Tina Beckmann
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | | | - Jenny Tillmann
- Institute of Systemic Inflammation, University of Lübeck, Lübeck, Germany
| | - Sabrina Tofern
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Franziska S. Schulze
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Eva Nina Heppe
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Inke R. König
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute of Systemic Inflammation, University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children’s Hospital and College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
35
|
Clapé A, Muller C, Gatouillat G, Le Jan S, Barbe C, Pham BN, Antonicelli F, Bernard P. Mucosal Involvement in Bullous Pemphigoid Is Mostly Associated with Disease Severity and to Absence of Anti-BP230 Autoantibody. Front Immunol 2018; 9:479. [PMID: 29662486 PMCID: PMC5890137 DOI: 10.3389/fimmu.2018.00479] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/22/2018] [Indexed: 01/10/2023] Open
Abstract
Bullous pemphigoid (BP) is the most common autoimmune bullous disease and typically affects the elderly. Binding of specific autoantibodies to BP180/230 hemidesmosomal components induces an inflammatory response leading to skin blister formation. Unusual manifestations of BP include additional mucous membrane involvement, without pathophysiological knowledge associated to the formation of these lesions. We here performed a prospective study on series of consecutive BP patients with (n = 77) and without (n = 18) mucosal involvements at baseline to further investigate why some BP patients display mucosal lesion and other not. Analysis of disease activity showed that BP patients with mucosal involvement displayed a higher total BP Disease Area Index (BPDAI) score (P = 0.008), but also higher skin and blister/erosion BPDAI scores (P = 0.02 and P = 0.001, respectively). By contrast, the erythema/urticaria BPDAI score was identical between the two groups of patients. The erythema/urticaria BPDAI score, but not the blister/erosion BPDAI score, was correlated with the serum concentration of anti-BP180 NC16A autoantibodies in patients with mucosal involvement. In multivariate analysis, the absence of anti-BP230 autoantibody was the only factor independently associated with mucosal involvement (OR 7.8; 95% CI, 3.1–19.6) (P < 0.0001). Analysis of the distribution of BP patients according to BPDAI scores revealed a shift toward higher blister/erosion BPDAI scores for BP patients with mucosal involvement. This study indicates that mucosal lesions are clinically mainly related to disease severity and immunologically to the absence of anti-BP230 antibodies.
Collapse
Affiliation(s)
- Ariane Clapé
- Laboratory of Dermatology, Faculty of Medicine, EA7319, University of Reims Champagne-Ardenne, Reims, France.,Department of Dermatology, Reims University Hospital, University of Reims Champagne-Ardenne, Reims, France.,Laboratory of Immunology, Reims University Hospital, University of Reims Champagne-Ardenne, Reims, France
| | - Céline Muller
- Laboratory of Dermatology, Faculty of Medicine, EA7319, University of Reims Champagne-Ardenne, Reims, France
| | - Grégory Gatouillat
- Laboratory of Dermatology, Faculty of Medicine, EA7319, University of Reims Champagne-Ardenne, Reims, France.,Laboratory of Immunology, Reims University Hospital, University of Reims Champagne-Ardenne, Reims, France
| | - Sébastien Le Jan
- Laboratory of Dermatology, Faculty of Medicine, EA7319, University of Reims Champagne-Ardenne, Reims, France
| | - Coralie Barbe
- Clinical Research Unit, Reims University Hospital, Reims, France
| | - Bach-Nga Pham
- Laboratory of Dermatology, Faculty of Medicine, EA7319, University of Reims Champagne-Ardenne, Reims, France.,Laboratory of Immunology, Reims University Hospital, University of Reims Champagne-Ardenne, Reims, France
| | - Frank Antonicelli
- Laboratory of Dermatology, Faculty of Medicine, EA7319, University of Reims Champagne-Ardenne, Reims, France.,Department of Biological Sciences, Immunology, UFR Odontology, University of Reims Champagne-Ardenne, Reims, France
| | - Philippe Bernard
- Laboratory of Dermatology, Faculty of Medicine, EA7319, University of Reims Champagne-Ardenne, Reims, France.,Department of Dermatology, Reims University Hospital, University of Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
36
|
Samavedam UK, Mitschker N, Kasprick A, Bieber K, Schmidt E, Laskay T, Recke A, Goletz S, Vidarsson G, Schulze FS, Armbrust M, Schulze Dieckhoff K, Pas HH, Jonkman MF, Kalies K, Zillikens D, Gupta Y, Ibrahim SM, Ludwig RJ. Whole-Genome Expression Profiling in Skin Reveals SYK As a Key Regulator of Inflammation in Experimental Epidermolysis Bullosa Acquisita. Front Immunol 2018; 9:249. [PMID: 29497423 PMCID: PMC5818881 DOI: 10.3389/fimmu.2018.00249] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/29/2018] [Indexed: 12/31/2022] Open
Abstract
Because of the morbidity and limited therapeutic options of autoimmune diseases, there is a high, and thus far, unmet medical need for development of novel treatments. Pemphigoid diseases, such as epidermolysis bullosa acquisita (EBA), are prototypical autoimmune diseases that are caused by autoantibodies targeting structural proteins of the skin, leading to inflammation, mediated by myeloid cells. To identify novel treatment targets, we performed cutaneous genome-wide mRNA expression profiling in 190 outbred mice after EBA induction. Comparison of genome-wide mRNA expression profiles in diseased and healthy mice, and construction of a co-expression network identified Sykb (spleen tyrosine kinase, SYK) as a major hub gene. Aligned, pharmacological SYK inhibition protected mice from experimental EBA. Using lineage-specific SYK-deficient mice, we identified SYK expression on myeloid cells to be required to induce EBA. Within the predicted co-expression network, interactions of Sykb with several partners (e.g., Tlr13, Jdp2, and Nfkbid) were validated by curated databases. Additionally, novel gene interaction partners of SYK were experimentally validated. Collectively, our results identify SYK expression in myeloid cells as a requirement to promote inflammation in autoantibody-driven pathologies. This should encourage exploitation of SYK and SYK-regulated genes as potential therapeutic targets for EBA and potentially other autoantibody-mediated diseases.
Collapse
Affiliation(s)
- Unni K Samavedam
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Nina Mitschker
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Anika Kasprick
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany.,Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Tamás Laskay
- Institute for Medical Microbiology and Hygiene, University of Lübeck, Lübeck, Germany
| | - Andreas Recke
- Department of Dermatology, University of Lübeck, Lübeck, Germany.,Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - S Goletz
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Gestur Vidarsson
- Department of Experimental Hematology, Sanquin Research Institute, Amsterdam, Netherlands
| | - Franziska S Schulze
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Mikko Armbrust
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | | | - Hendri H Pas
- Center for Blistering Diseases, Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marcel F Jonkman
- Center for Blistering Diseases, Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Kathrin Kalies
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany.,Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Yask Gupta
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Saleh M Ibrahim
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Department of Dermatology, University of Lübeck, Lübeck, Germany.,Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
37
|
Bieber K, Sun S, Witte M, Kasprick A, Beltsiou F, Behnen M, Laskay T, Schulze FS, Pipi E, Reichhelm N, Pagel R, Zillikens D, Schmidt E, Sparwasser T, Kalies K, Ludwig RJ. Regulatory T Cells Suppress Inflammation and Blistering in Pemphigoid Diseases. Front Immunol 2017; 8:1628. [PMID: 29225603 PMCID: PMC5705561 DOI: 10.3389/fimmu.2017.01628] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) are well known for their modulatory functions in adaptive immunity. Through regulation of T cell functions, Tregs have also been demonstrated to indirectly curb myeloid cell-driven inflammation. However, direct effects of Tregs on myeloid cell functions are insufficiently characterized, especially in the context of myeloid cell-mediated diseases, such as pemphigoid diseases (PDs). PDs are caused by autoantibodies targeting structural proteins of the skin. Autoantibody binding triggers myeloid cell activation through specific activation of Fc gamma receptors, leading to skin inflammation and subepidermal blistering. Here, we used mouse models to address the potential contribution of Tregs to PD pathogenesis in vivo. Depletion of Tregs induced excessive inflammation and blistering both clinically and histologically in two different PD mouse models. Of note, in the skin of Treg-depleted mice with PD, we detected increased expression of different cytokines, including Th2-specific IL-4, IL-10, and IL-13 as well as pro-inflammatory Th1 cytokine IFN-γ and the T cell chemoattractant CXCL-9. We next aimed to determine whether Tregs alter the migratory behavior of myeloid cells, dampen immune complex (IC)-induced myeloid cell activation, or both. In vitro experiments demonstrated that co-incubation of IC-activated myeloid cells with Tregs had no impact on the release of reactive oxygen species (ROS) but downregulated β2 integrin expression. Hence, Tregs mitigate PD by altering the migratory capabilities of myeloid cells rather than their release of ROS. Modulating cytokine expression by administering an excess of IL-10 or blocking IFN-γ may be used in clinical translation of these findings.
Collapse
Affiliation(s)
- Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Shijie Sun
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Mareike Witte
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Anika Kasprick
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Foteini Beltsiou
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Martina Behnen
- Department for Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Tamás Laskay
- Department for Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Franziska S Schulze
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Elena Pipi
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Niklas Reichhelm
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - René Pagel
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Tim Sparwasser
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hanover, Germany
| | - Kathrin Kalies
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Department of Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
38
|
Affiliation(s)
- Frank Antonicelli
- Laboratory of Dermatology, UFR of Medicine, University of Reims Champagne-Ardenne, Reims, France.,Department of Biological Sciences, Immunology, UFR Odontology, University of Reims Champagne-Ardenne, Reims, France
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|