1
|
Luengas‐Martinez A, Ismail D, Paus R, Young HS. Vascular endothelial growth factor A inhibition remodels the transcriptional signature of lipid metabolism in psoriasis non-lesional skin in 12 h ex vivo culture. SKIN HEALTH AND DISEASE 2024; 4:e471. [PMID: 39624732 PMCID: PMC11608907 DOI: 10.1002/ski2.471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/09/2024] [Accepted: 10/11/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Vascular endothelial growth factor A (VEGF-A)-mediated angiogenesis is involved in the pathogenesis of psoriasis. VEGF-A inhibitors are widely used to treat oncological and ophthalmological diseases but have not been used in psoriasis management. The molecular mechanisms underlying the effects of VEGF-A inhibition in psoriatic skin remain unknown. OBJECTIVES To identify the genes and canonical pathways affected by VEGF-A inhibition in non-lesional and plaque skin ex vivo. METHODS Total RNA sequencing was performed on skin biopsies from patients with psoriasis (n = 6; plaque and non-lesional skin) and healthy controls (n = 6) incubated with anti-VEGF-A monoclonal antibody (bevacizumab, Avastin®) or human IgG1 isotype control for 12 h in serum-free organ culture. Differentially expressed genes between paired control and treated samples with adjusted p-values <0.1 were considered significant. Gene ontology and ingenuity pathway analysis was used to identify enriched biological processes, canonical pathways and upstream regulators. RESULTS VEGF-A inhibition upregulated the expression of genes involved in lipid metabolism. Pathway enrichment analysis identified the activation of pathways involved in fatty acids and lipid biosynthesis and degradation in non-lesional skin and ferroptosis in plaque skin. VEGF-A inhibition downregulated endothelial cell apoptosis in non-lesional psoriasis skin and members of the interferon family were identified as potential regulators of the effects of VEGF-A inhibition in non-lesional skin. CONCLUSION Early response to VEGF-A inhibition is associated with changes in lipid metabolism in non-lesional psoriasis skin and cellular stress in psoriasis plaque. More investigation is needed to validate these findings.
Collapse
Affiliation(s)
- Andrea Luengas‐Martinez
- Centre for Dermatology Research and Manchester Academic Health Science CentreThe University of ManchesterManchesterUK
| | - Dina Ismail
- Centre for Dermatology Research and Manchester Academic Health Science CentreThe University of ManchesterManchesterUK
| | - Ralf Paus
- Centre for Dermatology Research and Manchester Academic Health Science CentreThe University of ManchesterManchesterUK
- Dr. Philip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Monasterium LaboratoryMuensterGermany
| | - Helen S. Young
- Centre for Dermatology Research and Manchester Academic Health Science CentreThe University of ManchesterManchesterUK
| |
Collapse
|
2
|
Rousel J, Mergen C, Bergmans ME, Klarenbeek NB, der Kolk TNV, van Doorn MBA, Bouwstra JA, Rissmann R. Lesional Psoriasis is Associated With Alterations in the Stratum Corneum Ceramide Profile and Concomitant Decreases in Barrier Function. Exp Dermatol 2024; 33:e15185. [PMID: 39382258 DOI: 10.1111/exd.15185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Psoriasis is an inflammatory skin disease associated with an impaired skin barrier. The skin barrier function is dependent on the extracellular lipid matrix which surrounds the corneocytes in the stratum corneum. Ceramides comprise essential components of this matrix. Alterations in the stratum corneum ceramide profile have been directly linked to barrier dysfunction and might be an underlying factor of the barrier impairment in psoriasis. In this study, we investigated the ceramide profile and barrier function in psoriasis. Lesional and non-lesional skin of 26 patients and 10 healthy controls were analysed using in-depth ceramide lipidomics by liquid chromatography-mass spectrometry. Barrier function was assessed by measuring transepidermal water loss. Lesional skin showed a significant decrease in the abundance of total ceramides with significant alterations in the ceramide subclass composition compared to control and non-lesional skin. Additionally, the percentage of monounsaturated ceramides was significantly increased, and the average ceramide chain length significantly decreased in lesional skin. Altogether, this resulted in a markedly different profile compared to controls for lesional skin, but not for non-lesional skin. Importantly, the reduced barrier function in lesional psoriasis correlated to alterations in the ceramide profile, highlighting their interdependence. By assessing the parameters 2 weeks apart, we are able to highlight the reproducibility of these findings, which further affirms this connection. To conclude, we show that changes in the ceramide profile and barrier impairment are observed in, and limited to, lesional psoriatic skin. Their direct correlation provides a further mechanistic basis for the concomitantly observed impairment of barrier dysfunction.
Collapse
Affiliation(s)
- Jannik Rousel
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Catherine Mergen
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Menthe E Bergmans
- Centre for Human Drug Research, Leiden, The Netherlands
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Martijn B A van Doorn
- Centre for Human Drug Research, Leiden, The Netherlands
- Department of Dermatology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Joke A Bouwstra
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Robert Rissmann
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Delgado Dolset MI, Pablo-Torres C, Contreras N, Couto-Rodríguez A, Escolar-Peña A, Graña-Castro O, Izquierdo E, López-Rodríguez JC, Macías-Camero A, Pérez-Gordo M, Villaseñor A, Zubeldia-Varela E, Barber D, Escribese MM. Severe Allergy as a Chronic Inflammatory Condition From a Systems Biology Perspective. Clin Exp Allergy 2024; 54:550-584. [PMID: 38938054 DOI: 10.1111/cea.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Accepted: 05/26/2024] [Indexed: 06/29/2024]
Abstract
Persistent and unresolved inflammation is a common underlying factor observed in several and seemingly unrelated human diseases, including cardiovascular and neurodegenerative diseases. Particularly, in atopic conditions, acute inflammatory responses such as those triggered by insect venom, food or drug allergies possess also a life-threatening potential. However, respiratory allergies predominantly exhibit late immune responses associated with chronic inflammation, that can eventually progress into a severe phenotype displaying similar features as those observed in other chronic inflammatory diseases, as is the case of uncontrolled severe asthma. This review aims to explore the different facets and systems involved in chronic allergic inflammation, including processes such as tissue remodelling and immune cell dysregulation, as well as genetic, metabolic and microbiota alterations, which are common to other inflammatory conditions. Our goal here was to deepen on the understanding of an entangled disease as is chronic allergic inflammation and expose potential avenues for the development of better diagnostic and intervention strategies.
Collapse
Affiliation(s)
- M I Delgado Dolset
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - C Pablo-Torres
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - N Contreras
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Couto-Rodríguez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Escolar-Peña
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - O Graña-Castro
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - E Izquierdo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - J C López-Rodríguez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Macías-Camero
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - M Pérez-Gordo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Villaseñor
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - E Zubeldia-Varela
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - D Barber
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - M M Escribese
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| |
Collapse
|
4
|
Rousel J, Mergen C, Bergmans ME, Bruijnincx LJ, de Kam ML, Klarenbeek NB, Niemeyer-van der Kolk T, van Doorn MBA, Bouwstra JA, Rissmann R. Guselkumab treatment normalizes the stratum corneum ceramide profile and alleviates barrier dysfunction in psoriasis: results of a randomized controlled trial. J Lipid Res 2024; 65:100591. [PMID: 38992724 PMCID: PMC11342092 DOI: 10.1016/j.jlr.2024.100591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/15/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
The epidermal inflammation associated with psoriasis drives skin barrier perturbations. The skin barrier is primarily located in stratum corneum (SC). Its function depends on the SC lipid matrix of which ceramides constitute important components. Changes in the ceramide profile directly correlate to barrier function. In this study, we characterized the dynamics of the barrier function and ceramide profile of psoriatic skin during anti-Interleukin-23 therapy with guselkumab. We conducted a double-blind, randomized controlled trial in which 26 mild-to-severe plaque psoriasis patients were randomization 3:1-100 mg guselkumab or placebo for 16 weeks and barrier dynamics monitored throughout. Barrier function was measured by trans-epidermal water loss measurements. Untargeted ceramide profiling was performed using liquid chromatography-mass spectrometry after SC was harvested using tape-stripping. The barrier function and ceramide profile of lesional skin normalized to that of controls during treatment with guselkumab, but not placebo. This resulted in significant differences compared to placebo at the end of the treatment. Changes in the lesional ceramide profile during treatment correlated with barrier function and target lesion severity. Nonlesional skin remained similar throughout treatment. Guselkumab therapy restored the skin barrier in psoriasis. Concomitant correlations between skin barrier function, the ceramide profile, and disease severity demonstrate their interdependency.
Collapse
Affiliation(s)
- Jannik Rousel
- Centre for Human Drug Research, Leiden, The Netherlands; Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Catherine Mergen
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Menthe E Bergmans
- Centre for Human Drug Research, Leiden, The Netherlands; Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | - Martijn B A van Doorn
- Centre for Human Drug Research, Leiden, The Netherlands; Department of Dermatology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Joke A Bouwstra
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Robert Rissmann
- Centre for Human Drug Research, Leiden, The Netherlands; Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
5
|
Nicolaou A, Kendall AC. Bioactive lipids in the skin barrier mediate its functionality in health and disease. Pharmacol Ther 2024; 260:108681. [PMID: 38897295 DOI: 10.1016/j.pharmthera.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Our skin protects us from external threats including ultraviolet radiation, pathogens and chemicals, and prevents excessive trans-epidermal water loss. These varied activities are reliant on a vast array of lipids, many of which are unique to skin, and that support physical, microbiological and immunological barriers. The cutaneous physical barrier is dependent on a specific lipid matrix that surrounds terminally-differentiated keratinocytes in the stratum corneum. Sebum- and keratinocyte-derived lipids cover the skin's surface and support and regulate the skin microbiota. Meanwhile, lipids signal between resident and infiltrating cutaneous immune cells, driving inflammation and its resolution in response to pathogens and other threats. Lipids of particular importance include ceramides, which are crucial for stratum corneum lipid matrix formation and therefore physical barrier functionality, fatty acids, which contribute to the acidic pH of the skin surface and regulate the microbiota, as well as the stratum corneum lipid matrix, and bioactive metabolites of these fatty acids, involved in cell signalling, inflammation, and numerous other cutaneous processes. These diverse and complex lipids maintain homeostasis in healthy skin, and are implicated in many cutaneous diseases, as well as unrelated systemic conditions with skin manifestations, and processes such as ageing. Lipids also contribute to the gut-skin axis, signalling between the two barrier sites. Therefore, skin lipids provide a valuable resource for exploration of healthy cutaneous processes, local and systemic disease development and progression, and accessible biomarker discovery for systemic disease, as well as an opportunity to fully understand the relationship between the host and the skin microbiota. Investigation of skin lipids could provide diagnostic and prognostic biomarkers, and help identify new targets for interventions. Development and improvement of existing in vitro and in silico approaches to explore the cutaneous lipidome, as well as advances in skin lipidomics technologies, will facilitate ongoing progress in skin lipid research.
Collapse
Affiliation(s)
- Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| |
Collapse
|
6
|
Morariu SH, Cotoi OS, Tiucă OM, Crișan M, Garaga L, Tiucă RA, Mariean CR, Buicu FC, Nicolescu AC. Epidermal Barrier Parameters in Psoriasis: Implications in Assessing Disease Severity. J Pers Med 2024; 14:728. [PMID: 39063982 PMCID: PMC11278309 DOI: 10.3390/jpm14070728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Psoriasis is characterized by an aberrant immune response due to myeloid dendritic cells and T helper cells intertwining with keratinocyte hyperproliferation. Skin integrity alterations may predispose patients to physiological imbalances, such as xerosis, reduced elasticity, and increased friability. This study aims to assess the epidermal barrier dysfunction in chronic plaque psoriasis and gain a comprehensive view of the dynamic changes in the epidermal barrier during various topical therapies. Adult patients with chronic plaque psoriasis were enrolled in this observational study. For each patient, skin barrier parameters, stratum corneum hydration (SCH), transepidermal water loss (TEWL), elasticity, erythema, and melanin levels were measured in lesional and non-lesional skin. Two extensions of the initial study design, with subsequent epidermal barrier determinations, were made as follows: one in which patients with moderate psoriasis were treated with clobetasol propionate 0.5% and the second one in which mild psoriasis was treated with either clobetasol propionate 0.5% or clobetasol propionate 0.5% with 10% urea. TEWL and erythema were found to be higher in the sites affected by psoriatic lesions than the unaffected sites, while SCH and elasticity were decreased. Severe psoriasis presented with higher TEWL (p = 0.032), erythema (p = 0.002), and lower SCH (p < 0.001) compared with the mild and moderate forms. SCH significantly improved during clobetasol propionate 0.5% treatment (p = 0.015). Clobetasol propionate 0.5% with 10% urea was found to be superior to clobetasol propionate 0.5% in improving TEWL and SCH in psoriasis.
Collapse
Affiliation(s)
- Silviu-Horia Morariu
- Dermatology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Ovidiu Simion Cotoi
- Pathophysiology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Oana Mirela Tiucă
- Dermatology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Maria Crișan
- Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Liuba Garaga
- Dermatology Clinic, Mures Clinical County Hospital, 540342 Targu Mures, Romania
| | - Robert Aurelian Tiucă
- Endocrinology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Claudia Raluca Mariean
- Pathophysiology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Florin Corneliu Buicu
- Department of Public Health, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | | |
Collapse
|
7
|
Alsabbagh MM. Cytokines in psoriasis: From pathogenesis to targeted therapy. Hum Immunol 2024; 85:110814. [PMID: 38768527 DOI: 10.1016/j.humimm.2024.110814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Psoriasis is a multifactorial disease that affects 0.84% of the global population and it can be associated with disabling comorbidities. As patients present with thick scaly lesions, psoriasis was long believed to be a disorder of keratinocytes. Psoriasis is now understood to be the outcome of the interaction between immunological and environmental factors in individuals with genetic predisposition. While it was initially thought to be solely mediated by cytokines of type-1 immunity, namely interferon-γ, interleukin-2, and interleukin-12 because it responds very well to cyclosporine, a reversible IL-2 inhibitor; the discovery of Th-17 cells advanced the understanding of the disease and helped the development of biological therapy. This article aims to provide a comprehensive review of the role of cytokines in psoriasis, highlighting areas of controversy and identifying the connection between cytokine imbalance and disease manifestations. It also presents the approved targeted treatments for psoriasis and those currently under investigation.
Collapse
Affiliation(s)
- Manahel Mahmood Alsabbagh
- Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders and Department of Molecular Medicine, Arabian Gulf University, Manama, Bahrain.
| |
Collapse
|
8
|
Yin X, Yan Y, Li J, Cao Z, Shen S, Chang Q, Zhao Y, Wang X, Wang P. Nuclear receptors for epidermal lipid barrier: Advances in mechanisms and applications. Exp Dermatol 2024; 33:e15107. [PMID: 38840418 DOI: 10.1111/exd.15107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/20/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024]
Abstract
The skin plays an essential role in preventing the entry of external environmental threats and the loss of internal substances, depending on the epidermal permeability barrier. Nuclear receptors (NRs), present in various tissues and organs including full-thickness skin, have been demonstrated to exert significant effects on the epidermal lipid barrier. Formation of the lipid lamellar membrane and the normal proliferation and differentiation of keratinocytes (KCs) are crucial for the development of the epidermal permeability barrier and is regulated by specific NRs such as PPAR, LXR, VDR, RAR/RXR, AHR, PXR and FXR. These receptors play a key role in regulating KC differentiation and the entire process of epidermal lipid synthesis, processing and secretion. Lipids derived from sebaceous glands are influenced by NRs as well and participate in regulation of the epidermal lipid barrier. Furthermore, intricate interplay exists between these receptors. Disturbance of barrier function leads to a range of diseases, including psoriasis, atopic dermatitis and acne. Targeting these NRs with agonists or antagonists modulate pathways involved in lipid synthesis and cell differentiation, suggesting potential therapeutic approaches for dermatosis associated with barrier damage. This review focuses on the regulatory role of NRs in the maintenance and processing of the epidermal lipid barrier through their effects on skin lipid synthesis and KC differentiation, providing novel insights for drug targets to facilitate precision medicine strategies.
Collapse
Affiliation(s)
- Xidie Yin
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiandan Li
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhi Cao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuzhan Shen
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qihang Chang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiting Zhao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Ding S, Li G, Fu T, Zhang T, Lu X, Li N, Geng Q. Ceramides and mitochondrial homeostasis. Cell Signal 2024; 117:111099. [PMID: 38360249 DOI: 10.1016/j.cellsig.2024.111099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Lipotoxicity arises from the accumulation of lipid intermediates in non-adipose tissue, precipitating cellular dysfunction and death. Ceramide, a toxic byproduct of excessive free fatty acids, has been widely recognized as a primary contributor to lipotoxicity, mediating various cellular processes such as apoptosis, differentiation, senescence, migration, and adhesion. As the hub of lipid metabolism, the excessive accumulation of ceramides inevitably imposes stress on the mitochondria, leading to the disruption of mitochondrial homeostasis, which is typified by adequate ATP production, regulated oxidative stress, an optimal quantity of mitochondria, and controlled mitochondrial quality. Consequently, this review aims to collate current knowledge and facts regarding the involvement of ceramides in mitochondrial energy metabolism and quality control, thereby providing insights for future research.
Collapse
Affiliation(s)
- Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guorui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tinglv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tianyu Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiao Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
10
|
Kim S, Kang BG, Sa S, Park SY, Ryu K, Lee J, Park B, Kwon M, Kim Y, Kim J, Shin S, Jang S, Kim BE, Bae J, Ahn K, Liu KH, Kim J. Advanced fructo-oligosaccharides improve itching and aberrant epidermal lipid composition in children with atopic dermatitis. Front Microbiol 2024; 15:1383779. [PMID: 38741747 PMCID: PMC11089124 DOI: 10.3389/fmicb.2024.1383779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction The effects of fructo-oligosaccharides (FOS) on atopic dermatitis (AD) have not been determined. Methods In a randomized, double-blind, placebo-controlled trial, children with AD aged 24 months to 17 years received either advanced FOS containing 4.25 g of 1-kestose or a placebo (maltose) for 12 weeks. Results The SCORAD and itching scores were reduced in patients treated with both FOS (all p < 0.01) and maltose (p < 0.05 and p < 0.01). Sleep disturbance was improved only in the FOS group (p < 0.01). The FOS group revealed a decreased proportion of linoleic acid (18:2) esterified omega-hydroxy-ceramides (EOS-CERs) with amide-linked shorter chain fatty acids (C28 and C30, all p < 0.05), along with an increased proportion of EOS-CERs with longer chain fatty acids (C32, p < 0.01). Discussion FOS may be beneficial in alleviating itching and sleep disturbance, as well as improving skin barrier function in children with AD.
Collapse
Affiliation(s)
- Sukyung Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Bae-Gon Kang
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Soonok Sa
- Food R&D, Samyang Corporation, Seongnam, Republic of Korea
| | - Se Young Park
- Food R&D, Samyang Corporation, Seongnam, Republic of Korea
| | - Kyungheon Ryu
- Food R&D, Samyang Corporation, Seongnam, Republic of Korea
| | - Jinyoung Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Boram Park
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Mijeong Kwon
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yeonghee Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jiwon Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sanghee Shin
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sehun Jang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Byung Eui Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, National Jewish Health, Denver, CO, United States
| | - Jaewoong Bae
- R&D Institute, BioEleven Co., Ltd., Seoul, Republic of Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, Republic of Korea
| | - Kwang-Hyeon Liu
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Jihyun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, Republic of Korea
| |
Collapse
|
11
|
Rousel J, Nădăban A, Saghari M, Pagan L, Zhuparris A, Theelen B, Gambrah T, van der Wall HEC, Vreeken RJ, Feiss GL, Niemeyer-van der Kolk T, Burggraaf J, van Doorn MBA, Bouwstra JA, Rissmann R. Lesional skin of seborrheic dermatitis patients is characterized by skin barrier dysfunction and correlating alterations in the stratum corneum ceramide composition. Exp Dermatol 2024; 33:e14952. [PMID: 37974545 DOI: 10.1111/exd.14952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/21/2023] [Accepted: 10/01/2023] [Indexed: 11/19/2023]
Abstract
Seborrheic dermatitis (SD) is a chronic inflammatory skin disease characterized by erythematous papulosquamous lesions in sebum rich areas such as the face and scalp. Its pathogenesis appears multifactorial with a disbalanced immune system, Malassezia driven microbial involvement and skin barrier perturbations. Microbial involvement has been well described in SD, but skin barrier involvement remains to be properly elucidated. To determine whether barrier impairment is a critical factor of inflammation in SD alongside microbial dysbiosis, a cross-sectional study was performed in 37 patients with mild-to-moderate facial SD. Their lesional and non-lesional skin was comprehensively and non-invasively assessed with standardized 2D-photography, optical coherence tomography (OCT), microbial profiling including Malassezia species identification, functional skin barrier assessments and ceramide profiling. The presence of inflammation was established through significant increases in erythema, epidermal thickness, vascularization and superficial roughness in lesional skin compared to non-lesional skin. Lesional skin showed a perturbed skin barrier with an underlying skewed ceramide subclass composition, impaired chain elongation and increased chain unsaturation. Changes in ceramide composition correlated with barrier impairment indicating interdependency of the functional barrier and ceramide composition. Lesional skin showed significantly increased Staphylococcus and decreased Cutibacterium abundances but similar Malassezia abundances and mycobial composition compared to non-lesional skin. Principal component analysis highlighted barrier properties as main discriminating features. To conclude, SD is associated with skin barrier dysfunction and changes in the ceramide composition. No significant differences in the abundance of Malassezia were observed. Restoring the cutaneous barrier might be a valid therapeutic approach in the treatment of facial SD.
Collapse
Affiliation(s)
- Jannik Rousel
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Andreea Nădăban
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Mahdi Saghari
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa Pagan
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| | - Ahnjili Zhuparris
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, Netherlands
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Tom Gambrah
- Centre for Human Drug Research, Leiden, The Netherlands
| | | | - Rob J Vreeken
- Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | | | | | - Jacobus Burggraaf
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn B A van Doorn
- Centre for Human Drug Research, Leiden, The Netherlands
- Department of Dermatology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Joke A Bouwstra
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Robert Rissmann
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
12
|
El Mahi Y, Varin A, Vetter M, Dal Zuffo L, Mazzeo L, Pais De Barros JP, Aubin F, Saas P, Gallais Sérézal I. Resolved Psoriasis with Abundant Oleic Acid in Stratum Corneum Exhibits Lower T-Cell-Driven IL-17 Signature. J Invest Dermatol 2023; 143:2145-2152.e6. [PMID: 37207807 DOI: 10.1016/j.jid.2023.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/22/2023] [Accepted: 04/05/2023] [Indexed: 05/21/2023]
Abstract
Relapses of psoriasis involve T cells that stem and survive in the skin. Inherited from previous flares, the tissue-resident memory T cells are epidermal IL-17-producing CD8+ and IL-22-producing CD4+ T cells. Because the capacity of resident memory T cells to take in fatty acids is essential for their residence and function, the surface composition of fatty acids may affect underlying T-cell populations. In patients treated with biologics, we used gas chromatography/mass spectrometry to decipher the fatty acid composition in both resolved and nonlesional sites. Skin T cells were activated by OKT-3 in explants from the same body sites to perform bulk transcriptomic analysis (Nanostring). The fatty acid composition differed between skin from healthy donors and normal-looking skin of patients with psoriasis but not further between nonlesional and resolved skin. Patients in whom the resolved skin was rich in oleic acid had lower T-cell-driven IL-17 epidermal transcriptomic signature upon activation of T cells in skin explants. The skin lipid composition is linked with the functions of the underlying epidermal T cells. Testing the modulating effect of custom fatty acids on skin resident T cells could help with coming closer to disease oblivion in inflammatory skin diseases.
Collapse
Affiliation(s)
- Yasmin El Mahi
- INSERM, EFS, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | - Alexis Varin
- INSERM, EFS, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France; Lipidomic platform, LipSTIC Labex, Burgundy University, Dijon, France
| | - Mathieu Vetter
- INSERM, EFS, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | - Ludivine Dal Zuffo
- INSERM, EFS, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | - Loïc Mazzeo
- Lipidomic platform, LipSTIC Labex, Burgundy University, Dijon, France; INSERM UMR1098, Burgundy University, Dijon, France
| | - Jean-Paul Pais De Barros
- INSERM UMR1098, Burgundy University, Dijon, France; Department of Dermatology, Besançon University Hospital, Besançon, France
| | - François Aubin
- INSERM, EFS, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France; Department of Dermatology, Besançon University Hospital, Besançon, France
| | - Philippe Saas
- INSERM, EFS, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France; Lipidomic platform, LipSTIC Labex, Burgundy University, Dijon, France
| | - Irène Gallais Sérézal
- INSERM, EFS, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France; Department of Dermatology, Besançon University Hospital, Besançon, France.
| |
Collapse
|
13
|
He J, Zhao M, Ma X, Li D, Kong J, Yang F. The role and application of three IFN-related reactions in psoriasis. Biomed Pharmacother 2023; 167:115603. [PMID: 37776636 DOI: 10.1016/j.biopha.2023.115603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/16/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
The pathophysiology of psoriasis is a highly complicated one. Due to the disease's specificity, it not only affects the patient's skin negatively but also manifests systemic pathological changes. These clinical symptoms seriously harm the patient's physical and mental health. IFN, a common immunomodulatory factor, has been increasingly demonstrated to have a significant role in the development of psoriatic skin disease. Psoriasis is connected with a variety of immunological responses. New targets for the therapy of autoimmune skin diseases may emerge from further research on the mechanics of the associated IFN upstream and downstream pathways. Different forms of IFNs do not behave in the same manner in psoriasis, and understanding how different types of IFNs are involved in psoriasis may provide a better notion for future research. This review focuses on the involvement of three types of IFNs in psoriasis and related therapeutic investigations, briefly describing the three IFNs' production and signaling, as well as the dual effects of IFNs on the skin. It is intended that it would serve as a model for future research.
Collapse
Affiliation(s)
- Jiaming He
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Minghui Zhao
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoyu Ma
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dilong Li
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingyan Kong
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Fan Yang
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
14
|
Zolotas M, Schleusener J, Lademann J, Meinke MC, Kokolakis G, Darvin ME. Altered structure indicating reduced barrier function of lesional compared to non-lesional psoriatic skin-A non-invasive in vivo study of the human stratum corneum with confocal Raman micro-spectroscopy. Exp Dermatol 2023; 32:1763-1773. [PMID: 37540053 DOI: 10.1111/exd.14895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/23/2023] [Accepted: 07/16/2023] [Indexed: 08/05/2023]
Abstract
Psoriasis, one of the most common skin diseases affecting roughly 2%-3% of the world population, is associated with a reduced skin barrier function (SBF) that might play an important role in its pathophysiology. The SBF is provided primarily by the stratum corneum (SC) of the skin. Previous studies have revealed a higher trans-epidermal water loss, lower hydration, abnormal concentration and composition of intercellular lipids, as well as alterations in secondary keratin structure in the psoriatic SC. We compared on molecular level lesional psoriatic skin (LPS) with non-lesional psoriatic skin (nLPS) from 19 patients non-invasively in vivo, using confocal Raman micro-spectroscopy. By analysing the corresponding Raman spectra, we determined SBF-defining parameters of the SC depth-dependently. Our results revealed a lower total lipid concentration, a shift of lamellar lipid organisation towards more gauche-conformers and an increase of the less dense hexagonal lateral packing of the intercellular lipids in LPS. Furthermore, we observed lower natural moisturising factor concentration, lower total water as well as a strong tendency towards less strongly bound and more weakly bound water molecules in LPS. Finally, we detected a less stable secondary keratin structure with increased β-sheets, in contrast to the tertiary structure, showing a higher degree of folded keratin in LPS. These findings clearly suggest structural differences indicating a reduced SBF in LPS, and are discussed in juxtaposition to preceding outcomes for psoriatic and healthy skin. Understanding the alterations of the psoriatic SC provides insights into the exact pathophysiology of psoriasis and paves the way for optimal future treatments.
Collapse
Affiliation(s)
- Michael Zolotas
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Schleusener
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jürgen Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martina C Meinke
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Georgios Kokolakis
- Psoriasis Research and Treatment Centre, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maxim E Darvin
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
15
|
Masuda-Kuroki K, Alimohammadi S, Di Nardo A. The Role of Sphingolipids and Sphingosine-1-phosphate-Sphingosine-1-phosphate-receptor Signaling in Psoriasis. Cells 2023; 12:2352. [PMID: 37830566 PMCID: PMC10571972 DOI: 10.3390/cells12192352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Psoriasis is a long-lasting skin condition characterized by redness and thick silver scales on the skin's surface. It involves various skin cells, including keratinocytes, dendritic cells, T lymphocytes, and neutrophils. The treatments for psoriasis range from topical to systemic therapies, but they only alleviate the symptoms and do not provide a fundamental cure. Moreover, systemic treatments have the disadvantage of suppressing the entire body's immune system. Therefore, a new treatment strategy with minimal impact on the immune system is required. Recent studies have shown that sphingolipid metabolites, particularly ceramide and sphingosine-1-phosphate (S1P), play a significant role in psoriasis. Specific S1P-S1P-receptor (S1PR) signaling pathways have been identified as crucial to psoriasis inflammation. Based on these findings, S1PR modulators have been investigated and have been found to improve psoriasis inflammation. This review will discuss the metabolic pathways of sphingolipids, the individual functions of these metabolites, and their potential as a new therapeutic approach to psoriasis.
Collapse
Affiliation(s)
| | | | - Anna Di Nardo
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (K.M.-K.); (S.A.)
| |
Collapse
|
16
|
Rousel J, Saghari M, Pagan L, Nădăban A, Gambrah T, Theelen B, de Kam ML, Haakman J, van der Wall HEC, Feiss GL, Niemeyer-van der Kolk T, Burggraaf J, Bouwstra JA, Rissmann R, van Doorn MBA. Treatment with the Topical Antimicrobial Peptide Omiganan in Mild-to-Moderate Facial Seborrheic Dermatitis versus Ketoconazole and Placebo: Results of a Randomized Controlled Proof-of-Concept Trial. Int J Mol Sci 2023; 24:14315. [PMID: 37762625 PMCID: PMC10531869 DOI: 10.3390/ijms241814315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Facial seborrheic dermatitis (SD) is an inflammatory skin disease characterized by erythematous and scaly lesions on the skin with high sebaceous gland activity. The yeast Malassezia is regarded as a key pathogenic driver in this disease, but increased Staphylococcus abundances and barrier dysfunction are implicated as well. Here, we evaluated the antimicrobial peptide omiganan as a treatment for SD since it has shown both antifungal and antibacterial activity. A randomized, patient- and evaluator-blinded trial was performed comparing the four-week, twice daily topical administration of omiganan 1.75%, the comparator ketoconazole 2.00%, and placebo in patients with mild-to-moderate facial SD. Safety was monitored, and efficacy was determined by clinical scoring complemented with imaging. Microbial profiling was performed, and barrier integrity was assessed by trans-epidermal water loss and ceramide lipidomics. Omiganan was safe and well tolerated but did not result in a significant clinical improvement of SD, nor did it affect other biomarkers, compared to the placebo. Ketoconazole significantly reduced the disease severity compared to the placebo, with reduced Malassezia abundances, increased microbial diversity, restored skin barrier function, and decreased short-chain ceramide Cer[NSc34]. No significant decreases in Staphylococcus abundances were observed compared to the placebo. Omiganan is well tolerated but not efficacious in the treatment of facial SD. Previously established antimicrobial and antifungal properties of omiganan could not be demonstrated. Our multimodal characterization of the response to ketoconazole has reaffirmed previous insights into its mechanism of action.
Collapse
Affiliation(s)
- Jannik Rousel
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Mahdi Saghari
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Leiden University Medical Center, Leiden University, 2333 ZA Leiden, The Netherlands
| | - Lisa Pagan
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Leiden University Medical Center, Leiden University, 2333 ZA Leiden, The Netherlands
| | - Andreea Nădăban
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Tom Gambrah
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, 3508 AD Utrecht, The Netherlands
| | | | - Jorine Haakman
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
| | | | | | | | - Jacobus Burggraaf
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
- Leiden University Medical Center, Leiden University, 2333 ZA Leiden, The Netherlands
| | - Joke A. Bouwstra
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Robert Rissmann
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
- Leiden University Medical Center, Leiden University, 2333 ZA Leiden, The Netherlands
| | - Martijn B. A. van Doorn
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Department of Dermatology, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
17
|
Pilátová MB, Solárová Z, Mezencev R, Solár P. Ceramides and their roles in programmed cell death. Adv Med Sci 2023; 68:417-425. [PMID: 37866204 DOI: 10.1016/j.advms.2023.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/14/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
Programmed cell death plays a crucial role in maintaining the homeostasis and integrity of multicellular organisms, and its dysregulation contributes to the pathogenesis of many diseases. Programmed cell death is regulated by a range of macromolecules and low-molecular messengers, including ceramides. Endogenous ceramides have different functions, that are influenced by their localization and the presence of their target molecules. This article provides an overview of the current understanding of ceramides and their impact on various types of programmed cell death, including apoptosis, anoikis, macroautophagy and mitophagy, and necroptosis. Moreover, it highlights the emergence of dihydroceramides as a new class of bioactive sphingolipids and their downstream targets as well as their future roles in cancer cell growth, drug resistance and tumor metastasis.
Collapse
Affiliation(s)
- Martina Bago Pilátová
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovak Republic
| | - Zuzana Solárová
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovak Republic
| | - Roman Mezencev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter Solár
- Department of Medical Biology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovak Republic.
| |
Collapse
|
18
|
Fernandes A, Rodrigues PM, Pintado M, Tavaria FK. A systematic review of natural products for skin applications: Targeting inflammation, wound healing, and photo-aging. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154824. [PMID: 37119762 DOI: 10.1016/j.phymed.2023.154824] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Every day the skin is constantly exposed to several harmful factors that induce oxidative stress. When the cells are incapable to maintain the balance between antioxidant defenses and reactive oxygen species, the skin no longer can keep its integrity and homeostasis. Chronic inflammation, premature skin aging, tissue damage, and immunosuppression are possible consequences induced by sustained exposure to environmental and endogenous reactive oxygen species. Skin immune and non-immune cells together with the microbiome are essential to efficiently trigger skin immune responses to stress. For this reason, an ever-increasing demand for novel molecules capable of modulating immune functions in the skin has risen the level of their development, particularly in the field of natural product-derived molecules. PURPOSE In this review, we explore different classes of molecules that showed evidence in modulate skin immune responses, as well as their target receptors and signaling pathways. Moreover, we describe the role of polyphenols, polysaccharides, fatty acids, peptides, and probiotics as possible treatments for skin conditions, including wound healing, infection, inflammation, allergies, and premature skin aging. METHODS Literature was searched, analyzed, and collected using databases, including PubMed, Science Direct, and Google Scholar. The search terms used included "Skin", "wound healing", "natural products", "skin microbiome", "immunomodulation", "anti-inflammatory", "antioxidant", "infection", "UV radiation", "polyphenols", "polysaccharides", "fatty acids", "plant oils", "peptides", "antimicrobial peptides", "probiotics", "atopic dermatitis", "psoriasis", "auto-immunity", "dry skin", "aging", etc., and several combinations of these keywords. RESULTS Natural products offer different solutions as possible treatments for several skin conditions. Significant antioxidant and anti-inflammatory activities were reported, followed by the ability to modulate immune functions in the skin. Several membrane-bound immune receptors in the skin recognize diverse types of natural-derived molecules, promoting different immune responses that can improve skin conditions. CONCLUSION Despite the increasing progress in drug discovery, several limiting factors need future clarification. Understanding the safety, biological activities, and precise mechanisms of action is a priority as well as the characterization of the active compounds responsible for that. This review provides directions for future studies in the development of new molecules with important pharmaceutical and cosmeceutical value.
Collapse
Affiliation(s)
- A Fernandes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - P M Rodrigues
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - M Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - F K Tavaria
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
19
|
Lessons Learned from Anatomic Susceptibility in Vitiligo Patients: A Systematic Review. CURRENT DERMATOLOGY REPORTS 2023. [DOI: 10.1007/s13671-023-00384-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
20
|
Nicolaou A, Kendall AC. Current insights into skin lipids and their roles in cutaneous health and disease. Curr Opin Clin Nutr Metab Care 2023; 26:83-90. [PMID: 36574279 DOI: 10.1097/mco.0000000000000902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW The unique and complex array of cutaneous lipids include essential components of the skin structure and signalling molecules mediating homeostasis and inflammation. Understanding skin lipid biology and metabolism can support our comprehension of health and disease, including systemic conditions with cutaneous involvement. RECENT FINDINGS Lipids found on the skin surface, produced by both the host and resident microbes, maintain and regulate the skin microbiome and the epidermal barrier, whilst altered contributions from either source can be detrimental to skin health. The unique lipid composition of the epidermal barrier is essential for its function, and recent studies have expanded our understanding of epidermal ceramide production. This has been supported by improved models available for skin research, including organotypic skin models enabling in-vitro production of complex acylceramides for the first time, and model systems facilitating in-silico exploration of the lipid profile changes observed in clinical samples. Studies have revealed further involvement of lipid mediators such as eicosanoids in cutaneous inflammation, as well as immune regulation in both healthy and diseased skin. SUMMARY Skin lipids offer exciting opportunities as therapeutic targets for many conditions, whether through topical interventions or nutritional supplementation.
Collapse
Affiliation(s)
- Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences
| |
Collapse
|
21
|
Positive Correlation of Triacylglycerols with Increased Chain Length and Unsaturation with ω-O-Acylceramide and Ceramide-NP as Well as Acidic pH in the Skin Surface of Healthy Korean Adults. Metabolites 2022; 13:metabo13010031. [PMID: 36676956 PMCID: PMC9861786 DOI: 10.3390/metabo13010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Triacylglycerols (TG) play an important role in skin homeostasis including the synthesis of ω-O-acylceramides (acylCER) required for skin barrier formation by providing linoleic acid (C18:2n6). However, the overall relationships of TG species with various ceramides (CER) including CER-NP, the most abundant CER, ω-O-acylCER, and another acylCER, 1-O-acylCER in human SC, remain unclear. Therefore, we investigated these relationships and their influence on skin health status in healthy Korean adults. Twelve CER subclasses including two ω-O-acylCER and two 1-O-acylCER were identified with CER-NP consisting of approximately half of the total CER. The ω-O-acylCER species exhibited positive relationships with TG 52:4 and TG 54:2 containing C18:2, while interestingly, 1-O-acylCER containing ester-linked C14:0 and C16:0 demonstrated positive relationships with TG 46-50 including C14:0 and C16:0, respectively. In addition, CER-NP and CER-NH showed positive correlations with TG 52-54 containing C18:2 or C18:3. A lipid pattern with higher levels of CER including CER-NP and ω-O-acylCER with TG 54 and TG with 5-6 double bonds was related to good skin health status, especially with acidic skin pH. Collectively, TG with increased chain length and unsaturation seemed to improve CER content, and profiles such as higher acylCER and CER-NP improved skin health status by fortifying skin barrier structure.
Collapse
|
22
|
Martínez-Sanz J, Calvo MV, Serrano-Villar S, Montes ML, Martín-Mateos R, Burgos-Santamaría D, Díaz-Álvarez J, Talavera-Rodríguez A, Rosas M, Moreno S, Fontecha J, Sánchez-Conde M. Effects of HIV Infection in Plasma Free Fatty Acid Profiles among People with Non-Alcoholic Fatty Liver Disease. J Clin Med 2022; 11:jcm11133842. [PMID: 35807127 PMCID: PMC9267237 DOI: 10.3390/jcm11133842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
Despite its high prevalence, the mechanisms underlying non-alcoholic fatty liver disease (NAFLD) in people living with HIV (PLWH) are still unclear. In this prospective cohort study, we aim to evaluate differences in plasma fatty acid profiles between HIV-infected and HIV-uninfected participants with NAFLD. We included participants diagnosed with NAFLD, both HIV-infected and HIV-uninfected. Fatty acid methyl esters were measured from plasma samples. Ratios ([product]/[substrate]) were used to estimate desaturases and elongases activity. We used linear regression for adjusted analyses. We included 31 PLWH and 22 HIV-uninfected controls. We did not find differences in the sum of different types of FA or in FA with a greater presence of plasma. However, there were significant differences in the distribution of some FA, with higher concentrations of ALA, trans-palmitoleic, and behenic acids, and a lower concentration of lignoceric acid in PLWH. PLWH had lower C24:0/C22:0 and C16:0/C14:0 ratios, which estimates the activity of elongases ELOVL1 and ELOVL6. Both groups had similar fatty acid distribution, despite differences in traditional risk factors. PLWH had a lower proportion of specific ratios that estimate ELOVL1 and ELOVL6 activity, which had been previously described for other inflammatory conditions, such as psoriasis.
Collapse
Affiliation(s)
- Javier Martínez-Sanz
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (S.S.-V.); (J.D.-Á.); (M.R.); (S.M.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (J.M.-S.); (M.S.-C.)
| | - María Visitación Calvo
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), 28049 Madrid, Spain; (M.V.C.); (J.F.)
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (S.S.-V.); (J.D.-Á.); (M.R.); (S.M.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Luisa Montes
- HIV Unit—Internal Medicine Service, Hospital Universitario la Paz—IdiPAZ, 28046 Madrid, Spain;
| | - Rosa Martín-Mateos
- Department of Gastroenterology and Hepatology, Metabolic Liver Disease Clinic, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.M.-M.); (D.B.-S.)
- CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Universidad de Alcalá, 28871 Madrid, Spain
| | - Diego Burgos-Santamaría
- Department of Gastroenterology and Hepatology, Metabolic Liver Disease Clinic, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.M.-M.); (D.B.-S.)
| | - Jorge Díaz-Álvarez
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (S.S.-V.); (J.D.-Á.); (M.R.); (S.M.)
| | - Alba Talavera-Rodríguez
- Bioinformatics Unit, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain;
| | - Marta Rosas
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (S.S.-V.); (J.D.-Á.); (M.R.); (S.M.)
| | - Santiago Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (S.S.-V.); (J.D.-Á.); (M.R.); (S.M.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Fontecha
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), 28049 Madrid, Spain; (M.V.C.); (J.F.)
| | - Matilde Sánchez-Conde
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (S.S.-V.); (J.D.-Á.); (M.R.); (S.M.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (J.M.-S.); (M.S.-C.)
| |
Collapse
|