1
|
Ozawa S, Miura T, Terashima J, Habano W. Cellular irinotecan resistance in colorectal cancer and overcoming irinotecan refractoriness through various combination trials including DNA methyltransferase inhibitors: a review. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:946-964. [PMID: 35582377 PMCID: PMC8992440 DOI: 10.20517/cdr.2021.82] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/27/2021] [Accepted: 10/26/2021] [Indexed: 12/28/2022]
Abstract
Treatment with pharmacological drugs for colorectal cancer (CRC) remains unsatisfactory. A major cause of failure in pharmacotherapy is the resistance of colon cancer cells to the drugs, creating an urgent issue. In this review, we summarize previous studies on the resistance of CRC cells to irinotecan and discuss possible reasons for refractoriness. Our review presents the following five major causes of irinotecan resistance in human CRC: (1) cellular irinotecan resistance is induced mainly through the increased expression of the drug efflux transporter, ABCG2; (2) cellular irinotecan resistance is also induced in association with a nuclear receptor, pregnane/steroid X receptor (PXR/SXR), which is enriched in the CYP3A4 gene enhancer region in CRC cells by exposing the cells to SN-38; (3) irinotecan-resistant cells possess either reduced DNA topoisomerase I (Top1) expression at both the mRNA and protein levels or Top1 missense mutations; (4) alterations in the tumor microenvironment lead to drug resistance through intercellular vesicle-mediated transmission of miRNAs; and (5) CRC stem cells are the most difficult targets to successfully treat CRC. In the clinical setting, CRC gradually develops resistance to initially effective irinotecan-based therapy. To solve this problem, several clinical trials, such as irinotecan plus cetuximab vs. cetuximab monotherapy, have been conducted. Another clinical trial on irinotecan plus guadecitabine, a DNA-methyltransferase inhibitor, has also been conducted.
Collapse
Affiliation(s)
- Shogo Ozawa
- Division of Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Toshitaka Miura
- Division of Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Jun Terashima
- Division of Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Wataru Habano
- Division of Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| |
Collapse
|
2
|
Cho E, Islam SMBU, Jiang F, Park JE, Lee B, Kim ND, Hwang TH. Characterization of Oncolytic Vaccinia Virus Harboring the Human IFNB1 and CES2 Transgenes. Cancer Res Treat 2019; 52:309-319. [PMID: 31401821 PMCID: PMC6962490 DOI: 10.4143/crt.2019.161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose The purpose of this study was to assess characteristics of SJ-815, a novel oncolytic vaccinia virus lacking a functional thymidine kinase-encoding TK gene, and instead, having two human transgenes: the IFNB1 that encodes interferon β1, and the CES2 that encodes carboxylesterase 2, which metabolizes the prodrug, irinotecan, into cytotoxic SN-38. Materials and Methods Viral replication and dissemination of SJ-815 were measured by plaque assay and comet assay, respectively, and compared to the backbone of SJ-815, a modified Western Reserve virus named WI. Tumor cytotoxicity of SJ-815 (or mSJ-815, which has the murine IFNB1 transgene for mouse cancers) was evaluated using human and mouse cancer cells. Antitumor effects of SJ-815, with/without irinotecan, were evaluated using a human pancreatic cancer-bearing mouse model and a syngeneic melanoma-bearing mouse model. The SN-38/irinotecan ratios in mouse melanoma tissue 4 days post irinotecan treatment were compared between groups with and without SJ-815 intravenous injection. Results SJ-815 demonstrated significantly lower viral replication and dissemination, but considerably stronger in vitro tumor cytotoxicity than WI. The combination use of SJ-815 plus irinotecan generated substantial tumor regression in the human pancreatic cancer model, and significantly prolonged survival in the melanoma model (hazard ratio, 0.11; 95% confidence interval, 0.02 to 0.50; p=0.013). The tumor SN-38/irinotecan ratios were over 3-fold higher in the group with SJ-815 than those without (p < 0.001). Conclusion SJ-815 demonstrates distinct characteristics gained from the inserted IFNB1 and CES2 transgenes. The potent antitumor effects of SJ-815, particularly when combined with irinotecan, against multiple solid tumors make SJ-815 an attractive candidate for further preclinical and clinical studies.
Collapse
Affiliation(s)
- Euna Cho
- Department of Pharmacology and Medical Research Center (MRC), Pusan National University School of Medicine, Yangsan, Korea.,Department of Pharmacy and Pusan Cancer Research Center, Pusan National University, Busan, Korea
| | - S M Bakhtiar Ul Islam
- Department of Pharmacology and Medical Research Center (MRC), Pusan National University School of Medicine, Yangsan, Korea.,Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Korea
| | - Fen Jiang
- Department of Pharmacology and Medical Research Center (MRC), Pusan National University School of Medicine, Yangsan, Korea.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Ju-Eun Park
- Department of Pharmacology and Medical Research Center (MRC), Pusan National University School of Medicine, Yangsan, Korea
| | - Bora Lee
- Department of Pharmacology and Medical Research Center (MRC), Pusan National University School of Medicine, Yangsan, Korea
| | - Nam Deuk Kim
- Department of Pharmacy and Pusan Cancer Research Center, Pusan National University, Busan, Korea
| | - Tae-Ho Hwang
- Department of Pharmacology and Medical Research Center (MRC), Pusan National University School of Medicine, Yangsan, Korea
| |
Collapse
|
3
|
Aderka D, Stintzing S, Heinemann V. Explaining the unexplainable: discrepancies in results from the CALGB/SWOG 80405 and FIRE-3 studies. Lancet Oncol 2019; 20:e274-e283. [DOI: 10.1016/s1470-2045(19)30172-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
|
4
|
Sun X, Zhu D, Cai Y, Shi G, Gao M, Zheng M. One-step mechanochemical preparation and prominent antitumor activity of SN-38 self-micelle solid dispersion. Int J Nanomedicine 2019; 14:2115-2126. [PMID: 30988612 PMCID: PMC6440449 DOI: 10.2147/ijn.s193783] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose The purpose of this study was to overcome the clinical defects of 7-ethyl-10-hydroxycamptothecin (SN-38) and explore its characteristics and antitumor effects. Materials and methods An amorphous solid dispersion of SN-38 with disodium glycyrrhizin (Na2GA) was prepared by mechanical ball milling (Na2GA/SN-38-BM). Moreover, an untreated mixture of Na2GA and SN-38 (Na2GA/SN-38-UM), a pure drug SN-38, was prepared for comparison with Na2GA/SN-38-BM. The samples were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), dynamic light scattering, and transmission electron microscopy. Then, further in vitro and in vivo studies were performed including cell uptake, cytotoxicity, antitumor efficacy, tissue distribution, and histopathological evaluation (H&E staining). Results SN-38 loaded in Na2GA was self-formed as nano-micelles in water. The particle size of nano-micelle was 69.41 nm and ζ-potential was -42.01 mV. XRD and SEM analyses showed that the ball milling transformed SN-38 crystals into amorphous form and that solubility increased by 189 times. Compared with SN-38 and Na2GA/SN-38-UM, Na2GA/SN-38-BM has a stronger cytotoxicity to tumor cells and exhibited a significant inhibition of tumor growth. Then, pharmacokinetic studies showed that the bioavailability of Na2GA/SN-38-BM was about four times that of SN-38 suspension. Conclusion Na2GA/SN-38-BM (69 nm, -42 mV) nanoparticles which had excellent phar-macokinetic and distribution properties can dramatically enhance the anticancer efficacy of SN-38 in vitro and in vivo, suggesting a promising formulation for efficient anticancer therapy.
Collapse
Affiliation(s)
- Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China,
| | - Dabu Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China,
| | - Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China,
| | - Guobang Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China,
| | - Mengshi Gao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China,
| | - Minzi Zheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China,
| |
Collapse
|
5
|
A Novel Anti-EGFR mAb Ame55 with Lower Toxicity and Better Efficacy than Cetuximab When Combined with Irinotecan. J Immunol Res 2019; 2019:3017360. [PMID: 30733972 PMCID: PMC6348820 DOI: 10.1155/2019/3017360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/04/2018] [Accepted: 10/17/2018] [Indexed: 11/25/2022] Open
Abstract
To improve efficacy and minimize toxicity of EGFR inhibition treatment, we developed Ame55, a novel anti-EGFR IgG1 with lower affinity to EGFR than cetuximab (C225) from a human phage library. Ame55 had lower bioactivity than cetuximab in vitro but similar antitumor efficacy as cetuximab in vivo. Moreover, Ame55 was more efficacious than cetuximab in a Lovo cell xenograft tumor model when combined with irinotecan (CPT-11). Ame55 concentrates in the mouse xenograft tumor and has less toxicity than cetuximab in cynomolgus monkeys in an overdose study.
Collapse
|
6
|
Geng F, Wang Z, Yin H, Yu J, Cao B. Molecular Targeted Drugs and Treatment of Colorectal Cancer: Recent Progress and Future Perspectives. Cancer Biother Radiopharm 2018. [PMID: 28622036 DOI: 10.1089/cbr.2017.2210] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nowadays, colorectal cancer is the fourth most common type of tumor all over the world. When diagnosed, ∼50%-60% of tumors have metastasized, thus resulting in a grim prognosis. Chemotherapy is regarded as standard treatment for patients with colorectal cancer, however, limitations of chemotherapy cannot be ignored, such as low selectivity, insufficient concentrations in tumor tissues, and systemic toxicity. Recently, six targeted drugs have been approved by the U.S. Food and Drug Administration (FDA) for treatment of metastatic colorectal cancer (mCRC), including bevacizumab, aflibercept, regorafenib, cetuximab, and panitumumab. The development of these drugs marked significant advancement in the field of mCRC therapy. The addition of biologic agents to chemotherapy has prolonged the median overall survival. Now, many investigational drugs are under clinical trials, of which programmed death (PD)-1/L1 has drawn much attention. In this review, new biologic agents under clinical trials such as MEK/MET/RAS/RAF/PD-1 inhibitors with potentials for mCRC treatment are concluded by describing targeted drugs approved by FDA, to offer new insights into global trends and future development.
Collapse
Affiliation(s)
- Fang Geng
- 1 Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University , Beijing, China .,2 Cancer Center, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| | - Zheng Wang
- 1 Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| | - Hang Yin
- 1 Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| | - Junxian Yu
- 1 Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| | - Bangwei Cao
- 2 Cancer Center, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| |
Collapse
|
7
|
Food–drug interactions involving multiple mechanisms: A case study with effect of Capsaicin on the pharmacokinetics of Irinotecan and its main metabolites in rat. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
8
|
Chen M, Li W, Zhang X, Dong Y, Hua Y, Zhang H, Gao J, Zhao L, Li Y, Zheng A. In vitro and in vivo evaluation of SN-38 nanocrystals with different particle sizes. Int J Nanomedicine 2017; 12:5487-5500. [PMID: 28814865 PMCID: PMC5546766 DOI: 10.2147/ijn.s133816] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
7-Ethyl-10-hydroxycamptothecin (SN-38) is a potent broad-spectrum antitumor drug derived from irinotecan hydrochloride (CPT-11). Due to its poor solubility and instability of the active lactone ring, its clinical use is significantly limited. As one of the most promising formulations for poorly water-soluble drugs, nanocrystals have attracted increasing attention. In order to solve these problems and evaluate the antitumor effect of SN-38 in vitro and in vivo, two nanocrystals with markedly different particle sizes were prepared. Dynamic light scattering and transmission electron microscopy were used to investigate the two nanocrystals. The particle sizes of SN-38 nanocrystals A (SN-38/NCs-A) and SN-38 nanocrystals B (SN-38/NCs-B) were 229.5±1.99 and 799.2±14.44 nm, respectively. X-ray powder diffraction analysis showed that the crystalline state of SN-38 did not change in the size reduction process. An accelerated dissolution velocity of SN-38 was achieved by nanocrystals, and release rate of SN-38/NCs-A was significantly faster than that of SN-38/NCs-B. Cellular uptake, cellular cytotoxicity, pharmacokinetics, animal antitumor efficacy, and tissue distribution were subsequently examined. As a result, enhanced intracellular accumulation in HT1080 cells and cytotoxicity on different tumor cells were observed for SN-38/NCs-A compared to that for SN-38/NCs-B and solution. Besides, compared to the SN-38 solution, SN-38/NCs-A had a higher bioavailability after intravenous injection; while the bioavailability of SN-38/NCs-B was even lower than that of the SN-38 solution. SN-38/NCs-A exhibited a significant inhibition of tumor growth compared to SN-38 solution and SN-38/NCs-B in vivo. The antitumor effect of SN-38/NCs-B was stronger than SN-38 solution. The tissue distribution study in tumor-bearing mice showed that nanocrystals could markedly improve the drug accumulation in tumor tissue by the enhanced permeability and retention effect compared to SN-38 solution, and the amount of SN-38 in tumors of SN-38/NCs-A group was much more than that of SN-38/NCs-B group. In conclusion, nanocrystals dramatically enhanced the anticancer efficacy of SN-38 in vitro and in vivo, and the particle size had a significant influence on the dissolution behavior, pharmacokinetic properties, and tumor inhibition of nanocrystals.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology.,School of Pharmacy, Jinzhou Medical University, Jinzhou
| | - Wanqing Li
- School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xun Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology
| | - Ye Dong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology
| | - Yabing Hua
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology
| | - Hui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology
| | - Jing Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou
| | - Ying Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology
| |
Collapse
|
9
|
Wang F, Chen Y, Huang L, Liu T, Huang Y, Zhao J, Wang X, Yang K, Ma S, Huang L, To KKW, Gu Y, Fu L. Cetuximab enhanced the efficacy of chemotherapeutic agent in ABCB1/P-glycoprotein-overexpressing cancer cells. Oncotarget 2016; 6:40850-65. [PMID: 26506420 PMCID: PMC4747373 DOI: 10.18632/oncotarget.5813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 09/23/2015] [Indexed: 12/15/2022] Open
Abstract
The overexpression of ATP-binding cassette (ABC) transporters is closely associated with the development of multidrug resistance (MDR) in certain types of cancer, which represents a formidable obstacle to the successful cancer chemotherapy. Here, we investigated that cetuximab, an EGFR monoclonal antibody, reversed the chemoresistance mediated by ABCB1, ABCG2 or ABCC1. Our results showed that cetuximab significantly enhanced the cytotoxicity of ABCB1 substrate agent in ABCB1-overexpressing MDR cells but had no effect in their parental drug sensitive cells and ABCC1, ABCG2 overexpressing cells. Furthermore, cetuximab markedly increased intracellular accumulation of doxorubicin (DOX) and rhodamine 123 (Rho 123) in ABCB1-overexpressing MDR cancer cells in a concentration-dependent manner. Cetuximab stimulated the ATPase activity but did not alter the expression level of ABCB1 or block phosphorylation of AKT and ERK. Interestingly, cetuximab decreased the cell membrane fluidity which was known to decrease the function of ABCB1. Our findings advocate further clinical investigation of combination chemotherapy of cetuximab and conventional chemotherapeutic drugs in ABCB1 overexpressing cancer patients.
Collapse
Affiliation(s)
- Fang Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Yifan Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Lihua Huang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tao Liu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yue Huang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jianming Zhao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiaokun Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Ke Yang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shaolin Ma
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Liyan Huang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Yong Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Liwu Fu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Guangdong Esophageal Cancer Institute, Guangzhou, China
| |
Collapse
|
10
|
Wen F, Li Q. Treatment dilemmas of cetuximab combined with chemotherapy for metastatic colorectal cancer. World J Gastroenterol 2016; 22:5332-5341. [PMID: 27340349 PMCID: PMC4910654 DOI: 10.3748/wjg.v22.i23.5332] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/02/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023] Open
Abstract
Although monoclonal antibodies (mAbs) against epidermal growth factor receptor (EGFR) have largely enriched the available therapeutic choices for colorectal cancer (CRC), the understanding and management of their associated clinical toxicities are limited. In addition, the combined strategies of administering EGFR mAbs and traditional cytotoxic agents, such as 5-fluorouracil, oxaliplatin and irinotecan, have resulted in a more complicated management of CRC treatment-related side effects compared with EGFR mAb monotherapy. We believe that a thorough recognition of the toxicities of EGFR mAb drugs is essential for physicians to increase the therapeutic index in the treatment of CRC. This review aims to summarize the existing information regarding the treatment dilemmas of cetuximab combined with chemotherapy in the management of metastatic CRC.
Collapse
|
11
|
Etienne-Grimaldi MC, Boyer JC, Thomas F, Quaranta S, Picard N, Loriot MA, Narjoz C, Poncet D, Gagnieu MC, Ged C, Broly F, Le Morvan V, Bouquié R, Gaub MP, Philibert L, Ghiringhelli F, Le Guellec C. UGT1A1genotype and irinotecan therapy: general review and implementation in routine practice. Fundam Clin Pharmacol 2015; 29:219-37. [DOI: 10.1111/fcp.12117] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 02/05/2015] [Accepted: 02/24/2015] [Indexed: 12/19/2022]
Affiliation(s)
| | - Jean-Christophe Boyer
- Unité de Toxicologie; Laboratoire de Biochimie; CHU Carémeau, Place du Pr Debré; 30029 Nîmes Cedex France
| | - Fabienne Thomas
- Institut Claudius Regaud; 1, avenue Irène Joliot-Curie 31059 Toulouse France
| | - Sylvie Quaranta
- Service de Pharmacocinétique et Toxicologie; Laboratoire de Biologie Médicale; Hôpital de la Timone; Bât F; 264 rue Saint Pierre 13385 Marseille Cedex 05 France
| | - Nicolas Picard
- Service Pharmacologie; Toxicologie et Pharmacovigilance; CHU Limoges, Bâtiment CBRS; 2 avenue Martin Luther King 87042 Limoges France
| | - Marie-Anne Loriot
- Hôpital Européen Georges Pompidou; SERVICE BIOCHIMIE; 20 Rue Leblanc 75015 Paris France
| | - Céline Narjoz
- Hôpital Européen Georges Pompidou; SERVICE BIOCHIMIE; 20 Rue Leblanc 75015 Paris France
| | - Delphine Poncet
- Equipe Signalisation Métabolisme et Progression Tumorale; UMR 1052-5286; Centre Léon Bérard; 28 rue Laennec 69373 Lyon Cedex 08 69008 Lyon France
| | - Marie-Claude Gagnieu
- Fédération de Biochimie; UF Pharmacologie Spécialisée; Hôpital E. Herriot; 5 place d'Arsonval 69437 Lyon Cedex 03 France
| | - Cécile Ged
- Plateau Technique de Biologie Moléculaire; Pôle de Biologie et Pathologie; CHU de Bordeaux; 1, place A Raba Leon 33 000 Bordeaux France
| | - Franck Broly
- Service de Toxicologie et Génopathies; Centre de Biologie Pathologie Génétique; Centre Hospitalier Régional et Universitaire de Lille; 59037 Lille Cedex France
| | - Valérie Le Morvan
- Institut Bergonié; Unité Inserm VINCO; 229 cours de l'Argonne 33076 Bordeaux Cedex France
| | - Régis Bouquié
- Laboratoire de Pharmacologie clinique; Institut de Biologie - CHU Nantes; 9, quai Moncousu 44093 Nantes Cedex 1 France
| | - Marie-Pierre Gaub
- EA3430; FMTS Université de Strasbourg; Laboratoire de Biochimie- Biologie Moléculaire; Hôpital de hautepierre; Avenue Molière 67098 Strasbourg France
| | - Laurent Philibert
- Unité de Biopathologie et pharmacogénétique; Laboratoire d'oncopharmacologie; Institut régional du Cancer Montpellier - Val d'Aurelle; 208 Avenue des Apothicaires 34298 Montpellier Cedex 5 France
| | - François Ghiringhelli
- Département de biopathologie; Centre Georges Francois Leclerc; 1 rue du professeur Marion 21000 Dijon France
| | - Chantal Le Guellec
- Unité de pharmacogénétique; Laboratoire de biochimie et biologie moléculaire; CHU Bretonneau; 2 bis boulevard Tonnellé 37044 Tours France
| | | |
Collapse
|