1
|
Nie Z, Xiao C, Wang Y, Li R, Zhao F. Heat shock proteins (HSPs) in non-alcoholic fatty liver disease (NAFLD): from molecular mechanisms to therapeutic avenues. Biomark Res 2024; 12:120. [PMID: 39396024 PMCID: PMC11470698 DOI: 10.1186/s40364-024-00664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), a spectrum of liver conditions characterized by fat accumulation without excessive alcohol consumption, represents a significant global health burden. The intricate molecular landscape underlying NAFLD pathogenesis involves lipid handling, inflammation, oxidative stress, and mitochondrial dysfunction, with endoplasmic reticulum (ER) stress emerging as a key contributor. ER stress triggers the unfolded protein response (UPR), impacting hepatic steatosis in NAFLD and contributing to inflammation, fibrosis, and progression to NASH and eventually hepatocellular carcinoma (HCC). Heat shock proteins (HSPs), including small HSPs such as HSP20 and HSP27, HSP60, HSP70, GRP78, and HSP90, are integral to cellular stress responses. They aid in protein folding, prevent aggregation, and facilitate degradation, thus mitigating cellular damage under stress conditions. In NAFLD, aberrant HSP expression and function contribute to disease pathogenesis. Understanding the specific roles of HSP subtypes in NAFLD offers insights into potential therapeutic interventions. This review discusses the involvement of HSPs in NAFLD pathophysiology and highlights their therapeutic potential. By elucidating the molecular mechanisms underlying HSP-mediated protection in NAFLD, this article aims to pave the way for the development of targeted therapies for this prevalent liver disorder.
Collapse
Affiliation(s)
- Zhenwang Nie
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Congshu Xiao
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yingzi Wang
- International Medical Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Rongkuan Li
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fangcheng Zhao
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
2
|
Xu HL, Wan SR, An Y, Wu Q, Xing YH, Deng CH, Zhang PP, Long Y, Xu BT, Jiang ZZ. Targeting cell death in NAFLD: mechanisms and targeted therapies. Cell Death Discov 2024; 10:399. [PMID: 39244571 PMCID: PMC11380694 DOI: 10.1038/s41420-024-02168-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a group of chronic liver disease which ranges from simple steatosis (NAFL) to non-alcoholic steatohepatitis (NASH) and is characterized by lipid accumulation, inflammation activation, fibrosis, and cell death. To date, a number of preclinical studies or clinical trials associated with therapies targeting fatty acid metabolism, inflammatory factors and liver fibrosis are performed to develop effective drugs for NAFLD/NASH. However, few therapies are cell death signaling-targeted even though the various cell death modes are present throughout the progression of NAFLD/NASH. Here we summarize the four types of cell death including apoptosis, necroptosis, pyroptosis, and ferroptosis in the NAFLD and the underlying molecular mechanisms by which the pathogenic factors such as free fatty acid and LPS induce cell death in the pathogenesis of NAFLD. In addition, we also review the effects of cell death-targeted therapies on NAFLD. In summary, our review provides comprehensive insight into the roles of various cell death modes in the progression of NAFLD, which we hope will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Hui-Li Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Sheng-Rong Wan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Ying An
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Qi Wu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Precision Pathology Diagnosis for Serious Diseases Key Laboratory of LuZhou, Luzhou, Sichuan, PR China
| | - Yi-Hang Xing
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Chen-Hao Deng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Ping-Ping Zhang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Precision Pathology Diagnosis for Serious Diseases Key Laboratory of LuZhou, Luzhou, Sichuan, PR China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Bu-Tuo Xu
- The People's Hospital of Pingyang, Wenzhou, Zhejiang, PR China.
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China.
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China.
| |
Collapse
|
3
|
Pi D, Liang Z, Pan J, Zhen J, Zheng C, Fan W, Song Q, Pan M, Yang Q, Zhang Y. Tanshinone IIA Inhibits the Endoplasmic Reticulum Stress-Induced Unfolded Protein Response by Activating the PPARα/FGF21 Axis to Ameliorate Nonalcoholic Steatohepatitis. Antioxidants (Basel) 2024; 13:1026. [PMID: 39334685 PMCID: PMC11428933 DOI: 10.3390/antiox13091026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a critical stage in the progression of nonalcoholic fatty liver disease (NAFLD). Tanshinone IIA (TIIA) is a tanshinone extracted from Salvia miltiorrhiza; due to its powerful anti-inflammatory and antioxidant biological activities, it is commonly used for treating cardiovascular and hepatic diseases. A NASH model was established by feeding mice a methionine and choline-deficient (MCD) diet. Liver surface microblood flow scanning, biochemical examination, histopathological examination, cytokine analysis through ELISA, lipidomic analysis, transcriptomic analysis, and Western blot analysis were used to evaluate the therapeutic effect and mechanism of TIIA on NASH. The results showed that TIIA effectively reduced lipid accumulation, fibrosis, and inflammation and alleviated endoplasmic reticulum (ER) stress. Lipidomic analysis revealed that TIIA normalized liver phospholipid metabolism in NASH mice. A KEGG analysis of the transcriptome revealed that TIIA exerted its effect by regulating the PPAR signalling pathway, protein processing in the ER, and the NOD-like receptor signalling pathway. These results suggest that TIIA alleviates NASH by activating the PPARα/FGF21 axis to negatively regulate the ER stress-induced unfolded protein response (UPR).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maoxing Pan
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; (D.P.); (Z.L.); (J.P.); (J.Z.); (C.Z.); (W.F.); (Q.S.)
| | - Qinhe Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; (D.P.); (Z.L.); (J.P.); (J.Z.); (C.Z.); (W.F.); (Q.S.)
| | - Yupei Zhang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; (D.P.); (Z.L.); (J.P.); (J.Z.); (C.Z.); (W.F.); (Q.S.)
| |
Collapse
|
4
|
Huang L, Tan L, Lv Z, Chen W, Wu J. Pharmacology of bioactive compounds from plant extracts for improving non-alcoholic fatty liver disease through endoplasmic reticulum stress modulation: A comprehensive review. Heliyon 2024; 10:e25053. [PMID: 38322838 PMCID: PMC10844061 DOI: 10.1016/j.heliyon.2024.e25053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver condition with significant clinical implications. Emerging research indicates endoplasmic reticulum (ER) stress as a critical pathogenic factor governing inflammatory responses, lipid metabolism and insulin signal transduction in patients with NAFLD. ER stress-associated activation of multiple signal transduction pathways, including the unfolded protein response, disrupts lipid homeostasis and substantially contributes to NAFLD development and progression. Targeting ER stress for liver function enhancement presents an innovative therapeutic strategy. Notably, the natural bioactive compounds of plant extracts have shown potential for treating NAFLD by reducing the level of ER stress marker proteins and mitigating inflammation, stress responses, and de novo lipogenesis. However, owing to limited comprehensive reviews, the effectiveness and pharmacology of these bioactive compounds remain uncertain. Objectives To address the abovementioned challenges, the current review categorizes the bioactive compounds of plant extracts by chemical structures and properties into flavonoids, phenols, terpenoids, glycosides, lipids and quinones and examines their ameliorative potential for NAFLD under ER stress. Methods This review systematically analyses the literature on the interactions of bioactive compounds from plant extracts with molecular targets under ER stress, providing a holistic view of NAFLD therapy. Results Bioactive compounds from plant extracts may improve NAFLD by alleviating ER stress; reducing lipid synthesis, inflammation, oxidative stress and apoptosis and enhancing fatty acid metabolism. This provides a multifaceted approach for treating NAFLD. Conclusion This review underscores the role of ER stress in NAFLD and the potential of plant bioactive compounds in treating this condition. The molecular mechanisms by which plant bioactive compounds interact with their ER stress targets provide a basis for further exploration in NAFLD management.
Collapse
Affiliation(s)
- Liying Huang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Liping Tan
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Zhuo Lv
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Wenhui Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Junzi Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| |
Collapse
|
5
|
Allard J, Bucher S, Ferron PJ, Launay Y, Fromenty B. Busulfan induces steatosis in HepaRG cells but not in primary human hepatocytes: Possible explanations and implication for the prediction of drug-induced liver injury. Fundam Clin Pharmacol 2024; 38:152-167. [PMID: 37665028 DOI: 10.1111/fcp.12951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/27/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND The antineoplastic drug busulfan can induce different hepatic lesions including cholestasis and sinusoidal obstruction syndrome. However, hepatic steatosis has never been reported in patients. OBJECTIVES This study aimed to determine whether busulfan could induce steatosis in primary human hepatocytes (PHH) and differentiated HepaRG cells. METHODS Neutral lipids were determined in PHH and HepaRG cells. Mechanistic investigations were performed in HepaRG cells by measuring metabolic fluxes linked to lipid homeostasis, reduced glutathione (GSH) levels, and expression of genes involved in lipid metabolism and endoplasmic reticulum (ER) stress. Analysis of two previous transcriptomic datasets was carried out. RESULTS Busulfan induced lipid accumulation in HepaRG cells but not in six different batches of PHH. In HepaRG cells, busulfan impaired VLDL secretion, increased fatty acid uptake, and induced ER stress. Transcriptomic data analysis and decreased GSH levels suggested that busulfan-induced steatosis might be linked to the high expression of glutathione S-transferase (GST) isoenzyme A1, which is responsible for the formation of the hepatotoxic sulfonium cation conjugate. In keeping with this, the GST inhibitor ethacrynic acid and the chemical chaperone tauroursodeoxycholic acid alleviated busulfan-induced lipid accumulation in HepaRG cells supporting the role of the sulfonium cation conjugate and ER stress in steatosis. CONCLUSION While the HepaRG cell line is an invaluable tool for pharmacotoxicological studies, it might not be always an appropriate model to predict and mechanistically investigate drug-induced liver injury. Hence, we recommend carrying out toxicological investigations in both HepaRG cells and PHH to avoid drawing wrong conclusions on the potential hepatotoxicity of drugs and other xenobiotics.
Collapse
Affiliation(s)
- Julien Allard
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | - Pierre-Jean Ferron
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, Rennes, France
| | - Youenn Launay
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, Rennes, France
| | - Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, Rennes, France
| |
Collapse
|
6
|
Li H, Hu P, Zou Y, Yuan L, Xu Y, Zhang X, Luo X, Zhang Z. Tanshinone IIA and hepatocellular carcinoma: A potential therapeutic drug. Front Oncol 2023; 13:1071415. [PMID: 36798821 PMCID: PMC9928209 DOI: 10.3389/fonc.2023.1071415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Because of its high prevalence and poor long-term clinical treatment effect, liver disease is regarded as a major public health problem around the world. Among them, viral hepatitis, fatty liver, cirrhosis, non-alcoholic fatty liver disease (NAFLD), and autoimmune liver disease are common causes and inducements of liver injury, and play an important role in the occurrence and development of hepatocellular carcinoma (HCC). Tanshinone IIA (TsIIA) is a fat soluble polyphenol of Salvia miltiorrhiza that is extracted from Salvia miltiorrhiza. Because of its strong biological activity (anti-inflammatory, antioxidant), it is widely used in Asia to treat cardiovascular and liver diseases. In addition, TsIIA has shown significant anti-HCC activity in previous studies. It not only has significant anti proliferation and pro apoptotic properties. It can also play an anti-cancer role by mediating a variety of signal pathways, including phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/rapamycin (mTOR), mitogen-activated protein kinase (MAPK), and nuclear factor kappa-B (NF-κB). This review not only reviews the existing evidence and molecular mechanism of TsIIA's anti-HCC effect but also reviews the liver-protective effect of TsIIA and its impact on liver fibrosis, NAFLD, and other risk factors for liver cancer. In addition, we also conducted network pharmacological analysis on TsIIA and HCC to further screen and explore the possible targets of TsIIA against hepatocellular carcinoma. It is expected to provide a theoretical basis for the development of anti-HCC-related drugs based on TsIIA.
Collapse
Affiliation(s)
- Hu Li
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Pengbo Hu
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China,Institute of Medical Science of Binzhou Medical University, Yantai, China
| | - Yajun Zou
- Emergency Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lijuan Yuan
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Yucheng Xu
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Xiaohui Zhang
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Xiaoyan Luo
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Zhiqiang Zhang
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China,Institute of Medical Science of Binzhou Medical University, Yantai, China,*Correspondence: Zhiqiang Zhang,
| |
Collapse
|
7
|
Non-Alcoholic Fatty Liver Disease (NAFLD) Pathogenesis and Natural Products for Prevention and Treatment. Int J Mol Sci 2022; 23:ijms232415489. [PMID: 36555127 PMCID: PMC9779435 DOI: 10.3390/ijms232415489] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease, affecting approximately one-quarter of the global population, and has become a world public health issue. NAFLD is a clinicopathological syndrome characterized by hepatic steatosis, excluding ethanol and other definite liver damage factors. Recent studies have shown that the development of NAFLD is associated with lipid accumulation, oxidative stress, endoplasmic reticulum stress, and lipotoxicity. A range of natural products have been reported as regulators of NAFLD in vivo and in vitro. This paper reviews the pathogenesis of NAFLD and some natural products that have been shown to have therapeutic effects on NAFLD. Our work shows that natural products can be a potential therapeutic option for NAFLD.
Collapse
|
8
|
Exploring the Active Ingredients and Mechanism of Action of Huanglian Huazhuo Capsule for the Treatment of Obese Type-2 Diabetes Mellitus Based on Using Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2780647. [PMID: 36225181 PMCID: PMC9550451 DOI: 10.1155/2022/2780647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/06/2022]
Abstract
Background Obese type 2 diabetes mellitus (obese T2DM) is one of the prime diseases that endangers human health. Clinical studies have confirmed the ability of the Huanglian Huazhuo capsule to treat obese T2DM; however, its mechanism of action is still unclear. In this study, effects and mechanisms of the Huanglian Huazhuo capsule in obese T2DM were systematically investigated using network pharmacology and molecular docking techniques. Methods The active ingredients and targets of the Huanglian Huazhuo capsule were extracted from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Obese T2DM diabetes-related targets were retrieved from a geographic dataset combined with a gene card database. A protein-protein interaction (PPI) network was constructed to screen core targets. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted using Database for Annotation Visualization and Integrated Discovery (DAVID). Interactions between potential targets and active compounds were assessed using molecular docking. Molecular docking was performed on the best core protein complexes obtained using molecular docking. Results A total of 89 and 108 active ingredients and targets, respectively, were identified. Seven core targets were obtained using a topological analysis of the PPI network. The GO and KEGG pathway enrichment analyses showed that the effects of the Huanglian Huazhuo capsules were mediated by inflammation, lipid response, oxidative stress-related genes, and HIF-1 and IL-17 signaling pathways. Good binding ability was observed between the active compounds and screened targets using molecular docking. Conclusions The active ingredients, potential targets, and pathways of the Huanglian Huazhuo capsule for the treatment of obese T2DM were successfully predicted, providing a new strategy for further investigation of its molecular mechanisms. In addition, the potential active ingredients provide a reliable source for drug screening in obese T2DM.
Collapse
|
9
|
Meng LC, Zheng JY, Qiu YH, Zheng L, Zheng JY, Liu YQ, Miao XL, Lu XY. Salvianolic acid B ameliorates non-alcoholic fatty liver disease by inhibiting hepatic lipid accumulation and NLRP3 inflammasome in ob/ob mice. Int Immunopharmacol 2022; 111:109099. [PMID: 35932615 DOI: 10.1016/j.intimp.2022.109099] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has high occurrence in the global world, which poses serious threats to human health. Salvianolic acid B (SalB), an extract of the root of Salvia miltiorrhiza, has the protective effect on metabolic homeostasis. However, the mechanism is still unknown. In this study, we used ob/ob mice, a model of NAFLD, to explore the hepatoprotective effects of SalB. The results showed that SalB significantly reduced the body weights and liver weights, and ameliorated plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), hepatic free fatty acid (FFA), total cholesterol (TC) levels, and hepatic TG and TC levels in ob/ob mice. SalB reduced the number of lipid droplets and inhibited hepatic lipogenesis by regulating peroxisome proliferator-activated receptor gamma (PPARγ), fatty acid synthase (FASN), stearoyl-Co A desaturase 1 (SCD1), and cluster of differentiation 36 (CD36). Compared to ob/ob mice, the lower expressions of the pro-inflammatory cytokines, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and F4/80, were observed after SalB treatment. Importantly, SalB treatment inhibited the activation of NLRP3 inflammasome and reduced the severity of liver inflammation. Our findings suggested that SalB improved NAFLD pathology in ob/ob mice by reducing hepatic lipid accumulation and NLRP3 inflammasome activation, which might be the potential hepatoprotective mechanism of SalB.
Collapse
Affiliation(s)
- Ling-Cui Meng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia-Yi Zheng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu-Hui Qiu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Zheng
- The Department of Clinical Laboratory, The Fifth People's Hospital of Zhuhai, Zhuhai, China
| | | | | | | | - Xin-Yi Lu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Biological Resource Centre, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research.
| |
Collapse
|
10
|
Li L, Zhang L, Liao T, Zhang C, Chen K, Huang Q. Advances on pharmacology and toxicology of aconitine. Fundam Clin Pharmacol 2022; 36:601-611. [PMID: 35060168 DOI: 10.1111/fcp.12761] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 01/10/2023]
Abstract
Aconitum alkaloids are considered to be the characteristic bioactive ingredients of Aconitum species, which are widely applied to the treatment of diverse diseases, and aconitine (AC) is found in most Aconitum plants. Research evidence shows that low-dose AC has a good therapeutic potential in heart failure, myocardial infarction, neuroinflammatory diseases, rheumatic diseases, and tumors, which has become one of the hotspots in global research in recent years. However, the cardiotoxicity and neurotoxicity of AC have also attracted extensive attention. Excessive use of AC always induces ventricular tachyarrhythmia and heart arrest, even can be potentially lethal. Therefore, AC cannot simply be regarded as a good medicine or a toxicant, but its underlying curative and toxic properties remained chaos. In order to dig the unique pharmacological value of AC while preventing its toxicity, the pharmacological activities and toxic effects of AC were summarized in this paper, providing new insight into the safe and effective use of AC in clinical practice.
Collapse
Affiliation(s)
- Liuying Li
- Department of Integrated Chinese and Western Medicine, The First People's Hospital of Zigong City, Zigong, China
| | - Limin Zhang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Liao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Keling Chen
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qun Huang
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Jin R, Ren H, Liao M, Shang J, Wang D, Li M, Liu N. A dipeptidyl peptidase IV inhibitory peptide relieves palmitic acid-induced endoplasmic reticulum stress in HepG2 cells independent of inhibiting dipeptidyl peptidase IV activity. Food Funct 2021; 12:10773-10782. [PMID: 34609396 DOI: 10.1039/d1fo02283k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The peptide VLATSGPG (VLA) is known to inhibit dipeptidyl peptidase IV (DPP-IV), although its mechanism in relieving endoplasmic reticulum (ER) stress is unclear. In this study, we found that treating HepG2 cells with 1.0 mM VLA reduced DPP-IV activity by 73.7 ± 4.8% without changing the DPP-IV mRNA expression level. In addition, 1.0 and 0.5 mM VLA alleviated palmitic acid (PA)-induced cell death and intracellular calcium imbalances. The levels of apoptosis-related proteins (caspase-3, caspase-9, and CHOP) were reduced by VLA treatment, which was presumed to be related to ER stress. Further studies confirmed that VLA alleviated PA-induced morphological damage to the ER and reduced the levels of the ER stress marker proteins (BIP, p-PERK, and p-IRE1α). VLA alleviated PA-induced ER stress in HepG2 cells independent of DPP-IV enzymatic activity inhibition. These findings have implications for developing novel treatment approaches for liver diseases caused by ER stress.
Collapse
Affiliation(s)
- Ritian Jin
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China. .,Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.,Harbin Tengning Technology Co., Ltd, Harbin, 150010, China
| | - Haowei Ren
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China. .,Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.,Harbin Tengning Technology Co., Ltd, Harbin, 150010, China
| | - Minhe Liao
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China. .,Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.,Harbin Tengning Technology Co., Ltd, Harbin, 150010, China
| | - Jiaqi Shang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China. .,Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.,Harbin Tengning Technology Co., Ltd, Harbin, 150010, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.,College of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Meng Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China. .,Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Ning Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China. .,Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.,Harbin Tengning Technology Co., Ltd, Harbin, 150010, China
| |
Collapse
|
12
|
Zhou H, Ma C, Wang C, Gong L, Zhang Y, Li Y. Research progress in use of traditional Chinese medicine monomer for treatment of non-alcoholic fatty liver disease. Eur J Pharmacol 2021; 898:173976. [PMID: 33639194 DOI: 10.1016/j.ejphar.2021.173976] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
With the improvement of people's living standards and the change of eating habits, non-alcoholic fatty liver disease (NAFLD) has gradually become one of the most common chronic liver diseases in the world. However, there are no effective drugs for the treatment of NAFLD. Therefore, it is urgent to find safe, efficient, and economical anti-NAFLD drugs. Compared with western medicines that possess fast lipid-lowering effect, traditional Chinese medicines (TCM) have attracted increasing attention for the treatment of NAFLD due to their unique advantages such as multi-targets and multi-channel mechanisms of action. TCM monomers have been proved to treat NAFLD through regulating various pathways, including inflammation, lipid production, insulin sensitivity, mitochondrial dysfunction, autophagy, and intestinal microbiota. In particular, peroxisome proliferator-activated receptor α (PPAR-α), sterol regulatory element-binding protein 1c (SREBP-1c), nuclear transcription factor kappa (NF-κB), phosphoinositide 3-kinase (PI3K), sirtuin1 (SIRT1), AMP-activated protein kinase (AMPK), p53 and nuclear factor erythroid 2-related factor 2 (Nrf2) are considered as important molecular targets for ameliorating NAFLD by TCM monomers. Therefore, by searching PubMed, Web of Science and SciFinder databases, this paper updates and summarizes the experimental and clinical evidence of TCM monomers for the treatment of NAFLD in the past six years (2015-2020), thus providing thoughts and prospects for further exploring the pathogenesis of NAFLD and TCM monomer therapies.
Collapse
Affiliation(s)
- Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
13
|
He Y, Ruganzu JB, Lin C, Ding B, Zheng Q, Wu X, Ma R, Liu Q, Wang Y, Jin H, Qian Y, Peng X, Ji S, Zhang L, Yang W, Lei X. Tanshinone IIA ameliorates cognitive deficits by inhibiting endoplasmic reticulum stress-induced apoptosis in APP/PS1 transgenic mice. Neurochem Int 2019; 133:104610. [PMID: 31778727 DOI: 10.1016/j.neuint.2019.104610] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/15/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023]
Abstract
Our previous data indicated that tanshinone IIA (tan IIA) improves learning and memory in a mouse model of Alzheimer's disease (AD) induced by streptozotocin via restoring cholinergic function, attenuating oxidative stress and blocking p38 MAPK signal pathway activation. This study aims to estimate whether tan IIA inhibits endoplasmic reticulum (ER) stress-induced apoptosis to prevent cognitive decline in APP/PS1 transgenic mice. Tan IIA (10 mg/kg and 30 mg/kg) was intraperitoneally administered to the six-month-old APP/PS1 mice for 30 consecutive days. β-amyloid (Aβ) plaques were measured by immunohistochemisty and Thioflavin S staining, apoptotic cells were observed by TUNEL, ER stress markers and apoptosis signaling proteins were investigated by western blotting and RT-PCR. Our results showed that tan IIA significantly ameliorates cognitive deficits and improves spatial learning ability of APP/PS1 mice in the nest-building test, novel object recognition test and Morris water maze test. Furthermore, tan IIA significantly reduced the deposition of Aβ plaques and neuronal apoptosis, and markedly prevented abnormal expression of glucose regulated protein 78 (GRP78), initiation factor 2α (eIF2α), inositol-requiring enzyme 1α (IRE1α), activating transcription factor 6 (ATF6), as well as suppressed the activation of C/EBP homologous protein (CHOP) and c-Jun N-terminal kinase (JNK) pathways in the parietal cortex and hippocampus. Moreover, tan IIA induced an up-regulation of the Bcl-2/Bax ratio and down-regulation of caspase-3 protein activity. Taken together, the above findings indicated that tan IIA improves learning and memory through attenuating Aβ plaques deposition and inhibiting ER stress-induced apoptosis. These results suggested that tan IIA might become a promising therapeutic candidate drug against AD.
Collapse
Affiliation(s)
- Yingying He
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - John Bosco Ruganzu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Chengheng Lin
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Bo Ding
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Quzhao Zheng
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Xiangyuan Wu
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Ruiyang Ma
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Qian Liu
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Yang Wang
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Hui Jin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Yihua Qian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Xiaoqian Peng
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Shengfeng Ji
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Liangliang Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi province, 710061, China
| | - Weina Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China.
| | - Xiaomei Lei
- Department of Child Health Care, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi province, 710004, China.
| |
Collapse
|