1
|
Zhang L, Liu R, Li M, Zhang G, Wang Z, Qin H. Integrating multiomics sequencing analyses uncover the key mechanisms related to oxidative stress, mitochondria, and immune cells in keloid. Gene 2025; 935:149078. [PMID: 39489224 DOI: 10.1016/j.gene.2024.149078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND This study aimed to investigate the key molecular mechanisms underlying keloid pathogenesis by integrating oxidative stress, mitochondria, and immune cells. METHODS Transcriptome sequencing (mRNA, lncRNA, and circRNA expression data), proteomic sequencing, and small RNA sequencing analyses of lesional and non-lesional skin of patients with keloids and healthy control (normal) skin were conducted. By integrating mRNA and publicly available gene expression data (GSE158395), differentially expressed genes related to oxidative stress and mitochondrial function in keloids were identified. Hub genes were identified using various bioinformatics analyses such as immune infiltration analysis, weighted gene co-expression network analysis, machine learning, and expression validation using proteomics sequencing data. Moreover, a competing endogenous RNA (ceRNA) network of hub genes was constructed by combining miRNA, lncRNA, and circRNA expression data. Five hub genes were identified: MGST1, DHCR24, ALDH3A2, ADH1B, and FKBP5. RESULTS These hub genes had a high diagnostic value for keloids, with an AUC value > 0.8 each. In addition, five hub genes were associated with the infiltration of multiple immune cells. The immune cells with the strongest positive and negative correlations with hub genes were M0 and M1 macrophages. A ceRNA network was constructed, and several ceRNAs, such as AC005062.1/miR-134-5p/FKBP5 and BASP1-AS1/miR-503-5p/ADH1B, were identified. These five hub genes may contribute to keloid pathogenesis. CONCLUSION These genes and their related ceRNAs may serve as diagnostic biomarkers and therapeutic targets for keloids.
Collapse
Affiliation(s)
- Lianbo Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ruizhu Liu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mingxi Li
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guang Zhang
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zichao Wang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Haiyan Qin
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Anaya G, Laseca N, Granero A, Ziadi C, Arrebola F, Domingo A, Molina A. Genomic Characterization of Quality Wool Traits in Spanish Merino Sheep. Genes (Basel) 2024; 15:795. [PMID: 38927731 PMCID: PMC11203093 DOI: 10.3390/genes15060795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The native Spanish Merino breed was the founder of all the other Merino and Merino-derived breeds worldwide. Despite the fact that this breed was created and improved to produce the highest quality fine wool, the global wool market crisis led to the wholescale crossing of most of the herds with breeds for meat purposes. Nevertheless, there are still some purebred animals with a high potential for producing quality wool. The objective of this study was to characterize the current wool quality of the breed and identify genes associated with these parameters. To achieve this, over 12,800 records from the most representative animals of the breed (registered in the herd book) were analyzed using the Australian OFDA 2000 system, for parameters such as fiber diameter (FD), standard deviation (SD), coefficient of variation (CV), fibers over 15 microns (>15%), staple length (SL), and comfort factor (CRV). Additionally, animals with the most extreme FD values were whole-genome sequenced using NGS. Genome-wide association studies (GWAS) determined the association of 74 variants with the different traits studied, which were located in 70 different genes. Of these genes, EDN2, COL18A1, and LRP1B, associated with fibers over 15%, and FGF12 and ADAM17, associated with SL, play a key role in hair follicle growth and development. Our study reveals the great potential for recovering this breed for fine wool production, and identifies five candidate genes whose understanding may aid in that selection process.
Collapse
Affiliation(s)
- Gabriel Anaya
- MERAGEM Research Group, Department of Genetics, University of Córdoba, CN IV KM 396, 17071 Córdoba, Spain; (G.A.); (C.Z.)
| | - Nora Laseca
- MERAGEM Research Group, Department of Genetics, University of Córdoba, CN IV KM 396, 17071 Córdoba, Spain; (G.A.); (C.Z.)
| | - Antonio Granero
- National Association of Merino Sheep Breeders (ACME), 28007 Madrid, Spain
| | - Chiraz Ziadi
- MERAGEM Research Group, Department of Genetics, University of Córdoba, CN IV KM 396, 17071 Córdoba, Spain; (G.A.); (C.Z.)
| | - Francisco Arrebola
- Agriculture, Livestock and Fisheries Research Institute (IFAPA), 14270 Cordoba, Spain
| | - Andrés Domingo
- Center of Selection and Reproduction Animals (CENSYRA), 06007 Badajoz, Spain
| | - Antonio Molina
- MERAGEM Research Group, Department of Genetics, University of Córdoba, CN IV KM 396, 17071 Córdoba, Spain; (G.A.); (C.Z.)
| |
Collapse
|
3
|
Liu X, Kong X, Xu L, Su Y, Xu S, Pang X, Wang R, Ma Y, Tian Q, Han L. Synergistic therapeutic effect of ginsenoside Rg3 modified minoxidil transfersomes (MXD-Rg3@TFs) on androgenic alopecia in C57BL/6 mice. Int J Pharm 2024; 654:123963. [PMID: 38430952 DOI: 10.1016/j.ijpharm.2024.123963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Inflammation in hair follicles will reduce the effectiveness of minoxidil (MXD) in the treatment of androgen alopecia (AGA) caused by elevated androgen levels. To target multiple physiological and pathological processes in AGA, a novel natural bioactive compound modified transfersomes (MXD-Rg3@TFs) was prepared to replace cholesterol that may disrupt hair growth, with ginsenosides Rg3 (Rg3) that have anti-inflammatory effects on AGA. The effects of MXD, Rg3 and their combination on AGA were evaluated using dihydrotestosterone (DHT) induced human dermal papilla cells (DPCs), and the results showed that the combination of MXD and Rg3 can significantly promote the proliferation, reduce the level of intracellular ROS and inflammatory factors, and inhibit the aging of DHT induced DPCs. Compared with cholesterol membrane transfersomes (MXD-Ch@TFs), MXD-Rg3@TFs has similar deformability, smaller particle size and better stability. MXD-Rg3@TFs has also significant advantages in shortening telogen phase and prolonging the growth period of hair follicles in C57BL/6 mice than MXD-Ch@TFs and commercial MXD tincture. The prominent ability of MXD-Rg3@TFs to inhibit the conversion of testosterone to DHT and reduce the level of inflammatory factors suggested that Rg3 and MXD in MXD-Rg3@TFs have synergistic effect on AGA therapy. MXD-Ch@TFs with no irritation to C57BL/6 mice skin is expected to reduce the dose of MXD and shorten the treatment time, which would undoubtedly provide a promising therapeutic option for treatment of AGA.
Collapse
Affiliation(s)
- Xiaxia Liu
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Xia Kong
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Li Xu
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Yonghui Su
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Shanshan Xu
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaoya Pang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Ruifen Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Yihan Ma
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Qingping Tian
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China.
| | - Liwen Han
- School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
4
|
Liang A, Fang Y, Ye L, Meng J, Wang X, Chen J, Xu X. Signaling pathways in hair aging. Front Cell Dev Biol 2023; 11:1278278. [PMID: 38033857 PMCID: PMC10687558 DOI: 10.3389/fcell.2023.1278278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Hair follicle (HF) homeostasis is regulated by various signaling pathways. Disruption of such homeostasis leads to HF disorders, such as alopecia, pigment loss, and hair aging, which is causing severe health problems and aesthetic concerns. Among these disorders, hair aging is characterized by hair graying, hair loss, hair follicle miniaturization (HFM), and structural changes to the hair shaft. Hair aging occurs under physiological conditions, while premature hair aging is often associated with certain pathological conditions. Numerous investigations have been made to determine the mechanisms and explore treatments to prevent hair aging. The most well-known hypotheses about hair aging include oxidative stress, hormonal disorders, inflammation, as well as DNA damage and repair defects. Ultimately, these factors pose threats to HF cells, especially stem cells such as hair follicle stem cells, melanocyte stem cells, and mesenchymal stem cells, which hamper hair regeneration and pigmentation. Here, we summarize previous studies investigating the above mechanisms and the existing therapeutic methods for hair aging. We also provide insights into hair aging research and discuss the limitations and outlook.
Collapse
Affiliation(s)
- Aishi Liang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yingshan Fang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Lan Ye
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jianda Meng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jinsong Chen
- Endocrinology Department, First People’s Hospital of Foshan, Foshan, China
| | - Xuejuan Xu
- Endocrinology Department, First People’s Hospital of Foshan, Foshan, China
| |
Collapse
|
5
|
Toh EQ, Wang ECE. Targeted immunotherapy for hair regrowth and regeneration. Front Med (Lausanne) 2023; 10:1285452. [PMID: 37881630 PMCID: PMC10595013 DOI: 10.3389/fmed.2023.1285452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Affiliation(s)
- En Qi Toh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | | |
Collapse
|
6
|
Perinelli DR, Cambriani A, Antognini G, Agostinacchio G, Marliani A, Cespi M, Torregiani E, Bonacucina G. Quantification of Squalene and Lactic Acid in Hair Bulbs with Damaged Sheaths: Are They Metabolic Wastes in Alopecia? Biomedicines 2023; 11:2493. [PMID: 37760935 PMCID: PMC10525989 DOI: 10.3390/biomedicines11092493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Alopecia is a pathological and multifactorial condition characterised by an altered hair growth cycle and ascribed to different pathogenic causes. Cell energetic imbalances in hair follicles occurring in this disorder could lead to the production of some "metabolic wastes", including squalene and lactic acid, which could be involved in the clinically observed sheath damage. The aim of this work was the extraction and analytical quantification of squalene and lactic acid from hair bulbs of subjects with clinical alopecia in comparison with controls, using HPLC-DAD and HPLC-MS techniques. The analytical quantification was performed after a preliminary observation through a polarised optical microscope to assess sheath damage and morphological alterations in the cases group. A significantly larger amount of squalene was quantified only in subjects affected by alopecia (n = 31) and with evident damage to hair sheaths. For lactic acid, no statistically significant differences were found between cases (n = 21) and controls (n = 21) under the experimental conditions used. Therefore, the obtained results suggest that squalene can represent a metabolic and a pathogenic marker for some alopecia conditions.
Collapse
Affiliation(s)
- Diego Romano Perinelli
- Chemistry, Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.R.P.); (A.C.); (G.B.)
| | - Alessandra Cambriani
- Chemistry, Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.R.P.); (A.C.); (G.B.)
| | - Gianluigi Antognini
- S.I.Tri.—Italian Society for Hair Science and Restoration, Via San Domenico 107, 50133 Florence, Italy; (G.A.); (G.A.)
| | - Gaetano Agostinacchio
- S.I.Tri.—Italian Society for Hair Science and Restoration, Via San Domenico 107, 50133 Florence, Italy; (G.A.); (G.A.)
| | - Andrea Marliani
- S.I.Tri.—Italian Society for Hair Science and Restoration, Via San Domenico 107, 50133 Florence, Italy; (G.A.); (G.A.)
| | - Marco Cespi
- Chemistry, Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.R.P.); (A.C.); (G.B.)
| | - Elisabetta Torregiani
- Chemistry, Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.R.P.); (A.C.); (G.B.)
| | - Giulia Bonacucina
- Chemistry, Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.R.P.); (A.C.); (G.B.)
| |
Collapse
|
7
|
Morice-Picard F, Lanvin PL, Lasseaux E, Boralevi F, Léauté-Labrèze C, Lebreton L. A novel compound heterozygous variant in the LLS gene is associated with nonsyndromic hypotrichosis. Clin Exp Dermatol 2023; 48:1087-1089. [PMID: 37140446 DOI: 10.1093/ced/llad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
This report described a patient presenting with hypotrichosis simplex associated with compound heterozygosity for two novel LSS mutations. The clinical manifestations associated with mutations in the LSS gene, which is involved in sterol synthesis, are highly variable, ranging from simple hypotrichosis to alopecia with intellectual disability or cataracts. The identification of more patients and further functional studies are needed to improve the understanding of the pathophysiological mechanisms of LSS-related conditions.
Collapse
Affiliation(s)
- Fanny Morice-Picard
- Department of Dermatology and Pediatric Dermatology, National Reference Centre for Rare Disorders, Hôpital des Enfants Pellegrin, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Pierre-Louis Lanvin
- Department of Dermatology and Pediatric Dermatology, National Reference Centre for Rare Disorders, Hôpital des Enfants Pellegrin, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Eulalie Lasseaux
- Departments of Medical Genetics, Hôpital Pellegrin, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Franck Boralevi
- Department of Dermatology and Pediatric Dermatology, National Reference Centre for Rare Disorders, Hôpital des Enfants Pellegrin, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Christine Léauté-Labrèze
- Department of Dermatology and Pediatric Dermatology, National Reference Centre for Rare Disorders, Hôpital des Enfants Pellegrin, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Louis Lebreton
- Departments of Biochemistry, Hôpital Pellegrin, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| |
Collapse
|
8
|
Kurniawati Y, Rodian MS, Argentina F, Prasasty GD, Dalilah D, Nathania A. Association Between Sebum, Total Cholesterol, and Low-Density Lipoprotein (LDL) Cholesterol Levels With Post-acne Keloids. Cureus 2023; 15:e43096. [PMID: 37692568 PMCID: PMC10484038 DOI: 10.7759/cureus.43096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Background Prolonged acne inflammation causes scar formation, one of which is post-acne keloids. Sebum, total cholesterol, and low-density lipoprotein (LDL) level can influence post-acne keloids. This study aims to determine the association between sebum, total cholesterol, and LDL levels with post-acne keloids to better define the predisposing factors for this condition. Methods This study used primary data involving sociodemographics, clinical features, keloid classification, sebum levels, total cholesterol levels, and LDL levels in post-acne keloid patients at the Dermatology, Venereology, and Aesthetics Outpatient Clinics of Dr. Mohammad Hoesin General Hospital Palembang, Indonesia. Study samples were patients who fulfilled the inclusion and exclusion criteria by consecutive sampling. The data then underwent univariate and bivariate analyses to show the association between variables. Result A total of 22 patients with post-acne keloids participated. The subjects presented mostly with major keloids based on the classification (59.1%). The patients were predominantly 21-30 years old (50%) and male (90.9%). The keloids had onsets >six months to one year (45.5%), durations of one to five years (77.3%), and multiple presentations (68.2%). Vancouver Scar Scale (VSS) assessment showed mainly red vascularity (40.9%), mixed pigmentation (68.2%), >5 mm keloid height (59.1%), and firm pliability (40.9%). Most patients presented with pruritus (86.4%) but without pain (54.5%). Most had low levels of sebum (50%), normal total cholesterol (90.9%), and near-optimal LDL level (40.9%). There were no significant association between sebum (p = 1.000), total cholesterol (p = 1.000), and LDL (p = 0.376) levels with post-acne keloids. However, LDL levels above normal were most found in this study (68.2%). Conclusions There is no association between sebum, total cholesterol, and LDL levels with post-acne keloids. Despite the fact that LDL level was not statistically significant, there has been a rise in LDL level in the research subjects. Further research with a larger number of subjects and consideration of multicenter study through retrospective/prospective methods and complete lipid profile examinations is still required to provide a more representative study.
Collapse
Affiliation(s)
- Yuli Kurniawati
- Dermatology and Venereology, Dr. Mohammad Hoesin General Hospital, Sriwijaya University, Palembang, IDN
| | - M Soleh Rodian
- Medical School, Faculty of Medicine, Sriwijaya University, Palembang, IDN
| | - Fifa Argentina
- Dermatology and Venereology, Dr. Mohammad Hoesin General Hospital, Sriwijaya University, Palembang, IDN
| | | | | | - Amanda Nathania
- Dermatology and Venereology Department, Faculty of Medicine, Sriwijaya University, Palembang, IDN
| |
Collapse
|
9
|
Palmer MA, Dias IHK, Smart E, Benatzy Y, Haslam IS. Cholesterol homeostasis in hair follicle keratinocytes is disrupted by impaired ABCA5 activity. Biochim Biophys Acta Mol Cell Biol Lipids 2023:159361. [PMID: 37348644 DOI: 10.1016/j.bbalip.2023.159361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/27/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
The importance of cholesterol in hair follicle biology is underscored by its links to the pathogenesis of alopecias and hair growth disorders. Reports have associated defects in ABCA5, a membrane transporter, with altered keratinocyte cholesterol distribution in individuals with a form of congenital hypertrichosis, yet the biological basis for this defect in hair growth remains unknown. This study aimed to determine the impact of altered ABCA5 activity on hair follicle keratinocyte behaviour. Primary keratinocytes isolated from the outer root sheath of plucked human hair follicles were utilised as a relevant cell model. Following exogenous cholesterol loading, an increase in ABCA5 co-localisation to intracellular organelles was seen. Knockdown of ABCA5 revealed a dysregulation in cholesterol homeostasis, with LXR agonism leading to partial restoration of the homeostatic response. Filipin staining and live BODIPY cholesterol immunofluorescence microscopy revealed a reduction in endo-lysosomal cholesterol following ABCA5 knockdown. Analysis of oxysterols showed a significant increase in the fold change of 25-hydroxycholesterol and 7-β-hydroxycholesterol following cholesterol loading in ORS keratinocytes, after ABCA5 knockdown. These data suggest a role for ABCA5 in the intracellular compartmentalisation of free cholesterol in primary hair follicle keratinocytes. The loss of normal homeostatic response, following the delivery of excess cholesterol after ABCA5 knockdown, suggests an impact on LXR-mediated transcriptional activity. The loss of ABCA5 in the hair follicle could lead to impaired endo-lysosomal cholesterol transport, impacting pathways known to influence hair growth. This avenue warrants further investigation.
Collapse
Affiliation(s)
- Megan A Palmer
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK; Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | | | - Eleanor Smart
- Centre for Dermatology Research, University of Manchester, UK
| | - Yvonne Benatzy
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Iain S Haslam
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK.
| |
Collapse
|
10
|
Ye L, Zhu M, Ju J, Yang H. Effects of Dietary Cholesterol Regulation on Spermatogenesis of Gobiocypris rarus Rare Minnow. Int J Mol Sci 2023; 24:ijms24087492. [PMID: 37108655 PMCID: PMC10141657 DOI: 10.3390/ijms24087492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Cholesterol is an important component of cell membranes, and also a precursor for the synthesis of sex hormones, playing an important role in reproduction. However, few studies have focused on cholesterol and reproductive health. To investigate the toxic effects of different cholesterol levels on the spermatogenesis of rare minnows, we regulate the cholesterol content in fish by feeding them a high-cholesterol diet and cholesterol inhibitor pravastatin, and cholesterol levels, sex hormone (T and 11KT) levels, testis histology, sperm morphology and function, and the expression of genes related to sex hormone synthesis were investigated. The research findings indicate that increasing cholesterol levels significantly increases the liver weight and hepatic-somatic index, as well as the total cholesterol and free cholesterol levels in the testis, liver, and plasma of rare minnow, while inhibiting cholesterol has the opposite effect (p < 0.05). However, both increasing and decreasing cholesterol levels can suppress rare minnow testicular development, as evidenced by a decrease in testis weight, lowered gonadosomatic index, suppressed sex hormone levels, and reduced mature sperm count. Further exploration revealed that the expression of sex hormone synthesis-related genes, including star, cyp19a1a, and hsd11b2, was significantly affected (p < 0.05), which may be an important reason for the decrease in sex hormone synthesis and consequent inhibition of testicular development. At the same time, the fertilization ability of mature sperm in both treatment groups significantly decreased. Scanning electron microscopy and fluorescence polarization tests showed that reducing cholesterol levels significantly increased the rate of sperm head cell membrane damage, while both increasing and decreasing cholesterol levels led to a reduction in sperm cell membrane fluidity, which may be the main reason for the decrease in sperm fertilization ability. This study demonstrates that both increasing and decreasing the levels of cholesterol are detrimental to the fish spermatogenesis, providing fundamental information for the study of fish reproduction and also a reference for the causes of male reproductive dysfunction.
Collapse
Affiliation(s)
- Lv Ye
- College of Physical Education, Yangzhou University, Yangzhou 225009, China
| | - Mingzhen Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jian Ju
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
11
|
Hu L, Kimura S, Haga M, Kashiwagi S, Takagi K, Shimizu T, Ishii T, Ohyama M. Vitamins and Their Derivatives Synergistically Promote Hair Shaft Elongation ex vivo via PlGF/VEGFR-1 Signalling Activation. J Dermatol Sci 2022; 108:2-11. [DOI: 10.1016/j.jdermsci.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 10/14/2022]
|
12
|
Xu Y, Cai W, Chen R, Zhang X, Bai Z, Zhang Y, Qin Y, Gu M, Sun Y, Wu Y, Wang Z. Metabolomic Analysis and MRM Verification of Coarse and Fine Skin Tissues of Liaoning Cashmere Goat. Molecules 2022; 27:molecules27175483. [PMID: 36080249 PMCID: PMC9457707 DOI: 10.3390/molecules27175483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
One of the critical elements in evaluating the quality of cashmere is its fineness, but we still know little about how it is regulated at the metabolic level. In this paper, we use UHPLC–MS/MS detection and analysis technology to compare the difference in metabolites between coarse cashmere (CT_LCG) and fine cashmere (FT_LCG) skin of Liaoning cashmere goats. According to the data, under positive mode four metabolites were significantly up-regulated and seven were significantly down-regulated. In negative mode, seven metabolites were significantly up-regulated and fourteen metabolites were significantly down-regulated. The two groups’ most significant metabolites, Gly–Phe and taurochenodeoxycholate, may be crucial in controlling cashmere’s growth, development, and fineness. In addition, we enriched six KEGG pathways, of which cholesterol metabolism, primary bile acid biosynthesis, and bile secretion were enriched in positive and negative modes. These findings offer a new research idea for further study into the critical elements influencing cashmere’s fineness.
Collapse
|
13
|
Shi X, Chen Y, Yang K, Zhu Y, Ma Y, Liu Q, Wang J, Ni C, Zhang Y, Li H, Lin J, Wang J, Wu W. Disrupted citric acid metabolism inhibits hair growth. J Dermatol 2022; 49:1037-1048. [PMID: 35841232 DOI: 10.1111/1346-8138.16509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/12/2022] [Accepted: 06/19/2022] [Indexed: 11/28/2022]
Abstract
Hair follicles (HFs) play an essential role in sustaining a persistent hair growth cycle. The activities of dermal papilla cells (DPCs) and other cells inside the HFs dominate the process of hair growth. However, the detailed molecular mechanisms remain largely unknown. To investigate the role of citric acid (CA) metabolism in hair growth, we evaluated the effect of citrate synthase (CS)-CA axis on hair growth in vivo and in vitro. Mice hair growth was evaluated by morphology and histopathology analysis. The inflammation and apoptosis levels in mice, HFs, and DPCs were detected by immunohistofluorescence, qPCR, ELISA, western blot, and TUNEL assay. Cell proliferation, cell cycle, and cell apoptosis in DPCs were analyzed by real-time cell analysis and flow cytometer. We found that subcutaneous injection of CA in mice caused significant hair growth suppression, skin lesion, inflammatory response, cell apoptosis, and promotion of catagen entry, compared with the saline control, by activating p-p65 and apoptosis signaling in an NLRP3-dependent manner. In cultured human HFs, CA attenuated the hair shaft production and accelerated HF catagen entry by regulating the above-mentioned pathways. Additionally, CA hampered the proliferation rate of DPCs via inducing cell apoptosis and cell cycle arrest. Considering that citrate synthase (CS) is responsible for CA production and is a rate-limiting enzyme of the tricarboxylic acid cycle, we also investigated the role of CS in CA metabolism and hair growth. As expected, knockdown of CS reduced CA production and reversed CA-induced hair growth inhibition, anagen shrink, inflammation, and apoptosis both in HFs and DPCs. Our experiments demonstrated that CS-CA axis serves as an important mediator and might be a potential therapeutic target in hair growth.
Collapse
Affiliation(s)
- Xiangguang Shi
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yahui Chen
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Kai Yang
- Department of Dermatology, Jing'an District Central Hospital, Shanghai, China
| | - Yifei Zhu
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yanyun Ma
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Ji'an Wang
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Chunya Ni
- Department of Dermatology, Jing'an District Central Hospital, Shanghai, China
| | - Yue Zhang
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Haiyang Li
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jinran Lin
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiucun Wang
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China.,Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing, China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China.,Department of Dermatology, Jing'an District Central Hospital, Shanghai, China
| |
Collapse
|
14
|
Genomic and Transcriptomic Characterization of Atypical Recurrent Flank Alopecia in the Cesky Fousek. Genes (Basel) 2022; 13:genes13040650. [PMID: 35456456 PMCID: PMC9033119 DOI: 10.3390/genes13040650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 11/24/2022] Open
Abstract
Non-inflammatory alopecia is a frequent skin problem in dogs, causing damaged coat integrity and compromised appearance of affected individuals. In this study, we examined the Cesky Fousek breed, which displays atypical recurrent flank alopecia (aRFA) at a high frequency. This type of alopecia can be quite severe and is characterized by seasonal episodes of well demarcated alopecic areas without hyperpigmentation. The genetic component responsible for aRFA remains unknown. Thus, here we aimed to identify variants involved in aRFA using a combination of histological, genomic, and transcriptomic data. We showed that aRFA is histologically similar to recurrent flank alopecia, characterized by a lack of anagen hair follicles and the presence of severely shortened telogen or kenogen hair follicles. We performed a genome-wide association study (GWAS) using 216 dogs phenotyped for aRFA and identified associations on chromosomes 19, 8, 30, 36, and 21, highlighting 144 candidate genes, which suggests a polygenic basis for aRFA. By comparing the skin cell transcription pattern of six aRFA and five control dogs, we identified 236 strongly differentially expressed genes (DEGs). We showed that the GWAS genes associated with aRFA are often predicted to interact with DEGs, suggesting their joint contribution to the development of the disease. Together, these genes affect four major metabolic pathways connected to aRFA: collagen formation, muscle structure/contraction, lipid metabolism, and the immune system.
Collapse
|
15
|
Lousada MB, Lachnit T, Edelkamp J, Paus R, Bosch TCG. Hydra and the hair follicle - An unconventional comparative biology approach to exploring the human holobiont. Bioessays 2022; 44:e2100233. [PMID: 35261041 DOI: 10.1002/bies.202100233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
Abstract
The microbiome of human hair follicles (HFs) has emerged as an important player in different HF and skin pathologies, yet awaits in-depth exploration. This raises questions regarding the tightly linked interactions between host environment, nutrient dependency of host-associated microbes, microbial metabolism, microbe-microbe interactions and host immunity. The use of simple model systems facilitates addressing generally important questions and testing overarching, therapeutically relevant principles that likely transcend obvious interspecies differences. Here, we evaluate the potential of the freshwater polyp Hydra, to dissect fundamental principles of microbiome regulation by the host, that is the human HF. In particular, we focus on therapeutically targetable host-microbiome interactions, such as nutrient dependency, microbial interactions and host defence. Offering a new lens into the study of HF - microbiota interactions, we argue that general principles of how Hydra manages its microbiota can inform the development of novel, microbiome-targeting therapeutic interventions in human skin disease.
Collapse
Affiliation(s)
- Marta B Lousada
- Monasterium Laboratory Skin & Hair Research, Münster, Germany.,Zoological Institute, Christian-Albrechts, University of Kiel, Kiel, Germany
| | - Tim Lachnit
- Zoological Institute, Christian-Albrechts, University of Kiel, Kiel, Germany
| | - Janin Edelkamp
- Monasterium Laboratory Skin & Hair Research, Münster, Germany
| | - Ralf Paus
- Monasterium Laboratory Skin & Hair Research, Münster, Germany.,Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Thomas C G Bosch
- Zoological Institute, Christian-Albrechts, University of Kiel, Kiel, Germany
| |
Collapse
|
16
|
Wang X, Cai C, Liang Q, Xia M, Lai L, Wu X, Jiang X, Cheng H, Song Y, Zhou Q. Integrated Transcriptomics and Metabolomics Analyses of Stress-Induced Murine Hair Follicle Growth Inhibition. Front Mol Biosci 2022; 9:781619. [PMID: 35198601 PMCID: PMC8859263 DOI: 10.3389/fmolb.2022.781619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Psychological stress plays an important role in hair loss, but the underlying mechanisms are not well-understood, and the effective therapies available to regrow hair are rare. In this study, we established a chronic restraint stress (CRS)-induced hair growth inhibition mouse model and performed a comprehensive analysis of metabolomics and transcriptomics. Metabolomics data analysis showed that the primary and secondary metabolic pathways, such as carbohydrate metabolism, amino acid metabolism, and lipid metabolism were significantly altered in skin tissue of CRS group. Transcriptomics analysis also showed significant changes of genes expression profiles involved in regulation of metabolic processes including arachidonic acid metabolism, glutathione metabolism, glycolysis gluconeogenesis, nicotinate and nicotinamide metabolism, purine metabolism, retinol metabolism and cholesterol metabolism. Furthermore, RNA-Seq analyses also found that numerous genes associated with metabolism were significantly changed, such as Hk-1, in CRS-induced hair growth inhibition. Overall, our study supplied new insights into the hair growth inhibition induced by CRS from the perspective of integrated metabolomics and transcriptomics analyses.
Collapse
Affiliation(s)
- Xuewen Wang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Qichang Liang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Xia
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihua Lai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Wu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyun Jiang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hao Cheng, ; Yinjing Song, ; Qiang Zhou,
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hao Cheng, ; Yinjing Song, ; Qiang Zhou,
| | - Qiang Zhou
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hao Cheng, ; Yinjing Song, ; Qiang Zhou,
| |
Collapse
|
17
|
Chen J, Huang C, Zhang T, Gong W, Deng X, Liu H, Liu J, Guo Y. The effects of statins on hyperandrogenism in women with polycystic ovary syndrome: a systematic review and meta-analysis of randomized controlled trials. Reprod Biol Endocrinol 2021; 19:189. [PMID: 34930305 PMCID: PMC8686603 DOI: 10.1186/s12958-021-00863-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/21/2021] [Indexed: 01/14/2023] Open
Abstract
Several clinical studies showed that statins were potential to treat polycystic ovary syndrome (PCOS). Through comprehensive search PubMed, EMBASE, the Web of Science, BIOSIS, the ClinialTrails.gov, and the Cochrane Library database up to 14 Feb 2020, we identified the randomized controlled trials about the treatment of statins on hyperandrogenism in PCOS women, and performed a systematic review and meta-analysis. The quality of the included studies was assessed by the Cochrane risk of bias tool and the Jadda score. Subgroup analysis and sensitivity analysis were conducted to analyze the pooled results. Nine trials included 682 PCOS patients were identified. Statins showed a significant potential to reduce testosterone (SMD = -0.47; 95% CI, - 0.76-- 0.18; P = 0.002) and dehydroepiandrosterone (SMD = -0.51; 95% CI, - 0.97-- 0.05; P = 0.03) levels, compared to the control treatments. The cutaneous symptoms hirsutism (SMD = -0.61; 95% CI, - 1.13-- 0.10; P = 0.02) and acne (SMD = -0.92; 95% CI, - 1.49-- 0.34; P = 0.002) were significantly improved by statins in PCOS women. Subgroup analysis showed that the two types of statins, and the different control treatments as well, presented no significantly different effect on testosterone and dehydroepiandrosterone. Sensitivity analysis confirmed the stability of the findings from the meta-analysis. In conclusion, statin treatment could significantly reduce androgen levels and improve cutaneous manifestations of hyperandrogenism of PCOS.
Collapse
Affiliation(s)
- Jianguo Chen
- Department of Medical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Clinical Laboratory, Qingbaijiang District People's Hospital of Chengdu, Chengdu, Sichuan, 610300, China
| | - Chaoran Huang
- Department of Medical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Clinical Laboratory, Qingbaijiang District People's Hospital of Chengdu, Chengdu, Sichuan, 610300, China
| | - Tongtong Zhang
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, 610031, China
| | - Wuqing Gong
- Department of Clinical Laboratory, Qingbaijiang District People's Hospital of Chengdu, Chengdu, Sichuan, 610300, China
| | - Xiaofeng Deng
- Department of Gynecology and Obstetrics, Qingbaijiang District People's Hospital of Chengdu, Chengdu, Sichuan, 610300, China
| | - Hua Liu
- Neurology Department, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, 610031, China
| | - Jinbo Liu
- Department of Medical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yuanbiao Guo
- Department of Medical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, 610031, China.
| |
Collapse
|
18
|
Transcriptional Differences in Lipid-Metabolizing Enzymes in Murine Sebocytes Derived from Sebaceous Glands of the Skin and Preputial Glands. Int J Mol Sci 2021; 22:ijms222111631. [PMID: 34769061 PMCID: PMC8584257 DOI: 10.3390/ijms222111631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Sebaceous glands are adnexal structures, which critically contribute to skin homeostasis and the establishment of a functional epidermal barrier. Sebocytes, the main cell population found within the sebaceous glands, are highly specialized lipid-producing cells. Sebaceous gland-resembling tissue structures are also found in male rodents in the form of preputial glands. Similar to sebaceous glands, they are composed of lipid-specialized sebocytes. Due to a lack of adequate organ culture models for skin sebaceous glands and the fact that preputial glands are much larger and easier to handle, previous studies used preputial glands as a model for skin sebaceous glands. Here, we compared both types of sebocytes, using a single-cell RNA sequencing approach, to unravel potential similarities and differences between the two sebocyte populations. In spite of common gene expression patterns due to general lipid-producing properties, we found significant differences in the expression levels of genes encoding enzymes involved in the biogenesis of specialized lipid classes. Specifically, genes critically involved in the mevalonate pathway, including squalene synthase, as well as the sphingolipid salvage pathway, such as ceramide synthase, (acid) sphingomyelinase or acid and alkaline ceramidases, were significantly less expressed by preputial gland sebocytes. Together, our data revealed tissue-specific sebocyte populations, indicating major developmental, functional as well as biosynthetic differences between both glands. The use of preputial glands as a surrogate model to study skin sebaceous glands is therefore limited, and major differences between both glands need to be carefully considered before planning an experiment.
Collapse
|
19
|
Local and Systemic Changes in Lipid Profile as Potential Biomarkers for Canine Atopic Dermatitis. Metabolites 2021; 11:metabo11100670. [PMID: 34677385 PMCID: PMC8541266 DOI: 10.3390/metabo11100670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022] Open
Abstract
Lipids play a critical role in the skin as components of the epidermal barrier and as signaling and antimicrobial molecules. Atopic dermatitis in dogs is associated with changes in the lipid composition of the skin, but whether these precede or follow the onset of dermatitis is unclear. We applied rapid lipid-profiling mass spectrometry to skin and blood of 30 control and 30 atopic dogs. Marked differences in lipid profiles were observed between control, nonlesional, and lesional skin. The lipid composition of blood from control and atopic dogs was different, indicating systemic changes in lipid metabolism. Female and male dogs differed in the degree of changes in the skin and blood lipid profiles. Treatment with oclacitinib or lokivetmab ameliorated the skin condition and caused changes in skin and blood lipids. A set of lipid features of the skin was selected as a biomarker that classified samples as control or atopic dermatitis with 95% accuracy, whereas blood lipids discriminated between control and atopic dogs with 90% accuracy. These data suggest that canine atopic dermatitis is a systemic disease and support the use of rapid lipid profiling to identify novel biomarkers.
Collapse
|
20
|
In focus in HCB. Histochem Cell Biol 2021; 155:525-528. [PMID: 33977373 DOI: 10.1007/s00418-021-01991-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
|
21
|
ATP7A-Regulated Enzyme Metalation and Trafficking in the Menkes Disease Puzzle. Biomedicines 2021; 9:biomedicines9040391. [PMID: 33917579 PMCID: PMC8067471 DOI: 10.3390/biomedicines9040391] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022] Open
Abstract
Copper is vital for numerous cellular functions affecting all tissues and organ systems in the body. The copper pump, ATP7A is critical for whole-body, cellular, and subcellular copper homeostasis, and dysfunction due to genetic defects results in Menkes disease. ATP7A dysfunction leads to copper deficiency in nervous tissue, liver, and blood but accumulation in other tissues. Site-specific cellular deficiencies of copper lead to loss of function of copper-dependent enzymes in all tissues, and the range of Menkes disease pathologies observed can now be explained in full by lack of specific copper enzymes. New pathways involving copper activated lysosomal and steroid sulfatases link patient symptoms usually related to other inborn errors of metabolism to Menkes disease. Additionally, new roles for lysyl oxidase in activation of molecules necessary for the innate immune system, and novel adapter molecules that play roles in ERGIC trafficking of brain receptors and other proteins, are emerging. We here summarize the current knowledge of the roles of copper enzyme function in Menkes disease, with a focus on ATP7A-mediated enzyme metalation in the secretory pathway. By establishing mechanistic relationships between copper-dependent cellular processes and Menkes disease symptoms in patients will not only increase understanding of copper biology but will also allow for the identification of an expanding range of copper-dependent enzymes and pathways. This will raise awareness of rare patient symptoms, and thus aid in early diagnosis of Menkes disease patients.
Collapse
|
22
|
Zhang X, Zhao H, Sheng Q, Liu X, You W, Lin H, Liu G. Regulation of microRNA-33, SREBP and ABCA1 genes in a mouse model of high cholesterol. Arch Anim Breed 2021; 64:103-108. [PMID: 34084908 PMCID: PMC8160998 DOI: 10.5194/aab-64-103-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/16/2021] [Indexed: 11/11/2022] Open
Abstract
MicroRNAs are short non-coding RNAs that regulate gene expression. Several microRNAs, useful for coronary artery disease assessment, have previously been identified. MicroRNA-33 is located within SREBP introns and controls cholesterol homeostasis. In order to find the possibility of microRNA-33 as a potential biomarker in high cholesterol disease, we developed a mouse model for coronary heart disease by feeding mice with a high-fat diet. The expression differences of microRNA-33, SREBP and ABCA1 genes in the liver, muscle, and lipid tissues were compared between a high-cholesterol group and control group in mice. The results showed that ABCA1 was up-regulated by high cholesterol conditions in liver, muscle and lipid tissues. SREBP1C was up-regulated by high cholesterol conditions in the liver and lipid tissues and down-regulated by high cholesterol conditions in the muscle tissue. MicroRNA-33 and SREBP2 were down-regulated by high cholesterol conditions in the liver and muscle tissues and up-regulated by high cholesterol conditions in the lipid tissue. Our study suggests that antisense therapeutic targeting of microRNA-33 may be a potential biomarker for cardiovascular disease.
Collapse
Affiliation(s)
- Xianglun Zhang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Key Lab of Animal Disease Control and Breeding, Jinan, China
| | - Hongbo Zhao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Key Lab of Animal Disease Control and Breeding, Jinan, China
| | - Qingkai Sheng
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Key Lab of Animal Disease Control and Breeding, Jinan, China
| | - Xiaomu Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Key Lab of Animal Disease Control and Breeding, Jinan, China
| | - Wei You
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Key Lab of Animal Disease Control and Breeding, Jinan, China
| | - Haichao Lin
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Key Lab of Animal Disease Control and Breeding, Jinan, China
| | - Guifen Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Key Lab of Animal Disease Control and Breeding, Jinan, China
| |
Collapse
|
23
|
Cho WK, Kim HI, Paek SH, Kim SY, Hyun Seo H, Song J, Lee OH, Min J, Lee SJ, Jo Y, Choi H, Lee JH, Moh SH. Gene expression profile of human follicle dermal papilla cells in response to Camellia japonica phytoplacenta extract. FEBS Open Bio 2021; 11:633-651. [PMID: 33410284 PMCID: PMC7931240 DOI: 10.1002/2211-5463.13076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Camellia japonica L. is a flowering tree with several medicinal and cosmetic applications. Here, we investigated the efficacy of C. japonica placenta extract (CJPE) as a potential therapeutic agent for promotion of hair growth and scalp health by using various in vitro and in vivo assays. Moreover, we performed transcriptome analysis to examine the relative expression of human follicle dermal papilla cells (HFDPC) in response to CJPE by RNA-sequencing (RNA-seq). In vitro assays revealed upregulation of the expression of hair growth marker genes in HFDPC after CJPE treatment. Moreover, in vivo clinical tests with 42 adult female participants showed that a solution containing 0.5% CJPE increased the moisture content of the scalp and decreased the scalp's sebum content, dead scalp keratin, and erythema. Furthermore, RNA-seq analysis revealed key genes in HFDPC which are associated with CJPE. Interestingly, genes associated with lipid metabolism and cholesterol efflux were upregulated. Genes upregulated by CJPE are associated with several hormones, including parathyroid, adrenocorticotropic hormone, α-melanocyte-stimulating hormone (alpha-MSH), and norepinephrine, which are involved in hair follicle biology. Furthermore, some upregulated genes are associated with the regulation of axon guidance. In contrast, many genes downregulated by CJPE are associated with structural components of the cytoskeleton. In addition, CJPE suppressed genes associated with muscle structure and development. Taken together, this study provides extensive evidence that CJPE may have potential as a therapeutic agent for scalp treatment and hair growth promotion.
Collapse
Affiliation(s)
- Won Kyong Cho
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Korea
| | - Hye-In Kim
- Anti-aging Research Institute of BIO-FD&C Co., Ltd., Incheon, Korea
| | - Seung Hye Paek
- Anti-aging Research Institute of BIO-FD&C Co., Ltd., Incheon, Korea
| | - Soo-Yun Kim
- Anti-aging Research Institute of BIO-FD&C Co., Ltd., Incheon, Korea
| | - Hyo Hyun Seo
- Anti-aging Research Institute of BIO-FD&C Co., Ltd., Incheon, Korea
| | - Jihyeok Song
- Anti-aging Research Institute of BIO-FD&C Co., Ltd., Incheon, Korea
| | - Ok Hwa Lee
- Anti-aging Research Institute of BIO-FD&C Co., Ltd., Incheon, Korea
| | - Jiae Min
- Anti-aging Research Institute of BIO-FD&C Co., Ltd., Incheon, Korea
| | - Sang Jun Lee
- Anti-aging Research Institute of BIO-FD&C Co., Ltd., Incheon, Korea
| | - Yeonhwa Jo
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Korea
| | - Hoseong Choi
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Korea
| | - Jeong Hun Lee
- Anti-aging Research Institute of BIO-FD&C Co., Ltd., Incheon, Korea
| | - Sang Hyun Moh
- Anti-aging Research Institute of BIO-FD&C Co., Ltd., Incheon, Korea
| |
Collapse
|
24
|
Paus R. Shining a (blue) light on hair follicle chronobiology and photobiomodulation. Exp Dermatol 2021; 30:189-192. [PMID: 33433942 DOI: 10.1111/exd.14271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ralf Paus
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Centre for Dermatology Research, University of Manchester, NIHR Manchester Biomedical Research Centre, Manchester, UK.,Monasterium Laboratory, Münster, Germany
| |
Collapse
|
25
|
Localisation and regulation of cholesterol transporters in the human hair follicle: mapping changes across the hair cycle. Histochem Cell Biol 2021; 155:529-545. [PMID: 33404706 PMCID: PMC8134313 DOI: 10.1007/s00418-020-01957-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Cholesterol has long been suspected of influencing hair biology, with dysregulated homeostasis implicated in several disorders of hair growth and cycling. Cholesterol transport proteins play a vital role in the control of cellular cholesterol levels and compartmentalisation. This research aimed to determine the cellular localisation, transport capability and regulatory control of cholesterol transport proteins across the hair cycle. Immunofluorescence microscopy in human hair follicle sections revealed differential expression of ATP-binding cassette (ABC) transporters across the hair cycle. Cholesterol transporter expression (ABCA1, ABCG1, ABCA5 and SCARB1) reduced as hair follicles transitioned from growth to regression. Staining for free cholesterol (filipin) revealed prominent cholesterol striations within the basement membrane of the hair bulb. Liver X receptor agonism demonstrated active regulation of ABCA1 and ABCG1, but not ABCA5 or SCARB1 in human hair follicles and primary keratinocytes. These results demonstrate the capacity of human hair follicles for cholesterol transport and trafficking. Future studies examining the role of cholesterol transport across the hair cycle may shed light on the role of lipid homeostasis in human hair disorders.
Collapse
|
26
|
Paus R, Ramot Y, Kirsner RS, Tomic-Canic M. Topical L-thyroxine: The Cinderella among hormones waiting to dance on the floor of dermatological therapy? Exp Dermatol 2020; 29:910-923. [PMID: 32682336 PMCID: PMC7722149 DOI: 10.1111/exd.14156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
Topical hormone therapy with natural or synthetic ligands of nuclear hormone receptors such as glucocorticoids, vitamin D analogues and retinoids has a long and highly successful tradition in dermatology. Yet the dermatological potential of thyroid hormone receptor (TR) agonists has been widely ignored, despite abundant clinical, cell and molecular biology, mouse in vivo, and human skin and hair follicle organ culture data documenting a role of TR-mediated signalling in skin physiology and pathology. Here, we review this evidence, with emphasis on wound healing and hair growth, and specifically highlight the therapeutic potential of repurposing topical L-thyroxine (T4) for selected applications in future dermatological therapy. We underscore the known systemic safety and efficacy profile of T4 in clinical medicine, and the well-documented impact of thyroid hormones on, for example, human epidermal and hair follicle physiology, hair follicle epithelial stem cells and pigmentation, keratin expression, mitochondrial energy metabolism and wound healing. On this background, we argue that short-term topical T4 treatment deserves careful further preclinical and clinical exploration for repurposing as a low-cost, effective and widely available dermatotherapeutic, namely in the management of skin ulcers and telogen effluvium, and that its predictable adverse effects are well-manageable.
Collapse
Affiliation(s)
- Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Centre for Dermatology Research, University of Manchester & NIHR Manchester Biomedical Research Centre, Manchester, UK
- Monasterium Laboratory, Münster, Germany
| | - Yuval Ramot
- Department of Dermatology, Hadassah Medical Center, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Robert S. Kirsner
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marjana Tomic-Canic
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
27
|
Wang H, Humbatova A, Liu Y, Qin W, Lee M, Cesarato N, Kortüm F, Kumar S, Romano MT, Dai S, Mo R, Sivalingam S, Motameny S, Wu Y, Wang X, Niu X, Geng S, Bornholdt D, Kroisel PM, Tadini G, Walter SD, Hauck F, Girisha KM, Calza AM, Bottani A, Altmüller J, Buness A, Yang S, Sun X, Ma L, Kutsche K, Grzeschik KH, Betz RC, Lin Z. Mutations in SREBF1, Encoding Sterol Regulatory Element Binding Transcription Factor 1, Cause Autosomal-Dominant IFAP Syndrome. Am J Hum Genet 2020; 107:34-45. [PMID: 32497488 DOI: 10.1016/j.ajhg.2020.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
IFAP syndrome is a rare genetic disorder characterized by ichthyosis follicularis, atrichia, and photophobia. Previous research found that mutations in MBTPS2, encoding site-2-protease (S2P), underlie X-linked IFAP syndrome. The present report describes the identification via whole-exome sequencing of three heterozygous mutations in SREBF1 in 11 unrelated, ethnically diverse individuals with autosomal-dominant IFAP syndrome. SREBF1 encodes sterol regulatory element-binding protein 1 (SREBP1), which promotes the transcription of lipogenes involved in the biosynthesis of fatty acids and cholesterols. This process requires cleavage of SREBP1 by site-1-protease (S1P) and S2P and subsequent translocation into the nucleus where it binds to sterol regulatory elements (SRE). The three detected SREBF1 mutations caused substitution or deletion of residues 527, 528, and 530, which are crucial for S1P cleavage. In vitro investigation of SREBP1 variants demonstrated impaired S1P cleavage, which prohibited nuclear translocation of the transcriptionally active form of SREBP1. As a result, SREBP1 variants exhibited significantly lower transcriptional activity compared to the wild-type, as demonstrated via luciferase reporter assay. RNA sequencing of the scalp skin from IFAP-affected individuals revealed a dramatic reduction in transcript levels of low-density lipoprotein receptor (LDLR) and of keratin genes known to be expressed in the outer root sheath of hair follicles. An increased rate of in situ keratinocyte apoptosis, which might contribute to skin hyperkeratosis and hypotrichosis, was also detected in scalp samples from affected individuals. Together with previous research, the present findings suggest that SREBP signaling plays an essential role in epidermal differentiation, skin barrier formation, hair growth, and eye function.
Collapse
Affiliation(s)
- Huijun Wang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Aytaj Humbatova
- Institute of Human Genetics, University of Bonn, Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany
| | - Yuanxiang Liu
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Wen Qin
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Mingyang Lee
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Nicole Cesarato
- Institute of Human Genetics, University of Bonn, Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sheetal Kumar
- Institute of Human Genetics, University of Bonn, Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany
| | - Maria Teresa Romano
- Institute of Human Genetics, University of Bonn, Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany
| | - Shangzhi Dai
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Ran Mo
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Sugirthan Sivalingam
- Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Medical Faculty, 53127 Bonn, Germany; Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty, 53127 Bonn, Germany
| | - Susanne Motameny
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
| | - Yuan Wu
- Department of Ophthalmology, Peking University First Hospital, Beijing 100034, China
| | - Xiaopeng Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xinwu Niu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Dorothea Bornholdt
- Centre for Human Genetics, University of Marburg, 35033 Marburg, Germany
| | - Peter M Kroisel
- Institute of Human Genetics, Medical University of Graz, 8010 Graz, Austria
| | - Gianluca Tadini
- Pediatric Dermatology Unit, Department of Pathophysiology and Transplantation, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Scott D Walter
- Retina Consultants, P.C., 43 Woodland Street, Suite 100, Hartford, CT 06105, USA
| | - Fabian Hauck
- Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anne-Marie Calza
- Department of Dermatology and Venereology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Armand Bottani
- Service of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
| | - Andreas Buness
- Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Medical Faculty, 53127 Bonn, Germany; Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty, 53127 Bonn, Germany
| | - Shuxia Yang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Xiujuan Sun
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Lin Ma
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | - Regina C Betz
- Institute of Human Genetics, University of Bonn, Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany.
| | - Zhimiao Lin
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China.
| |
Collapse
|
28
|
Affiliation(s)
- Kevin J. McElwee
- Centre for Skin Sciences University of Bradford Bradford UK
- Department of Dermatology and Skin Science University of British Columbia Vancouver BC Canada
| | - Antonella Tosti
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Leonard M. Miller School of Medicine Miami FL USA
| |
Collapse
|