1
|
Chen X, Luo J, Song M, Pan L, Qu Z, Huang B, Yu S, Shu H. Challenges and prospects in geriatric epilepsy treatment: the role of the blood-brain barrier in pharmacotherapy and drug delivery. Front Aging Neurosci 2024; 16:1342366. [PMID: 38389560 PMCID: PMC10882099 DOI: 10.3389/fnagi.2024.1342366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
The blood-brain barrier (BBB) is pivotal in maintaining neuronal physiology within the brain. This review delves into the alterations of the BBB specifically in the context of geriatric epilepsy. We examine how age-related changes in the BBB contribute to the pathogenesis of epilepsy in the elderly and present significant challenges in pharmacotherapy. Subsequently, we evaluate recent advancements in drug delivery methods targeting the BBB, as well as alternative approaches that could bypass the BBB's restrictive nature. We particularly highlight the use of neurotropic viruses and various synthetic nanoparticles that have been investigated for delivering a range of antiepileptic drugs. Additionally, the advantage and limitation of these diverse delivery methods are discussed. Finally, we analyze the potential efficacy of different drug delivery approaches in the treatment of geriatric epilepsy, aiming to provide insights into more effective management of this condition in the elderly population.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan, China
| | - Juan Luo
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Min Song
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan, China
| | - Liang Pan
- Department of Pediatrics, Western Theater General Hospital, Chengdu, Sichuan, China
| | - Zhichuang Qu
- Department of Neurosurgery, Meishan City People's Hospital, Meishan, Sichuan, China
| | - Bo Huang
- Department of Burn and Plastic, Western Theater General Hospital, Chengdu, Sichuan, China
| | - Sixun Yu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan, China
| | - Haifeng Shu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Auvin S, Galanopoulou AS, Moshé SL, Potschka H, Rocha L, Walker MC. Revisiting the concept of drug-resistant epilepsy: A TASK1 report of the ILAE/AES Joint Translational Task Force. Epilepsia 2023; 64:2891-2908. [PMID: 37676719 PMCID: PMC10836613 DOI: 10.1111/epi.17751] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
Despite progress in the development of anti-seizure medications (ASMs), one third of people with epilepsy have drug-resistant epilepsy (DRE). The working definition of DRE, proposed by the International League Against Epilepsy (ILAE) in 2010, helped identify individuals who might benefit from presurgical evaluation early on. As the incidence of DRE remains high, the TASK1 workgroup on DRE of the ILAE/American Epilepsy Society (AES) Joint Translational Task Force discussed the heterogeneity and complexity of its presentation and mechanisms, the confounders in drawing mechanistic insights when testing treatment responses, and barriers in modeling DRE across the lifespan and translating across species. We propose that it is necessary to revisit the current definition of DRE, in order to transform the preclinical and clinical research of mechanisms and biomarkers, to identify novel, effective, precise, pharmacologic treatments, allowing for earlier recognition of drug resistance and individualized therapies.
Collapse
Affiliation(s)
| | - Stéphane Auvin
- Institut Universitaire de France, Paris, France; Paediatric Neurology, Assistance Publique - Hôpitaux de Paris, EpiCARE ERN Member, Robert-Debré Hospital, Paris, France; University Paris-Cité, Paris, France
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, and Montefiore/Einstein Epilepsy Center, Bronx, New York, USA
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, and Montefiore/Einstein Epilepsy Center, Bronx, New York, USA; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Luisa Rocha
- Pharmacobiology Department. Center for Research and Advanced Studies (CINVESTAV). Mexico City, Mexico
| | - Matthew C. Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
3
|
Eng ME, Imperio GE, Bloise E, Matthews SG. ATP-binding cassette (ABC) drug transporters in the developing blood-brain barrier: role in fetal brain protection. Cell Mol Life Sci 2022; 79:415. [PMID: 35821142 PMCID: PMC11071850 DOI: 10.1007/s00018-022-04432-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 12/19/2022]
Abstract
The blood-brain barrier (BBB) provides essential neuroprotection from environmental toxins and xenobiotics, through high expression of drug efflux transporters in endothelial cells of the cerebral capillaries. However, xenobiotic exposure, stress, and inflammatory stimuli have the potential to disrupt BBB permeability in fetal and post-natal life. Understanding the role and ability of the BBB in protecting the developing brain, particularly with respect to drug/toxin transport, is key to promoting long-term brain health. Drug transporters, particularly P-gp and BCRP are expressed in early gestation at the developing BBB and have a crucial role in developmental homeostasis and fetal brain protection. We have highlighted several factors that modulate drug transporters at the developing BBB, including synthetic glucocorticoid (sGC), cytokines, maternal infection, and growth factors. Some factors have the potential to increase expression and function of drug transporters and increase brain protection (e.g., sGC, transforming growth factor [TGF]-β). However, others inhibit drug transporters expression and function at the BBB, increasing brain exposure to xenobiotics (e.g., tumor necrosis factor [TNF], interleukin [IL]-6), negatively impacting brain development. This has implications for pregnant women and neonates, who represent a vulnerable population and may be exposed to drugs and environmental toxins, many of which are P-gp and BCRP substrates. Thus, alterations in regulated transport across the developing BBB may induce long-term changes in brain health and compromise pregnancy outcome. Furthermore, a large portion of neonatal adverse drug reactions are attributed to agents that target or access the nervous system, such as stimulants (e.g., caffeine), anesthetics (e.g., midazolam), analgesics (e.g., morphine) and antiretrovirals (e.g., Zidovudine); thus, understanding brain protection is key for the development of strategies to protect the fetal and neonatal brain.
Collapse
Affiliation(s)
- Margaret E Eng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Bldg. Rm. 3207. 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | | | - Enrrico Bloise
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Bldg. Rm. 3207. 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Stephen G Matthews
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Bldg. Rm. 3207. 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada.
- Department of Obstetrics and Gynecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
4
|
Mareš P, Kozlová L, Mikulecká A, Kubová H. The GluN2B-Selective Antagonist Ro 25-6981 Is Effective against PTZ-Induced Seizures and Safe for Further Development in Infantile Rats. Pharmaceutics 2021; 13:pharmaceutics13091482. [PMID: 34575558 PMCID: PMC8469742 DOI: 10.3390/pharmaceutics13091482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
The GluN2B subunit of NMDA receptors represents a perspective therapeutic target in various CNS pathologies, including epilepsy. Because of its predominant expression in the immature brain, selective GluN2B antagonists are expected to be more effective early in postnatal development. The aim of this study was to identify age-dependent differences in the anticonvulsant activity of the GluN2B-selective antagonist Ro 25-6981 and assess the safety of this drug for the developing brain. Anticonvulsant activity of Ro 25-6981 (1, 3, and 10 mg/kg) was tested in a pentylenetetrazol (PTZ) model in infantile (12-day-old, P12) and juvenile (25-day-old, P25) rats. Ro 25-6981 (1 or 3 mg/kg/day) was administered from P7 till P11 to assess safety for the developing brain. Animals were then tested repeatedly in a battery of behavioral tests focusing on sensorimotor development, cognition, and emotionality till adulthood. Effects of early exposure to Ro 25-6981 on later seizure susceptibility were tested in the PTZ model. Ro 25-6981 was effective against PTZ-induced seizures in infantile rats, specifically suppressing the tonic phase of the generalized tonic-clonic seizures, but it failed in juveniles. Neither sensorimotor development nor cognitive abilities and emotionality were affected by early-life exposure to Ro 25-6981. Treatment cessation did not affect later seizure susceptibility. Our data are in line with the maturational gradient of the GluN2B-subunit of NMDA receptors and demonstrate developmental differences in the anti-seizure activity of the GluN2B-selective antagonist and its safety for the developing brain.
Collapse
Affiliation(s)
- Pavel Mareš
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; (P.M.); (L.K.); (A.M.)
- Department of Rehabilitation and Sport Medicine, 2nd Medical Faculty, Charles University, 15006 Prague, Czech Republic
| | - Lucie Kozlová
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; (P.M.); (L.K.); (A.M.)
- Department of Rehabilitation and Sport Medicine, 2nd Medical Faculty, Charles University, 15006 Prague, Czech Republic
| | - Anna Mikulecká
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; (P.M.); (L.K.); (A.M.)
| | - Hana Kubová
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; (P.M.); (L.K.); (A.M.)
- Correspondence:
| |
Collapse
|
5
|
Gonçalves J, Silva S, Gouveia F, Bicker J, Falcão A, Alves G, Fortuna A. A combo-strategy to improve brain delivery of antiepileptic drugs: Focus on BCRP and intranasal administration. Int J Pharm 2020; 593:120161. [PMID: 33307160 DOI: 10.1016/j.ijpharm.2020.120161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/12/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022]
Abstract
The breast cancer resistance protein (BCRP) is an efflux transporter expressed at the apical surface of human brain endothelial cells of the blood-brain barrier (BBB). It was proposed as one of the transporters responsible for the development of drug resistance to several central nervous system (CNS) drugs, including antiepileptic drugs (AEDs). In this context, the present work aimed to characterize the interaction between new-generation AEDs, lacosamide, levetiracetam and zonisamide, and BCRP, in order to investigate whether intranasal administration can successfully avoid the impact of BCRP on brain drug distribution, preventing the development of refractory epilepsy. Firstly, BCRP substrates and/or inhibitors were identified resorting to intracellular accumulation and bidirectional transport assays on Madin-Darby canine kidney (MDCK) cells and the transfected cell line with human ABCG2 (MDCK-BCRP). Furthermore, in vivo pharmacokinetic studies were carried out for BCRP substrates with and without elacridar, a well-known P-gp and BCRP modulator, to assess the impact of efflux inhibition on brain drug distribution. The extent of drug equilibration between plasma and brain was compared after intravenous (IV) and intranasal administration to mice. Among the three tested AEDs, zonisamide was the only AED identified as BCRP substrate in vitro, as demonstrated by the net flux ratio of 2.73, which decreased 53.85 % in the presence of a BCRP inhibitor, Ko143. Lacosamide revealed to inhibit BCRP in all tested concentrations (2.5-75 µM), exhibiting a significant increase (p < 0.001) of the intracellular accumulation of a BCRP substrate (Hoechst 33342) in MDCK-BCRP cells. Levetiracetam did not behave as a BCRP substrate nor inhibitor. After IV administration, the plasma concentrations of zonisamide were unaffected by elacridar, but its extent of brain exposure increased three-fold (as assessed by AUCt, 674.12 vs 284.47 µg.min/mL). These results corroborate the previous in vitro findings, suggesting that BCRP is involved in the transport of zonisamide through the BBB. In opposition, no significant changes were found in plasma or brain concentrations after the administration of zonisamide by intranasal route, indicating that the influence of BCRP is less relevant than for IV route. In addition, direct nose-to-brain delivery of zonisamide, given by the direct transport percentage, was approximately 49 %. Altogether, these assays demonstrated that the impact of BCRP on the delivery of zonisamide to the brain is lower after intranasal administration, probably due to direct nose-to-brain transport. Therefore, the intranasal administration of AEDs may be a relevant strategy to avoid the impact of efflux transporters at the BBB and the development of drug resistance.
Collapse
Affiliation(s)
- Joana Gonçalves
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Soraia Silva
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Filipa Gouveia
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Joana Bicker
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Amílcar Falcão
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana Fortuna
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal.
| |
Collapse
|
6
|
DISDIER C, STONESTREET BS. Hypoxic-ischemic-related cerebrovascular changes and potential therapeutic strategies in the neonatal brain. J Neurosci Res 2020; 98:1468-1484. [PMID: 32060970 PMCID: PMC7242133 DOI: 10.1002/jnr.24590] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022]
Abstract
Perinatal hypoxic-ischemic (HI)-related brain injury is an important cause of morbidity and long-standing disability in newborns. The only currently approved therapeutic strategy available to reduce brain injury in the newborn is hypothermia. Therapeutic hypothermia can only be used to treat HI encephalopathy in full-term infants and survivors remain at high risk for a wide spectrum of neurodevelopmental abnormalities as a result of residual brain injury. Therefore, there is an urgent need for adjunctive therapeutic strategies. Inflammation and neurovascular damage are important factors that contribute to the pathophysiology of HI-related brain injury and represent exciting potential targets for therapeutic intervention. In this review, we address the role of each component of the neurovascular unit (NVU) in the pathophysiology of HI-related injury in the neonatal brain. Disruption of the blood-brain barrier (BBB) observed in the early hours after an HI-related event is associated with a response at the basal lamina level, which comprises astrocytes, pericytes, and immune cells, all of which could affect BBB function to further exacerbate parenchymal injury. Future research is required to determine potential drugs that could prevent or attenuate neurovascular damage and/or augment repair. However, some studies have reported beneficial effects of hypothermia, erythropoietin, stem cell therapy, anti-cytokine therapy and metformin in ameliorating several different facets of damage to the NVU after HI-related brain injury in the perinatal period.
Collapse
Affiliation(s)
- Clémence DISDIER
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI 02905, USA
| | - Barbara S STONESTREET
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI 02905, USA
| |
Collapse
|
7
|
Qin YY, Xu P, Wu T, Qian CQ, Fan YL, Gen DH, Zhu L, Kong WM, Yang HY, Xu F, Yang YT, Liu L, Liu XD. Bile duct ligation enhances AZT CNS toxicity partly by impairing the expression and function of BCRP in rat brain. Acta Pharmacol Sin 2020; 41:181-191. [PMID: 31142800 PMCID: PMC7470810 DOI: 10.1038/s41401-019-0242-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer resistance protein (BCRP) is one of ATP-binding cassette (ABC) transporters in brain microvessel endothelial cells that transport their substrates from brain to blood, thus limiting substrates to crossing into brain through blood-brain barrier. Our previous works show that bile duct ligation (BDL) impairs expression and function of brain BCRP in rats. Since zidovudine (AZT) is BCRP substrate, we investigated whether impaired expression and function of BCRP increased brain distribution and toxicity of AZT in BDL-D7 rats. After administration of AZT (10 mg/kg, i.v.), BDL markedly increased brain AZT concentrations, compared with sham-operated (SO) rats. The ratio of AZT brain-to-plasma area under concentration curve (AUC) in BDL rats was increased to 1.6-folds of SO rats. After treatment with AZT (100 mg/kg every day, i.v.) for 7 days, BDL significantly impaired cognitive functions compared with SO rats, evidenced by the significantly decreased percentage of alternation in Y-maze test and prolonged escaped latency in two-way passive avoidance trial. Furthermore, AZT treatment caused significant decrease in copies of mitochondrial DNA and mitochondrial membrane potential in hippocampus of BDL rats. Moreover, AZT treatment caused a significant decrease of cortex microtubule-associated protein 2 and hippocampus synaptophysin levels in BDL rats. AZT-induced CNS adverse alterations in BDL rats were not observed in SO rats treated with AZT. In conclusion, BDL decreases the function and expression of brain BCRP in rats, leading to increased brain distribution of AZT, which in turn enhances AZT CNS toxicity, leading to mitochondrial dysfunction, neuronal damage, and ultimately cognitive dysfunction.
Collapse
Affiliation(s)
- Yuan-Yuan Qin
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ping Xu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tong Wu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chao-Qun Qian
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi-Lin Fan
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Dong-Hao Gen
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Liang Zhu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wei-Min Kong
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Han-Yu Yang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Xu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi-Ting Yang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiao-Dong Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
8
|
Nicolas JM, de Lange ECM. Mind the Gaps: Ontogeny of Human Brain P-gp and Its Impact on Drug Toxicity. AAPS JOURNAL 2019; 21:67. [PMID: 31140038 DOI: 10.1208/s12248-019-0340-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022]
Abstract
Available data on human brain P-glycoprotein ontogeny during infancy and childhood are limited. This review discusses the current body of data relating to maturation of human brain P-glycoprotein including transporter expression levels in post-mortem human brain samples, in vivo transporter activity using probe substrates, surrogate marker endpoints, and extrapolations from animal models. Overall, the data tend to confirm that human brain P-glycoprotein activity keeps developing after birth, although with a developmental time frame that remains unclear. This knowledge gap is a concern given the critical role of brain P-glycoprotein in drug safety and efficacy, and the vulnerable nature of the pediatric population. Future research could include the measurement of brain P-glycoprotein activity across age groups using positron emission tomography or central pharmacodynamic responses. For now, caution is advised when extrapolating adult data to children aged younger than 2 years for drugs with P-glycoprotein-dependent central nervous system activity.
Collapse
Affiliation(s)
- Jean-Marie Nicolas
- Quantitative Pharmacology DMPK Department, UCB BioPharma, Chemin du Foriest, 1420, Braine L'Alleud, Belgium.
| | - Elizabeth C M de Lange
- Research Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
9
|
Hagos FT, Adams SM, Poloyac SM, Kochanek PM, Horvat CM, Clark RSB, Empey PE. Membrane transporters in traumatic brain injury: Pathological, pharmacotherapeutic, and developmental implications. Exp Neurol 2019; 317:10-21. [PMID: 30797827 DOI: 10.1016/j.expneurol.2019.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Abstract
Membrane transporters regulate the trafficking of endogenous and exogenous molecules across biological barriers and within the neurovascular unit. In traumatic brain injury (TBI), they moderate the dynamic movement of therapeutic drugs and injury mediators among neurons, endothelial cells and glial cells, thereby becoming important determinants of pathogenesis and effective pharmacotherapy after TBI. There are three ways transporters may impact outcomes in TBI. First, transporters likely play a key role in the clearance of injury mediators. Second, genetic association studies suggest transporters may be important in the transition of TBI from acute brain injury to a chronic neurological disease. Third, transporters dynamically control the brain penetration and efflux of many drugs and their distribution within and elimination from the brain, contributing to pharmacoresistance and possibly in some cases pharmacosensitivity. Understanding the nature of drugs or candidate drugs in development with respect to whether they are a transporter substrate or inhibitor is relevant to understand whether they distribute to their target in sufficient concentrations. Emerging data provide evidence of altered expression and function of transporters in humans after TBI. Genetic variability in expression and/or function of key transporters adds an additional dynamic, as shown in recent clinical studies. In this review, evidence supporting the role of individual membrane transporters in TBI are discussed as well as novel strategies for their modulation as possible therapeutic targets. Since data specifically targeting pediatric TBI are sparse, this review relies mainly on experimental studies using adult animals and clinical studies in adult patients.
Collapse
Affiliation(s)
- Fanuel T Hagos
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, United States of America
| | - Solomon M Adams
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, United States of America
| | - Samuel M Poloyac
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America; UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States of America
| | - Christopher M Horvat
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America; UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States of America
| | - Robert S B Clark
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America; UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States of America.
| | - Philip E Empey
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
10
|
Pozhilenkova EA, Lopatina OL, Komleva YK, Salmin VV, Salmina AB. Blood-brain barrier-supported neurogenesis in healthy and diseased brain. Rev Neurosci 2018; 28:397-415. [PMID: 28195555 DOI: 10.1515/revneuro-2016-0071] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/23/2016] [Indexed: 12/23/2022]
Abstract
Adult neurogenesis is one of the most important mechanisms contributing to brain development, learning, and memory. Alterations in neurogenesis underlie a wide spectrum of brain diseases. Neurogenesis takes place in highly specialized neurogenic niches. The concept of neurogenic niches is becoming widely accepted due to growing evidence of the important role of the microenvironment established in the close vicinity to stem cells in order to provide adequate control of cell proliferation, differentiation, and apoptosis. Neurogenic niches represent the platform for tight integration of neurogenesis and angiogenesis supported by specific properties of cerebral microvessel endothelial cells contributing to establishment of partially compromised blood-brain barrier (BBB) for the adjustment of local conditions to the current metabolic needs of stem and progenitor cells. Here, we review up-to-date data on microvascular dynamics in activity-dependent neurogenesis, specific properties of BBB in neurogenic niches, endothelial-driven mechanisms of clonogenic activity, and future perspectives for reconstructing the neurogenic niches in vitro.
Collapse
|
11
|
Abcb1a and Abcb1b genes function differentially in blood-testis barrier dynamics in the rat. Cell Death Dis 2017; 8:e3038. [PMID: 28880272 PMCID: PMC5636980 DOI: 10.1038/cddis.2017.435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/10/2017] [Accepted: 07/28/2017] [Indexed: 01/25/2023]
Abstract
During spermatogenesis, immature spermatocytes traverse the blood–testis barrier (BTB) and enter the apical apartment of seminiferous epithelium for further development. This course involves extensive junction disassembly and reassembly at the BTB. P-glycoprotein is known to be coded by two genes in rodents, namely Abcb1a and Abcb1b. Our previous studies showed that simultaneously silencing Abcb1a and Abcb1b genes in Sertoli cells impeded BTB integrity. However, the individual role of Abcb1a and Abcb1b in regulating BTB dynamics remains uninvestigated. Here, single knockdown of Abcb1a by RNAi impeded the in vitro Sertoli cell permeability barrier via redistributing TJ proteins, accelerating endocytosis, and affecting endocytic vesicle-mediated protein transportation that undermined Sertoli cell barrier. F5-peptide model was used to induce cell junction disruption and subsequent restructuring in primary Sertoli cells. F5-peptide perturbed this barrier, but its removal allowed barrier ‘resealing’. Abcb1b knockdown was found to inhibit barrier resealing following F5-peptide removal by suppressing the restore of the expression and distribution of junction proteins at BTB, and reducing the migration of internalized junction proteins back to Sertoli cell interface. In summary, Abcb1a is critical in maintaining BTB integrity, while Abcb1b is crucial for junction reassembly at the BTB.
Collapse
|
12
|
Erdő F, Nagy I, Tóth B, Bui A, Molnár É, Tímár Z, Magnan R, Krajcsi P. Abcb1a (P-glycoprotein) limits brain exposure of the anticancer drug candidate seliciclib in vivo in adult mice. Brain Res Bull 2017. [PMID: 28629814 DOI: 10.1016/j.brainresbull.2017.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Seliciclib displayed limited brain exposure in vivo in adult rats with mature blood-brain barrier (BBB). Selicilib was shown to be a specific substrate of human ABCB1 in vitro. To demonstrate that ABCB1/Abcb1 can limit brain exposure in vivo in mice we are showing that seliciclib is a substrate of mouse Abcb1a, the murine ABCB1 ortholog expressed in the BBB as LLC-PK-Abcb1a cells displayed an efflux ratio (ER) of 15.31±3.54 versus an ER of 1.44±0.10 in LLC-PK1-mock cells. Additionally, in the presence of LY335979, an ABCB1/Abcb1a specific inhibitor, the observed ER for seliciclib in the LLC-PK1-mMdr1a cells decreased to 1.05±0.25. To demonstrate in vivo relevance of seliciclib transport by Abcb1a mouse brain microdialysis experiments were carried out that showed that the AUCbrain/AUCblood ratio of 0.143 in anesthetized mice increased about two-fold to 0.279 in the presence of PSC833 another ABCB1/Abcb1a specific inhibitor. PSC833 also increased the brain exposure (AUCbrain) of seliciclib close to 2-fold (136 vs 242) in awake mice. In sum, Abcb1a significantly decreases seliciclib permeability in vitro and is partly responsible for limited brain exposure of seliciclib in vivo in mice.
Collapse
Affiliation(s)
- Franciska Erdő
- SOLVO Biotechnology, Középfasor 52, Szeged, 6726 Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/a, Budapest, 1083 Hungary
| | - Ildikó Nagy
- SOLVO Biotechnology, Gyár u. 2, Budaörs, 2040 Hungary
| | - Beáta Tóth
- SOLVO Biotechnology, Gyár u. 2, Budaörs, 2040 Hungary
| | - Annamária Bui
- SOLVO Biotechnology, Gyár u. 2, Budaörs, 2040 Hungary
| | - Éva Molnár
- SOLVO Biotechnology, Középfasor 52, Szeged, 6726 Hungary
| | - Zoltán Tímár
- SOLVO Biotechnology, Középfasor 52, Szeged, 6726 Hungary
| | - Rémi Magnan
- SOLVO Biotechnology, Gyár u. 2, Budaörs, 2040 Hungary
| | - Peter Krajcsi
- SOLVO Biotechnology, Gyár u. 2, Budaörs, 2040 Hungary.
| |
Collapse
|
13
|
Review: The blood-brain barrier; protecting the developing fetal brain. Placenta 2017; 54:111-116. [DOI: 10.1016/j.placenta.2016.12.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 11/18/2022]
|
14
|
Nałęcz KA. Solute Carriers in the Blood–Brain Barier: Safety in Abundance. Neurochem Res 2016; 42:795-809. [DOI: 10.1007/s11064-016-2030-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 12/22/2022]
|