1
|
Vojnovic S, Aleksic I, Ilic-Tomic T, Stevanovic M, Nikodinovic-Runic J. Bacillus and Streptomyces spp. as hosts for production of industrially relevant enzymes. Appl Microbiol Biotechnol 2024; 108:185. [PMID: 38289383 PMCID: PMC10827964 DOI: 10.1007/s00253-023-12900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 02/01/2024]
Abstract
The application of enzymes is expanding across diverse industries due to their nontoxic and biodegradable characteristics. Another advantage is their cost-effectiveness, reflected in reduced processing time, water, and energy consumption. Although Gram-positive bacteria, Bacillus, and Streptomyces spp. are successfully used for production of industrially relevant enzymes, they still lag far behind Escherichia coli as hosts for recombinant protein production. Generally, proteins secreted by Bacillus and Streptomyces hosts are released into the culture medium; their native conformation is preserved and easier recovery process enabled. Given the resilience of both hosts in harsh environmental conditions and their spore-forming capability, a deeper understanding and broader use of Bacillus and Streptomyces as expression hosts could significantly enhance the robustness of industrial bioprocesses. This mini-review aims to compare two expression hosts, emphasizing their specific advantages in industrial surroundings such are chemical, detergent, textile, food, animal feed, leather, and paper industries. The homologous sources, heterologous hosts, and molecular tools used for the production of recombinant proteins in these hosts are discussed. The potential to use both hosts as biocatalysts is also evaluated. Undoubtedly, Bacillus and Streptomyces spp. as production hosts possess the potential to take on a more substantial role, providing superior (bio-based) process robustness and flexibility. KEY POINTS: • Bacillus and Streptomyces spp. as robust hosts for enzyme production. • Industrially relevant enzyme groups for production in alternative hosts highlighted. • Molecular biology techniques are enabling easier utilization of both hosts.
Collapse
Affiliation(s)
- Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| | - Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| |
Collapse
|
2
|
Le MM, Zhong LW, Ren ZW, An MQ, Long YH, Ling TJ. Dynamic Changes in the Microbial Community and Metabolite Profile during the Pile Fermentation Process of Fuzhuan Brick Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19142-19153. [PMID: 37827989 DOI: 10.1021/acs.jafc.3c04459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The pile fermentation process of Fuzhuan brick tea is unique in that it involves preheating without the use of starter cultures. The detailed metabolite changes and their drivers during this procedure are not known. Characterizing these unknown changes that occur in the metabolites and microbes during pile fermentation of Fuzhuan brick tea is important for industrial modernization of this traditional fermented food. Using microbial DNA amplicon sequencing, mass spectrometry-based untargeted metabolomics, and feature-based molecular networking, we herein reveal that significant changes in the microbial community occur before changes in the metabolite profile. These changes were characterized by a decrease in Klebsiella and Aspergillus, alongside an increase in Bacillus and Eurotium. The decrease in lysophosphatidylcholines, unsaturated fatty acids, and some astringent flavan-3-ols and bitter amino acids, as well as the increase in some less astringent flavan-3-ols and sweet or umami amino acids, contributed importantly to the overall changes observed in the metabolite profile. The majority of these changes was caused by bacterial metabolism and the corresponding heat generated by it.
Collapse
Affiliation(s)
- Miao-Miao Le
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
- Xianyang Jingwei Fu Tea Co. Ltd., Xianyang 712044, Shaanxi, China
| | - Li-Wen Zhong
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Zhi-Wei Ren
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Mao-Qiang An
- Yiyang Fu Cha Industry Development Co. Ltd., 690 North Datao Road, Yiyang 413000, Hunan, P. R. China
| | - Yan-Hua Long
- School of Life Sciences, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Tie-Jun Ling
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| |
Collapse
|
3
|
Enhancing Soluble Expression of Phospholipase B for Efficient Catalytic Synthesis of L-Alpha-Glycerylphosphorylcholine. Catalysts 2022. [DOI: 10.3390/catal12060650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Phospholipase B (PLB) harbors three distinct activities with broad substrate specificities and application fields. Its hydrolyzing of sn-1 and sn-2 acyl ester bonds enables it to catalyze the production of L-alpha-glycerylphosphorylcholine (L-α-GPC) from phosphatidylcholine (PC) without speed-limiting acyl migration. This work was intended to obtain high-level active PLB and apply it to establish an efficient system for L-α-GPC synthesis. PLB from Pseudomonas fluorescens was co-expressed with five different molecular chaperones, including trigger factor (Tf), GroEL-GroES (GroELS), DnaK-DnaJ-GrpE (DnaKJE), GroELS and DnaKJE, or GroELS and Tf or fused with maltose binding protein (MBP) in Escherichia coli BL21(DE3) to improve PLB expression. PLB with DnaKJE-assisted expression exhibited the highest catalytic activity. Further optimization of the expression conditions identified an optimal induction OD600 of 0.8, IPTG concentration of 0.3 mmol/L, induction time of 9 h, and temperature of 25 °C. The PLB activity reached a maximum of 524.64 ± 3.28 U/mg under optimal conditions. Subsequently, to establish an efficient PLB-catalyzed system for L-α-GPC synthesis, a series of organic-aqueous mixed systems and surfactant-supplemented aqueous systems were designed and constructed. Furthermore, the factors of temperature, reaction pH, metal ions, and substrate concentration were further systematically identified. Finally, a high yield of 90.50 ± 2.21% was obtained in a Span 60-supplemented aqueous system at 40 °C and pH 6.0 with 0.1 mmol/L of Mg2+. The proposed cost-effective PLB production and an environmentally friendly PLB-catalyzed system offer a candidate strategy for the industrial production of L-α-GPC.
Collapse
|
4
|
Merkulyeva YA, Shcherbakov DN, Sharlaeva EA, Chirkova VY. Phospholipases C from the Genus Bacillus: Biological Role, Properties, and Fields of Application. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Ullah A, Masood R. The Sequence and Three-Dimensional Structure Characterization of Snake Venom Phospholipases B. Front Mol Biosci 2020; 7:175. [PMID: 32850964 PMCID: PMC7419708 DOI: 10.3389/fmolb.2020.00175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/06/2020] [Indexed: 11/23/2022] Open
Abstract
Snake venom phospholipases B (SVPLBs) are the least studied enzymes. They constitute about 1% of Bothrops crude venoms, however, in other snake venoms, it is present in less than 1%. These enzymes are considered the most potent hemolytic agent in the venom. Currently, no structural information is available about these enzymes from snake venom. To better understand its three-dimensional structure and mechanisms of envenomation, the current work describes the first model-based structure report of this enzyme from Bothrops moojeni venom named as B. moojeni phospholipase B (PLB_Bm). The structure model of PLB_Bm was generated using model building software like I-TESSER, MODELLER 9v19, and Swiss-Model. The build PLB_Bm model was validated using validation tools (PROCHECK, ERRAT, and Verif3D). The analysis of the PLB_Bm modeled structure indicates that it contains 491 amino acid residues that form a well-defined four-layer αββα sandwich core and has a typical fold of the N-terminal nucleophile aminohydrolase (Ntn-hydrolase). The overall structure of PLB_Bm contains 18 β-strands and 17 α-helices with many connecting loops. The structure divides into two chains (A and B) after maturation. The A chain is smaller and contains 207 amino acid residues, whereas the B chain is larger and contains 266 amino acid residues. The sequence and structural comparison among homologous snake venom, bacterial, and mammals PLBs indicate that differences in the length and sequence composition may confer variable substrate specificity to these enzymes. Moreover, the surface charge distribution, average volume, and depth of the active site cavity also vary in these enzymes. The present work will provide more information about the structure-function relationship and mechanism of action of these enzymes in snakebite envenomation.
Collapse
Affiliation(s)
- Anwar Ullah
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Rehana Masood
- Department of Biochemistry, Shaheed Benazir Bhutto Women University Peshawar, Peshawar, Pakistan
| |
Collapse
|
6
|
Maršavelski A, Sabljić I, Sugimori D, Kojić-Prodić B. The substrate selectivity of the two homologous SGNH hydrolases from Streptomyces bacteria: Molecular dynamics and experimental study. Int J Biol Macromol 2020; 158:222-230. [PMID: 32348859 DOI: 10.1016/j.ijbiomac.2020.04.198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 11/24/2022]
Abstract
Two extracellular enzymes of the SGNH hydrolase superfamily reveal highly homologous 3D structures, but act on different substrates; one is a true phospholipase A1 from Streptomyces albidoflavus (SaPLA1, EC: 3.1.1.32, PDB code: 4HYQ), whereas the promiscuous enzyme from Streptomyces rimosus (SrLip, EC: 3.1.1.3, PDB code: 5MAL) exhibits lipase, phospholipase, esterase, thioesterase, and Tweenase activities. To get insight into binding modes of phospholipid and triglyceride substrates in both enzymes and understand their chain-length preferences, we opted for computational approach based on in silico prepared enzyme-substrate complexes. Docking procedure and molecular dynamics simulations at microsecond time scale were applied. The modelled complexes of SaPLA1 and SrLip enzymes revealed substrate accommodation: a) the acyl-chain attached to sn-1 position fits into the hydrophobic pocket, b) the acyl-chain attached to sn-2 position fits in the hydrophobic cleft, whereas c) the sn-3 bound acyl chain of the triglyceride or polar head of the glycerophospholipid fits into the binding groove. Moreover, our results pinpointed subtle amino acid differences in the hydrophobic pockets of these two enzymes which accommodate the acyl chain attached to sn-1 position of glycerol to be responsible for the chain length preference. Slight differences in the binding grooves of SaPLA1 and SrLip, which accommodate the acyl chain attached to sn-3 position are responsible for exclusive phospholipase and both phospholipase/lipase activities of these two enzymes, respectively. The results of modelling correlate with the experimentally obtained kinetic parameters given in the literature and are important for protein engineering that aims to obtain a variant of enzyme, which would preferably act on the substrate of interest.
Collapse
Affiliation(s)
| | - Igor Sabljić
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala SE-75651, Sweden; Ruđer Bošković Institute, Zagreb, Croatia
| | - Daisuke Sugimori
- Department of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
| | | |
Collapse
|
7
|
Filkin SY, Lipkin AV, Fedorov AN. Phospholipase Superfamily: Structure, Functions, and Biotechnological Applications. BIOCHEMISTRY (MOSCOW) 2020; 85:S177-S195. [DOI: 10.1134/s0006297920140096] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
A Thermolabile Phospholipase B from Talaromyces marneffei GD-0079: Biochemical Characterization and Structure Dynamics Study. Biomolecules 2020; 10:biom10020231. [PMID: 32033124 PMCID: PMC7072546 DOI: 10.3390/biom10020231] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/01/2022] Open
Abstract
Phospholipase B (EC 3.1.1.5) are a distinctive group of enzymes that catalyzes the hydrolysis of fatty acids esterified at the sn-1 and sn-2 positions forming free fatty acids and lysophospholipids. The structural information and catalytic mechanism of phospholipase B are still not clear. Herein, we reported a putative phospholipase B (TmPLB1) from Talaromyces marneffei GD-0079 synthesized by genome mining library. The gene (TmPlb1) was expressed and the TmPLB1 was purified using E. coli shuffle T7 expression system. The putative TmPLB1 was purified by affinity chromatography with a yield of 13.5%. The TmPLB1 showed optimum activity at 35 °C and pH 7.0. The TmPLB1 showed enzymatic activity using Lecithin (soybean > 98% pure), and the hydrolysis of TmPLB1 by 31P NMR showed phosphatidylcholine (PC) as a major phospholipid along with lyso-phospholipids (1-LPC and 2-LPC) and some minor phospholipids. The molecular modeling studies indicate that its active site pocket contains Ser125, Asp183 and His215 as the catalytic triad. The structure dynamics and simulations results explained the conformational changes associated with different environmental conditions. This is the first report on biochemical characterization and structure dynamics of TmPLB1 enzyme. The present study could be helpful to utilize TmPLB1 in food industry for the determination of food components containing phosphorus. Additionally, such enzyme could also be useful in Industry for the modifications of phospholipids.
Collapse
|
9
|
Modeling and molecular dynamics indicate that snake venom phospholipase B-like enzymes are Ntn-hydrolases. Toxicon 2018; 153:106-113. [DOI: 10.1016/j.toxicon.2018.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/14/2018] [Accepted: 08/27/2018] [Indexed: 12/22/2022]
|
10
|
Liu Y, Li M, Huang L, Gui S, Jia L, Zheng D, Fu Y, Zhang Y, Rui J, Lu F. Cloning, expression and characterisation of phospholipase B from Saccharomyces cerevisiae and its application in the synthesis of l-alpha-glycerylphosphorylcholine and peanut oil degumming. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1455536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, PR China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Mingjie Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Lin Huang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, PR China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Shuang Gui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Leibo Jia
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Dong Zheng
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Yu Fu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Yutong Zhang
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Jinqiu Rui
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, PR China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| |
Collapse
|
11
|
Streptomyces spp. in the biocatalysis toolbox. Appl Microbiol Biotechnol 2018; 102:3513-3536. [PMID: 29502181 DOI: 10.1007/s00253-018-8884-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/17/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
About 20,100 research publications dated 2000-2017 were recovered searching the PubMed and Web of Science databases for Streptomyces, which are the richest known source of bioactive molecules. However, these bacteria with versatile metabolism are powerful suppliers of biocatalytic tools (enzymes) for advanced biotechnological applications such as green chemical transformations and biopharmaceutical and biofuel production. The recent technological advances, especially in DNA sequencing coupled with computational tools for protein functional and structural prediction, and the improved access to microbial diversity enabled the easier access to enzymes and the ability to engineer them to suit a wider range of biotechnological processes. The major driver behind a dramatic increase in the utilization of biocatalysis is sustainable development and the shift toward bioeconomy that will, in accordance to the UN policy agenda "Bioeconomy to 2030," become a global effort in the near future. Streptomyces spp. already play a significant role among industrial microorganisms. The intention of this minireview is to highlight the presence of Streptomyces in the toolbox of biocatalysis and to give an overview of the most important advances in novel biocatalyst discovery and applications. Judging by the steady increase in a number of recent references (228 for the 2000-2017 period), it is clear that biocatalysts from Streptomyces spp. hold promises in terms of valuable properties and applicative industrial potential.
Collapse
|
12
|
Abstract
Phospholipases are lipolytic enzymes that hydrolyze phospholipid substrates at specific ester bonds. Phospholipases are widespread in nature and play very diverse roles from aggression in snake venom to signal transduction, lipid mediator production, and metabolite digestion in humans. Phospholipases vary considerably in structure, function, regulation, and mode of action. Tremendous advances in understanding the structure and function of phospholipases have occurred in the last decades. This introductory chapter is aimed at providing a general framework of the current understanding of phospholipases and a discussion of their mechanisms of action and emerging biological functions.
Collapse
|
13
|
Sutto-Ortiz P, Camacho-Ruiz MDLA, Kirchmayr MR, Camacho-Ruiz RM, Mateos-Díaz JC, Noiriel A, Carrière F, Abousalham A, Rodríguez JA. Screening of phospholipase A activity and its production by new actinomycete strains cultivated by solid-state fermentation. PeerJ 2017; 5:e3524. [PMID: 28695068 PMCID: PMC5501967 DOI: 10.7717/peerj.3524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/08/2017] [Indexed: 11/20/2022] Open
Abstract
Novel microbial phospholipases A (PLAs) can be found in actinomycetes which have been poorly explored as producers of this activity. To investigate microbial PLA production, efficient methods are necessary such as high-throughput screening (HTS) assays for direct search of PLAs in microbial cultures and cultivation conditions to promote this activity. About 200 strains isolated with selected media for actinomycetes and mostly belonging to Streptomyces (73%) and Micromonospora (10%) genus were first screened on agar-plates containing the fluorophore rhodamine 6G and egg yolk phosphatidylcholine (PC) to detect strains producing phospholipase activity. Then, a colorimetric HTS assay for general PLA activity detection (cHTS-PLA) using enriched PC (≈60%) as substrate and cresol red as indicator was developed and applied; this cHTS-PLA assay was validated with known PLAs. For the first time, actinomycete strains were cultivated by solid-state fermentation (SSF) using PC as inductor and sugar-cane bagasse as support to produce high PLA activity (from 207 to 2,591 mU/g of support). Phospholipase activity of the enzymatic extracts from SSF was determined using the implemented cHTS-PLA assay and the PC hydrolysis products obtained, were analyzed by TLC showing the presence of lyso-PC. Three actinomycete strains of the Streptomyces genus that stood out for high accumulation of lyso-PC, were selected and analyzed with the specific substrate 1,2-α-eleostearoyl-sn-glycero-3-phosphocholine (EEPC) in order to confirm the presence of PLA activity in their enzymatic extracts. Overall, the results obtained pave the way toward the HTS of PLA activity in crude microbial enzymatic extracts at a larger scale. The cHTS-PLA assay developed here can be also proposed as a routine assay for PLA activity determination during enzyme purification,directed evolution or mutagenesis approaches. In addition, the production of PLA activity by actinomycetes using SSF allow find and produce novel PLAs with potential applications in biotechnology.
Collapse
Affiliation(s)
- Priscila Sutto-Ortiz
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Zapopan, Jalisco, Mexico.,Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM2), Villeurbanne Cedex, France.,CNRS, Aix Marseille Université, UMR 7282, Enzymologie Interfaciale et de Physiologie de la Lipolyse, Marseille, France
| | - María de Los Angeles Camacho-Ruiz
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Zapopan, Jalisco, Mexico.,Departamento de Fundamentos del Conocimiento, Centro Universitario del Norte, Universidad de Guadalajara, Colotlán, Jalisco, Mexico
| | - Manuel R Kirchmayr
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Zapopan, Jalisco, Mexico
| | - Rosa María Camacho-Ruiz
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Zapopan, Jalisco, Mexico
| | - Juan Carlos Mateos-Díaz
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Zapopan, Jalisco, Mexico
| | - Alexandre Noiriel
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM2), Villeurbanne Cedex, France
| | - Frédéric Carrière
- CNRS, Aix Marseille Université, UMR 7282, Enzymologie Interfaciale et de Physiologie de la Lipolyse, Marseille, France
| | - Abdelkarim Abousalham
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM2), Villeurbanne Cedex, France
| | - Jorge A Rodríguez
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Zapopan, Jalisco, Mexico
| |
Collapse
|
14
|
Matsumoto Y, Kashiwabara N, Oyama T, Murayama K, Matsumoto H, Sakasegawa SI, Sugimori D. Molecular cloning, heterologous expression, and enzymatic characterization of lysoplasmalogen-specific phospholipase D from Thermocrispum sp. FEBS Open Bio 2016; 6:1113-1130. [PMID: 27833852 PMCID: PMC5095149 DOI: 10.1002/2211-5463.12131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/09/2016] [Accepted: 09/19/2016] [Indexed: 11/28/2022] Open
Abstract
Lysoplasmalogen (LyPls)‐specific phospholipase D (LyPls‐PLD) is an enzyme that catalyses the hydrolytic cleavage of the phosphoester bond of LyPls, releasing ethanolamine or choline, and 1‐(1‐alkenyl)‐sn‐glycero‐3‐phosphate (lysoplasmenic acid). Little is known about LyPls‐PLD and metabolic pathways of plasmalogen (Pls). Reportedly, Pls levels in human serum/plasma correlate with several diseases such as Alzheimer's disease and arteriosclerosis as well as a variety of biological processes including apoptosis and cell signaling. We identified a LyPls‐PLD from Thermocrispum sp. strain RD004668, and the enzyme was purified, characterized, cloned, and expressed using pET24a(+)/Escherichia coli with a His tag. The enzyme's preferred substrate was choline LyPls (LyPlsCho), with only modest activity toward ethanolamine LyPls. Under optimum conditions (pH 8.0 and 50 °C), steady‐state kinetic analysis for LyPlsCho yielded Km and kcat values of 13.2 μm and 70.6 s−1, respectively. The ORF of LyPls‐PLD gene consisted of 1005 bp coding a 334‐amino‐acid (aa) protein. The deduced aa sequence of LyPls‐PLD showed high similarity to those of glycerophosphodiester phosphodiesterases (GDPDs); however, the substrate specificity differed completely from those of GDPDs and general phospholipase Ds (PLDs). Structural homology modeling showed that two putative catalytic residues (His46, His88) of LyPls‐PLD were highly conserved to GDPDs. Mutational and kinetic analyses suggested that Ala55, Asn56, and Phe211 in the active site of LyPls‐PLD may participate in the substrate recognition. These findings will help to elucidate differences among LyPls‐PLD, PLD, and GDPD with regard to function, substrate recognition mechanism, and biochemical roles. Data Accessibility Thermocrispum sp. strain RD004668 and its 16S rDNA sequence were deposited in the NITE Patent Microorganisms Depositary (NPMD; Chiba, Japan) as NITE BP‐01628 and in the DDBJ database under the accession number AB873024. The nucleotide sequences of the 16S rDNA of strain RD004668 and the LyPls‐PLD gene were deposited in the DDBJ database under the accession numbers AB873024 and AB874601, respectively. Enzyme EC number EC 3.1.4.4
Collapse
Affiliation(s)
- Yusaku Matsumoto
- Department of Symbiotic Systems Science and Technology Graduate School of Symbiotic Systems Science and Technology Fukushima University Japan
| | - Nana Kashiwabara
- Department of Symbiotic Systems Science and Technology Graduate School of Symbiotic Systems Science and Technology Fukushima University Japan
| | - Takayuki Oyama
- Department of Symbiotic Systems Science and Technology Graduate School of Symbiotic Systems Science and Technology Fukushima University Japan
| | - Kazutaka Murayama
- Division of Biomedical Measurements and Diagnostics Graduate School of Biomedical Engineering Tohoku University Sendai Japan
| | | | | | - Daisuke Sugimori
- Department of Symbiotic Systems Science and Technology Graduate School of Symbiotic Systems Science and Technology Fukushima University Japan
| |
Collapse
|
15
|
Kelly AA, Feussner I. Oil is on the agenda: Lipid turnover in higher plants. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1253-1268. [PMID: 27155216 DOI: 10.1016/j.bbalip.2016.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
Lipases hydrolyze ester bonds within lipids. This process is called lipolysis. They are key players in lipid turnover and involved in numerous metabolic pathways, many of which are shared between organisms like the mobilization of neutral or storage lipids or lipase-mediated membrane lipid homeostasis. Some reactions though are predominantly present in certain organisms, such as the production of signaling molecules (endocannabinoids) by diacylglycerol (DAG) and monoacylglycerol (MAG) lipases in mammals and plants or the jasmonate production in flowering plants. This review aims at giving an overview of the different functional classes of lipases and respective well-known activities, with a focus on the most recent findings in plant biology for selected classes. Here we will put an emphasis on the physiological role and contribution of lipases to the turnover of neutral lipids found in seed oil and other vegetative tissue as candidates for increasing the economical values of crop plants. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Amélie A Kelly
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Ivo Feussner
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany; Georg-August-University, Göttingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig Weg 11, 37077 Göttingen, Germany; Georg-August-University, International Center for Advanced Studies of Energy Conversion (ICASEC), Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
16
|
Matsumoto Y, Sugimori D. Substrate recognition mechanism of Streptomyces phospholipase D and enzymatic measurement of plasmalogen. J Biosci Bioeng 2015; 120:372-9. [DOI: 10.1016/j.jbiosc.2015.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/26/2015] [Accepted: 02/28/2015] [Indexed: 01/10/2023]
|
17
|
Sakasegawa SI, Maeba R, Murayama K, Matsumoto H, Sugimori D. Hydrolysis of plasmalogen by phospholipase A1 from Streptomyces albidoflavus for early detection of dementia and arteriosclerosis. Biotechnol Lett 2015; 38:109-16. [PMID: 26354853 DOI: 10.1007/s10529-015-1955-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/01/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To obtain an ethanolamine plasmalogen (PlsEtn)-hydrolyzing enzyme and to develop an assay that would help determine PlsEtn concentrations in human serum as an indicator of Alzheimer-type dementia and of arteriosclerosis. RESULTS Phospholipase A1s, SaPLA1 and SvPLA1 from, respectively, Streptomyces albidoflavus NA297 and S. avermitilis JCM5070-but not phospholipase B from Streptomyces sp. NA684, PLA2-Nagase from S. avermitilis, PLA2IIL from S. violaceoruber nor LIPOMOD 699L (porcine phospholipase)-hydrolyzed choline plasmalogen (PlsCho) and PlsEtn (PlsCho preferred over PlsEtn). Using a combination of SaPLA1, lysoplasmalogen-specific phospholipase D (LyPls-PLD), with amine oxidase, an end-point assay was developed for measuring serum PlsEtn concentration. The standard curve, generated using various amounts of PlsEtn in this assay, was linear between 0 and 0.2 mM. PlsEtn concentrations in forty-seven serum samples, determined independently by this enzyme-based assay and (125)I-HPLC method, exhibited a linear relationship, indicating that the assay is suitable for fast and accurate measurement of serum PlsEtn concentration. CONCLUSIONS An assay, developed using SaPLA1, LyPls-PLD, and AOX, selectively measured PlsEtn levels in blood samples. This assay could be a useful diagnostic tool for early stage detection of diseases such as Alzheimer-type dementia and arteriosclerosis.
Collapse
Affiliation(s)
- Shin-ich Sakasegawa
- Asahi Kasei Pharma Corp., 632-1 Mifuku, Izunokuni, Shizuoka, 410-2321, Japan.
| | - Ryota Maeba
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-Ku, Tokyo, 173-8605, Japan.
| | - Kazutaka Murayama
- Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University, 2-1 Seiryo, Aoba, Sendai, 980-8575, Japan.
| | - Hideyuki Matsumoto
- Asahi Kasei Pharma Corp., 632-1 Mifuku, Izunokuni, Shizuoka, 410-2321, Japan.
| | - Daisuke Sugimori
- Department of Symbiotic Systems Science and Technology, Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan.
| |
Collapse
|
18
|
Borrelli GM, Trono D. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications. Int J Mol Sci 2015; 16:20774-840. [PMID: 26340621 PMCID: PMC4613230 DOI: 10.3390/ijms160920774] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/17/2015] [Accepted: 08/11/2015] [Indexed: 11/29/2022] Open
Abstract
Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile biocatalysts that are widely used in various industrial applications, such as for biodiesels, food, nutraceuticals, oil degumming and detergents; minor applications also include bioremediation, agriculture, cosmetics, leather and paper industries. These enzymes are ubiquitous in most living organisms, across animals, plants, yeasts, fungi and bacteria. For their greater availability and their ease of production, microbial lipases and phospholipases are preferred to those derived from animals and plants. Nevertheless, traditional purification strategies from microbe cultures have a number of disadvantages, which include non-reproducibility and low yields. Moreover, native microbial enzymes are not always suitable for biocatalytic processes. The development of molecular techniques for the production of recombinant heterologous proteins in a host system has overcome these constraints, as this allows high-level protein expression and production of new redesigned enzymes with improved catalytic properties. These can meet the requirements of specific industrial process better than the native enzymes. The purpose of this review is to give an overview of the structural and functional features of lipases and phospholipases, to describe the recent advances in optimization of the production of recombinant lipases and phospholipases, and to summarize the information available relating to their major applications in industrial processes.
Collapse
Affiliation(s)
- Grazia M Borrelli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Cerealicoltura, S.S. 673 Km 25, 200-71122 Foggia, Italy.
| | - Daniela Trono
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Cerealicoltura, S.S. 673 Km 25, 200-71122 Foggia, Italy.
| |
Collapse
|
19
|
Hama S, Ogino C, Kondo A. Enzymatic synthesis and modification of structured phospholipids: recent advances in enzyme preparation and biocatalytic processes. Appl Microbiol Biotechnol 2015; 99:7879-91. [DOI: 10.1007/s00253-015-6845-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 01/25/2023]
|
20
|
Wei T, Xu C, Yu X, Jia W, Yang K, Jia C, Mao D. Characterization of a novel thermophilic phospholipase B from Thermotoga lettingae TMO: applicability in enzymatic degumming of vegetable oils. J Ind Microbiol Biotechnol 2015; 42:515-22. [PMID: 25578305 DOI: 10.1007/s10295-014-1580-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/25/2014] [Indexed: 12/11/2022]
Abstract
A novel phospholipase B (TLPLB) from Thermotoga lettingae TMO has been cloned, functionally overexpressed in Escherichia coli and purified to homogeneity. Gas chromatography indicated that the enzyme could efficiently hydrolyze both the sn-1 and sn-2 ester bonds of 1-palmitoyl-2-oleoyl phosphatidylcholine as phospholipase B. TLPLB was optimally active at 70 °C and pH 5.5, respectively. Its thermostability is relatively high with a half-life of 240 min at 90 °C. TLPLB also displayed remarkable organic solvent tolerance and maintained approximately 91-161 % of its initial activity in 20 and 50 % (v/v) hydrophobic organic solvents after incubation for 168 h. Furthermore, TLPLB exhibited high degumming activity towards rapeseed, soybean, peanut and sunflower seed oils, where the phosphorus contents were decreased from 225.2, 189.3, 85.6 and 70.4 mg/kg to 4.9, 4.7, 3.2 and 2.2 mg/kg within 5 h, respectively. TLPLB could therefore be used for the degumming of vegetable oils.
Collapse
Affiliation(s)
- Tao Wei
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, 5 Dongfeng Rd, Zhengzhou, 450002, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|