1
|
Ding Y, Song M, Huang R, Chen W. Adipose-mesenchymal stem cell-derived extracellular vesicles enhance angiogenesis and skin wound healing via bFGF-mediated VEGF expression. Cell Tissue Bank 2024; 26:2. [PMID: 39625539 DOI: 10.1007/s10561-024-10150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/04/2024] [Indexed: 02/22/2025]
Abstract
This study aimed to investigate whether extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ASCs) promote skin wound healing by delivering basic fibroblast growth factor (bFGF) to enhance vascular endothelial growth factor (VEGF) expression. ASCs were isolated and transfected with either a bFGF knockdown lentivirus (Lv-sh-bFGF) or a control lentivirus (Lv-sh-NC). EVs were extracted from ASCs cultures and characterized by transmission electron microscopy, nanoparticle tracking analysis, and Western blotting for surface markers. EVs were extracted from the conditioned mediums of ASCs and subjected to different treatments. These EVs or control treatments were injected at the wound edges. Wound healing was assessed using histological techniques, including H&E and Masson's trichrome staining to evaluate tissue regeneration, collagen organization, and immunohistochemistry for CD31 to quantify microvessel density. Protein expression of bFGF and VEGF was measured by Western blotting. ASC-derived EVs significantly promoted angiogenesis and improved skin wound healing. EVs encapsulating bFGF enhanced VEGF expression in the wound tissue, while knockdown of bFGF reduced both bFGF and VEGF expression, leading to delayed wound healing. Further knockdown of VEGF partially reversed the pro-angiogenic and wound-healing effects of bFGF-encapsulated EVs. This study demonstrates that ASC-derived EVs promoted skin wound repair by enhancing angiogenesis and accelerating tissue regeneration through the bFGF/VEGF axis. These findings highlight the therapeutic potential of ASCs-derived EVs in improving skin wound healing.
Collapse
Affiliation(s)
- Yonghu Ding
- Department of Orthopedics, The Third People's Hospital Health Care Group of Cixi, 51-139 Zhouxi Road, Zhouxiang Town, Cixi City, Ningbo, 315000, China
| | - Mengsheng Song
- Department of Orthopedics, The Third People's Hospital Health Care Group of Cixi, 51-139 Zhouxi Road, Zhouxiang Town, Cixi City, Ningbo, 315000, China
| | - Rong Huang
- Department of Orthopedics, The Third People's Hospital Health Care Group of Cixi, 51-139 Zhouxi Road, Zhouxiang Town, Cixi City, Ningbo, 315000, China
| | - Weiting Chen
- Department of Orthopedics, The Third People's Hospital Health Care Group of Cixi, 51-139 Zhouxi Road, Zhouxiang Town, Cixi City, Ningbo, 315000, China.
| |
Collapse
|
2
|
Crossley RM, Johnson S, Tsingos E, Bell Z, Berardi M, Botticelli M, Braat QJS, Metzcar J, Ruscone M, Yin Y, Shuttleworth R. Modeling the extracellular matrix in cell migration and morphogenesis: a guide for the curious biologist. Front Cell Dev Biol 2024; 12:1354132. [PMID: 38495620 PMCID: PMC10940354 DOI: 10.3389/fcell.2024.1354132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The extracellular matrix (ECM) is a highly complex structure through which biochemical and mechanical signals are transmitted. In processes of cell migration, the ECM also acts as a scaffold, providing structural support to cells as well as points of potential attachment. Although the ECM is a well-studied structure, its role in many biological processes remains difficult to investigate comprehensively due to its complexity and structural variation within an organism. In tandem with experiments, mathematical models are helpful in refining and testing hypotheses, generating predictions, and exploring conditions outside the scope of experiments. Such models can be combined and calibrated with in vivo and in vitro data to identify critical cell-ECM interactions that drive developmental and homeostatic processes, or the progression of diseases. In this review, we focus on mathematical and computational models of the ECM in processes such as cell migration including cancer metastasis, and in tissue structure and morphogenesis. By highlighting the predictive power of these models, we aim to help bridge the gap between experimental and computational approaches to studying the ECM and to provide guidance on selecting an appropriate model framework to complement corresponding experimental studies.
Collapse
Affiliation(s)
- Rebecca M. Crossley
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Samuel Johnson
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Erika Tsingos
- Computational Developmental Biology Group, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, Netherlands
| | - Zoe Bell
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Massimiliano Berardi
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Optics11 life, Amsterdam, Netherlands
| | | | - Quirine J. S. Braat
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, Netherlands
| | - John Metzcar
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, United States
- Department of Informatics, Indiana University, Bloomington, IN, United States
| | | | - Yuan Yin
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
3
|
Mony MP, Harmon KA, Hess R, Dorafshar AH, Shafikhani SH. An Updated Review of Hypertrophic Scarring. Cells 2023; 12:cells12050678. [PMID: 36899815 PMCID: PMC10000648 DOI: 10.3390/cells12050678] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Hypertrophic scarring (HTS) is an aberrant form of wound healing that is associated with excessive deposition of extracellular matrix and connective tissue at the site of injury. In this review article, we provide an overview of normal (acute) wound healing phases (hemostasis, inflammation, proliferation, and remodeling). We next discuss the dysregulated and/or impaired mechanisms in wound healing phases that are associated with HTS development. We next discuss the animal models of HTS and their limitations, and review the current and emerging treatments of HTS.
Collapse
Affiliation(s)
- Manjula P. Mony
- Department of Surgery, Division of Plastic & Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kelly A. Harmon
- Department of Surgery, Division of Plastic & Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ryan Hess
- Department of Surgery, Division of Plastic & Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Amir H. Dorafshar
- Department of Surgery, Division of Plastic & Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H. Shafikhani
- Department of Medicine, Division of Hematology and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
4
|
Morozov AM, Sergeev AN, Sungurova AV, Morozov DV, Belyak MA, Domracheva AS. Computer simulation of the wound process (review of literature). BULLETIN OF THE MEDICAL INSTITUTE "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH) 2022. [DOI: 10.20340/vmi-rvz.2023.1.ictm.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Relevance. Computer simulation is a mathematical modeling process performed on a computer that is designed to predict the behavior or results of a real or physical system. Computer simulation has a number of advantages over classical models of animal experiments: the cheapness of the method (the need to acquire and maintain animals disappears by itself), the speed of obtaining results, the absence of bioethical problems, the ability to change the conditions of the experiment, etc.he purpose of this study is to review the methods of computer simulation of the wound process, to identify the shortcomings of the models and propose ways to solve them, as well as to select the best existing model for describing wound regeneration.Material and methods. In the course of this work, an analysis was made of foreign and domestic literature on the problem of computer modeling of the wound process.Results. After analyzing the relevant literature on this topic, the problem is seen precisely in the insufficiently studied process of wound regeneration, since many different cells, cytokines, growth factors, enzymes, fibrillar proteins, etc. take part in it. The models that currently exist describe wound regeneration only in an extremely generalized way, which does not allow us to apply them in clinical situations. Analyzing literature sources, we came to the conclusion that both numerical approaches, both cellular-biochemical (the first type of models) and phenomenological (the second type) are applicable in the case of wound modeling and can be used very successfully. The problem is that on the basis of one approach it is impossible to display a complete picture of wound healing, in this way it is possible to predict only individual regeneration parameters necessary for certain purposes due to the complexity and versatility of this typical pathophysiological process.Conclusion. Computer modeling of wounds is still a controversial and complex topic. Existing models are not intended to describe all the processes occurring in a healing wound. It is much more productive to describe the various phenomena during healing separately. This is due to the fact that many elements are involved in the regeneration of the skin, which are almost impossible to take into account in full. The available models are of exclusively scientific value, consisting in attempts to understand all complex processes and interactions. Practical application is difficult, since existing models require specific input data that require highly specialized equipment. If we abstract from all this, then the best existing model of the first type is the model of the authors Yangyang Wang, Christian F. Guerrero-Juarez, Yuchi Qiu and co-authors, in addition to it, any of the described phenomenological models will do.
Collapse
|
5
|
Zanca A, Osborne JM, Zaloumis SG, Weller CD, Flegg JA. How quickly does a wound heal? Bayesian calibration of a mathematical model of venous leg ulcer healing. MATHEMATICAL MEDICINE AND BIOLOGY : A JOURNAL OF THE IMA 2022; 39:313-331. [PMID: 35698448 DOI: 10.1093/imammb/dqac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 03/27/2022] [Accepted: 05/14/2022] [Indexed: 01/01/2023]
Abstract
Chronic wounds, such as venous leg ulcers, are difficult to treat and can reduce the quality of life for patients. Clinical trials have been conducted to identify the most effective venous leg ulcer treatments and the clinical factors that may indicate whether a wound will successfully heal. More recently, mathematical modelling has been used to gain insight into biological factors that may affect treatment success but are difficult to measure clinically, such as the rate of oxygen flow into wounded tissue. In this work, we calibrate an existing mathematical model using a Bayesian approach with clinical data for individual patients to explore which clinical factors may impact the rate of wound healing for individuals. Although the model describes group-level behaviour well, it is not able to capture individual-level responses in all cases. From the individual-level analysis, we propose distributions for coefficients of clinical factors in a linear regression model, but ultimately find that it is difficult to draw conclusions about which factors lead to faster wound healing based on the existing model and data. This work highlights the challenges of using Bayesian methods to calibrate partial differential equation models to individual patient clinical data. However, the methods used in this work may be modified and extended to calibrate spatiotemporal mathematical models to multiple data sets, such as clinical trials with several patients, to extract additional information from the model and answer outstanding biological questions.
Collapse
Affiliation(s)
- Adriana Zanca
- School of Mathematics and Statistics, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - James M Osborne
- School of Mathematics and Statistics, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Sophie G Zaloumis
- School of Population and Global Health, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Carolina D Weller
- School of Nursing and Midwifery, Monash University, Clayton, 3800, Victoria, Australia
| | - Jennifer A Flegg
- School of Mathematics and Statistics, University of Melbourne, Parkville, 3010, Victoria, Australia
| |
Collapse
|
6
|
Effect of Sonic Hedgehog on the Regeneration of Epidermal Texture Patterns. Biomedicines 2022; 10:biomedicines10123099. [PMID: 36551853 PMCID: PMC9776110 DOI: 10.3390/biomedicines10123099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/15/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Wounds on embryonic mouse fetuses regenerate up to embryonic day (E) 13, but after E14, the pattern is lost and a visible scar remains. We hypothesized that the sonic hedgehog (Shh), which is involved in patterning during development, is involved in the regeneration of texture. Embryos of ICR mice were surgically injured at E13, E14, and E15 and analyzed for the expression of Shh. For external Shh administration, recombinant Shh-containing slow-release beads were implanted in the wounds of mice. In contrast, cyclopamine was administered to wounds of adult mice to inhibit Shh. The expression of Shh was unaltered at E13, whereas it was upregulated in the epidermis of the wound from E14 onward. Implantation of recombinant Shh-containing beads into E13 wounds inhibited skin texture regeneration. Cyclopamine treatment inhibited epithelialization and thickening of the epidermis in the wounds of adult mice. In vitro, Shh promoted proliferation and inhibited the migration of epidermal keratinocytes through the activation of cyclin D proteins. Thus, our results suggested that the expression of Shh is involved in the regeneration of texture during wound healing, especially in epidermal keratinocyte migration and division, and could inhibit skin texture regeneration after E14.
Collapse
|
7
|
Eftimie G, Eftimie R. Quantitative predictive approaches for Dupuytren disease: a brief review and future perspectives. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:2876-2895. [PMID: 35240811 DOI: 10.3934/mbe.2022132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study we review the current state of the art for Dupuytren's disease (DD), while emphasising the need for a better integration of clinical, experimental and quantitative predictive approaches to understand the evolution of the disease and improve current treatments. We start with a brief review of the biology of this disease and current treatment approaches. Then, since certain aspects in the pathogenesis of this disorder have been compared to various biological aspects of wound healing and malignant processes, next we review some in silico (mathematical modelling and simulations) predictive approaches for complex multi-scale biological interactions occurring in wound healing and cancer. We also review the very few in silico approaches for DD, and emphasise the applicability of these approaches to address more biological questions related to this disease. We conclude by proposing new mathematical modelling and computational approaches for DD, which could be used in the absence of animal models to make qualitative and quantitative predictions about the evolution of this disease that could be further tested in vitro.
Collapse
Affiliation(s)
| | - Raluca Eftimie
- Laboratoire Mathématiques de Besançon, UMR - CNRS 6623 Université de Bourgogne Franche-Comté, Besançon 25000, France
| |
Collapse
|
8
|
Baramidze G, Baramidze V, Xu Y. Mathematical model and computational scheme for multi-phase modeling of cellular population and microenvironmental dynamics in soft tissue. PLoS One 2021; 16:e0260108. [PMID: 34788347 PMCID: PMC8598064 DOI: 10.1371/journal.pone.0260108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/02/2021] [Indexed: 01/21/2023] Open
Abstract
In this paper we introduce a system of partial differential equations that is capable of modeling a variety of dynamic processes in soft tissue cellular populations and their microenvironments. The model is designed to be general enough to simulate such processes as tissue regeneration, tumor growth, immune response, and many more. It also has built-in flexibility to include multiple chemical fields and/or sub-populations of cells, interstitial fluid and/or extracellular matrix. The model is derived from the conservation laws for mass and linear momentum and therefore can be classified as a continuum multi-phase model. A careful choice of state variables provides stability in solving the system of discretized equations defining advective flux terms. A concept of deviation from normal allows us to use simplified constitutive relations for stresses. We also present an algorithm for computing numerical approximations to the solutions of the system and discuss properties of these approximations. We demonstrate several examples of applications of the model. Numerical simulations show a significant potential of the model for simulating a variety of processes in soft tissues.
Collapse
Affiliation(s)
- Gregory Baramidze
- School of Computer Sciences, Western Illinois University, Macomb, Illinois, United States of America
| | - Victoria Baramidze
- Department of Mathematics and Philosophy, Western Illinois University, Macomb, Illinois, United States of America
| | - Ying Xu
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
9
|
A computational model of the epidermis with the deformable dermis and its application to skin diseases. Sci Rep 2021; 11:13234. [PMID: 34168195 PMCID: PMC8225835 DOI: 10.1038/s41598-021-92540-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/09/2021] [Indexed: 01/13/2023] Open
Abstract
The skin barrier is provided by the organized multi-layer structure of epidermal cells, which is dynamically maintained by a continuous supply of cells from the basal layer. The epidermal homeostasis can be disrupted by various skin diseases, which often cause morphological changes not only in the epidermis but in the dermis. We present a three-dimensional agent-based computational model of the epidermis that takes into account the deformability of the dermis. Our model can produce a stable epidermal structure with well-organized layers. We show that its stability depends on the cell supply rate from the basal layer. Modeling the morphological change of the dermis also enables us to investigate how the stiffness of the dermis affects the structure and barrier functions of the epidermis. Besides, we show that our model can simulate the formation of a corn (clavus) by assuming hyperproliferation and rapid differentiation. We also provide experimental data for human corn, which supports the model assumptions and the simulation result.
Collapse
|
10
|
Pearce KJ, Nellenbach K, Smith RC, Brown AC, Haider MA. Modeling and Parameter Subset Selection for Fibrin Polymerization Kinetics with Applications to Wound Healing. Bull Math Biol 2021; 83:47. [PMID: 33751272 PMCID: PMC8237246 DOI: 10.1007/s11538-021-00876-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/25/2021] [Indexed: 11/29/2022]
Abstract
During the hemostatic phase of wound healing, vascular injury leads to endothelial cell damage, initiation of a coagulation cascade involving platelets, and formation of a fibrin-rich clot. As this cascade culminates, activation of the protease thrombin occurs and soluble fibrinogen is converted into an insoluble polymerized fibrin network. Fibrin polymerization is critical for bleeding cessation and subsequent stages of wound healing. We develop a cooperative enzyme kinetics model for in vitro fibrin matrix polymerization capturing dynamic interactions among fibrinogen, thrombin, fibrin, and intermediate complexes. A tailored parameter subset selection technique is also developed to evaluate parameter identifiability for a representative data curve for fibrin accumulation in a short-duration in vitro polymerization experiment. Our approach is based on systematic analysis of eigenvalues and eigenvectors of the classical information matrix for simulations of accumulating fibrin matrix via optimization based on a least squares objective function. Results demonstrate robustness of our approach in that a significant reduction in objective function cost is achieved relative to a more ad hoc curve-fitting procedure. Capabilities of this approach to integrate non-overlapping subsets of the data to enhance the evaluation of parameter identifiability are also demonstrated. Unidentifiable reaction rate parameters are screened to determine whether individual reactions can be eliminated from the overall system while preserving the low objective cost. These findings demonstrate the high degree of information within a single fibrin accumulation curve, and a tailored model and parameter subset selection approach for improving optimization and reducing model complexity in the context of polymerization experiments.
Collapse
Affiliation(s)
- Katherine J Pearce
- Department of Mathematics, North Carolina State University, Box 8205, Raleigh, NC, 27695-8205, USA
| | - Kimberly Nellenbach
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Raleigh, NC, 27695, USA
| | - Ralph C Smith
- Department of Mathematics, North Carolina State University, Box 8205, Raleigh, NC, 27695-8205, USA
| | - Ashley C Brown
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Raleigh, NC, 27695, USA
| | - Mansoor A Haider
- Department of Mathematics, North Carolina State University, Box 8205, Raleigh, NC, 27695-8205, USA.
| |
Collapse
|
11
|
Plikus MV, Krieg T. More than just bricks and mortar: Fibroblasts and ECM in skin health and disease. Exp Dermatol 2021; 30:4-9. [PMID: 33349992 PMCID: PMC9911308 DOI: 10.1111/exd.14257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Maksim V. Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA,Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA,NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA,Authors for correspondence: Maksim V. Plikus, Ph.D., Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA, and Thomas Krieg, M.D., FRCP, Translational Matrix Biology, University of Cologne, Jospeh-Stelzmann-Str. 52, D-50931 Cologne, Germany,
| | - Thomas Krieg
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany,Authors for correspondence: Maksim V. Plikus, Ph.D., Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA, and Thomas Krieg, M.D., FRCP, Translational Matrix Biology, University of Cologne, Jospeh-Stelzmann-Str. 52, D-50931 Cologne, Germany,
| |
Collapse
|
12
|
Developing a multiscale in silico cornea for understanding the role of cell mechanics in corneal pathologies. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2020.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Nie Q, Plikus MV. Equal opportunities in stemness. Nat Cell Biol 2019; 21:921-923. [PMID: 31358967 DOI: 10.1038/s41556-019-0366-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qing Nie
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA. .,Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA. .,Department of Mathematics, University of California, Irvine, Irvine, CA, USA. .,Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
| | - Maksim V Plikus
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA. .,Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA. .,Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA. .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
14
|
Plikus MV, Chuong CM. Understanding skin morphogenesis across developmental, regenerative and evolutionary levels. Exp Dermatol 2019; 28:327-331. [PMID: 30951234 DOI: 10.1111/exd.13932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California.,Center for Complex Biological Systems, University of California, Irvine, Irvine, California.,NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California.,Integrative Stem Cell Center, China Medical University, Taichung, Taiwan.,International Wound Repair and Regenerative Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|