1
|
Takagi A, Tagami T, Okuyama M. Mutant β-fructofuranosidase synthesizing blastose [β-d-Fruf-(2→6)-d-Glcp]. Enzyme Microb Technol 2024; 180:110500. [PMID: 39186884 DOI: 10.1016/j.enzmictec.2024.110500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024]
Abstract
Fructooligosaccharides (FOS) are leading prebiotics that help keep the gut healthy and aid wellness by stimulating the growth and activity of beneficial intestinal bacteria. The best-studied FOS are inulin-type FOS, mainly oligosaccharides with β-Fruf-(2→1)-Fruf linkages, including 1-kestose [β-Fruf-(2→1)-β-Fruf-(2↔1)-α-Glcp] and nystose [β-Fruf-(2→1)-β-Fruf-(2→1)-β-Fruf-(2↔1)-α-Glcp]. However, the properties of other types of FOS-levan-type FOS with β-Fruf-(2→6)-Fruf linkages and neo-type FOS with β-Fruf-(2→6)-Glcp linkages-remain ambiguous because efficient methods have not been established for their synthesis. Here, using site-saturation mutation of residue His79 of β-fructofuranosidase from Zymomonas mobilis NBRC13756, we successfully obtained a mutant β-fructofuranosidase that specifically produces neo-type FOS. The H79G enzyme variant loses the native β-Fruf-(2→1)-Fru-transfer ability (which produces 1-kestose), and instead has β-Fruf-(2→6)-Glc-transfer ability and produces neokestose. Its hydrolytic activity specific to the β-Fruf-(2↔1)-α-Glcp bond of neokestose then yields blastose [β-Fruf-(2→6)-Glcp]. The enzyme produces 0.4 M blastose from 1.0 M sucrose (80 % of the theoretical yield). The production system for blastose established here will contribute to the elucidation of the physiological functions of this disaccharide.
Collapse
Affiliation(s)
- Atsuki Takagi
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Takayoshi Tagami
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Masayuki Okuyama
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan.
| |
Collapse
|
2
|
Ekas HM, Wang B, Silverman AD, Lucks JB, Karim AS, Jewett MC. Engineering a PbrR-Based Biosensor for Cell-Free Detection of Lead at the Legal Limit. ACS Synth Biol 2024; 13:3003-3012. [PMID: 39255329 DOI: 10.1021/acssynbio.4c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Industrialization and failing infrastructure have led to a growing number of irreversible health conditions resulting from chronic lead exposure. While state-of-the-art analytical chemistry methods provide accurate and sensitive detection of lead, they are too slow, expensive, and centralized to be accessible to many. Cell-free biosensors based on allosteric transcription factors (aTFs) can address the need for accessible, on-demand lead detection at the point of use. However, known aTFs, such as PbrR, are unable to detect lead at concentrations regulated by the Environmental Protection Agency (24-72 nM). Here, we develop a rapid cell-free platform for engineering aTF biosensors with improved sensitivity, selectivity, and dynamic range characteristics. We apply this platform to engineer PbrR mutants for a shift in limit of detection from 10 μM to 50 nM lead and demonstrate use of PbrR as a cell-free biosensor. We envision that our workflow could be applied to engineer any aTF.
Collapse
Affiliation(s)
- Holly M Ekas
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Brenda Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Adam D Silverman
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Engineering the 2-Oxoglutarate Dehydrogenase Complex to Understand Catalysis and Alter Substrate Recognition. REACTIONS 2022. [DOI: 10.3390/reactions3010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The E. coli 2-oxoglutarate dehydrogenase complex (OGDHc) is a multienzyme complex in the tricarboxylic acid cycle, consisting of multiple copies of three components, 2-oxoglutarate dehydrogenase (E1o), dihydrolipoamide succinyltransferase (E2o) and dihydrolipoamide dehydrogenase (E3), which catalyze the formation of succinyl-CoA and NADH (+H+) from 2-oxoglutarate. This review summarizes applications of the site saturation mutagenesis (SSM) to engineer E. coli OGDHc with mechanistic and chemoenzymatic synthetic goals. First, E1o was engineered by creating SSM libraries at positions His260 and His298.Variants were identified that: (a) lead to acceptance of substrate analogues lacking the 5-carboxyl group and (b) performed carboligation reactions producing acetoin-like compounds with good enantioselectivity. Engineering the E2o catalytic (core) domain enabled (a) assignment of roles for pivotal residues involved in catalysis, (b) re-construction of the substrate-binding pocket to accept substrates other than succinyllysyldihydrolipoamide and (c) elucidation of the mechanism of trans-thioesterification to involve stabilization of a tetrahedral oxyanionic intermediate with hydrogen bonds by His375 and Asp374, rather than general acid–base catalysis which has been misunderstood for decades. The E. coli OGDHc is the first example of a 2-oxo acid dehydrogenase complex which was evolved to a 2-oxo aliphatic acid dehydrogenase complex by engineering two consecutive E1o and E2o components.
Collapse
|
4
|
Oeggl R, Glaser J, von Lieres E, Rother D. Continuous enzymatic stirred tank reactor cascade with unconventional medium yielding high concentrations of ( S)-2-hydroxyphenyl propanone and its derivatives. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01666g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
How can high product concentrations be continuously provided, while dealing with substrate toxicity? Which method leads to a straight forward product isolation? The example of a model based process intensification shows how.
Collapse
Affiliation(s)
- Reinhard Oeggl
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074 Aachen, Germany
| | - Juliane Glaser
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Digital Integration & Predictive Technologies (DIPT), Amgen Research (Munich) GmbH, Staffelseestr. 2, 81477 Munich, Germany
| | - Eric von Lieres
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Dörte Rother
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
5
|
Tripathi R, Noetzel J, Marx D. Exposing catalytic versatility of GTPases: taking reaction detours in mutants of hGBP1 enzyme without additional energetic cost. Phys Chem Chem Phys 2019; 21:859-867. [DOI: 10.1039/c8cp06343e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Our study reveals that the replacement of catalytically competent residues by the inert amino acid alanine, S73A and E99A, in hGBP1 opens a plethora of molecularly different reaction pathways featuring very similar energy barriers as the wild type.
Collapse
Affiliation(s)
- Ravi Tripathi
- Lehrstuhl für Theoretische Chemie
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Jan Noetzel
- Lehrstuhl für Theoretische Chemie
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| |
Collapse
|
6
|
Chakraborty J, Nemeria NS, Farinas E, Jordan F. Catalysis of transthiolacylation in the active centers of dihydrolipoamide acyltransacetylase components of 2-oxo acid dehydrogenase complexes. FEBS Open Bio 2018; 8:880-896. [PMID: 29928569 PMCID: PMC5986005 DOI: 10.1002/2211-5463.12431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 11/25/2022] Open
Abstract
The Escherichia coli 2‐oxoglutarate dehydrogenase complex (OGDHc) comprises multiple copies of three enzymes—E1o, E2o, and E3—and transthioesterification takes place within the catalytic domain of E2o. The succinyl group from the thiol ester of S8‐succinyldihydrolipoyl‐E2o is transferred to the thiol group of coenzyme A (CoA), forming the all‐important succinyl‐CoA. Here, we report mechanistic studies of enzymatic transthioesterification on OGDHc. Evidence is provided for the importance of His375 and Asp374 in E2o for the succinyl transfer reaction. The magnitude of the rate acceleration provided by these residues (54‐fold from each with alanine substitution) suggests a role in stabilization of the symmetrical tetrahedral oxyanionic intermediate by formation of two hydrogen bonds, rather than in acid–base catalysis. Further evidence ruling out a role in acid–base catalysis is provided by site‐saturation mutagenesis studies at His375 (His375Trp substitution with little penalty) and substitutions to other potential hydrogen bond participants at Asp374. Taking into account that the rate constant for reductive succinylation of the E2o lipoyl domain (LDo) by E1o and 2‐oxoglutarate (99 s−1) was approximately twofold larger than the rate constant for kcat of 48 s−1 for the overall reaction (NADH production), it could be concluded that succinyl transfer to CoA and release of succinyl‐CoA, rather than reductive succinylation, is the rate‐limiting step. The results suggest a revised mechanism of catalysis for acyl transfer in the superfamily of 2‐oxo acid dehydrogenase complexes, thus provide fundamental information regarding acyl‐CoA formation, so important for several biological processes including post‐translational succinylation of protein lysines. Enzymes 2‐oxoglutarate dehydrogenase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC1/2/4/2.html); dihydrolipoamide succinyltransferase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC2/3/1/61.html); dihydrolipoamide dehydrogenase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC1/8/1/4.html); pyruvate dehydrogenase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC1/2/4/1.html); dihydrolipoamide acetyltransferase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC2/3/1/12.html).
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Department of Chemistry and Environmental Science New Jersey Institute of Technology Newark NJ USA
| | | | - Edgardo Farinas
- Department of Chemistry and Environmental Science New Jersey Institute of Technology Newark NJ USA
| | - Frank Jordan
- Department of Chemistry Rutgers University Newark NJ USA
| |
Collapse
|
7
|
Guérard-Hélaine C, De Sousa Lopes Moreira M, Touisni N, Hecquet L, Lemaire M, Hélaine V. Transketolase-Aldolase Symbiosis for the Stereoselective Preparation of Aldoses and Ketoses of Biological Interest. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christine Guérard-Hélaine
- Université Clermont Auvergne; CNRS; SIGMA Clermont; Institut de Chimie de Clermont-Ferrand, F-63000; Clermont-Ferrand BP 80026, F- 63171 Aubière France
| | - Maxime De Sousa Lopes Moreira
- Université Clermont Auvergne; CNRS; SIGMA Clermont; Institut de Chimie de Clermont-Ferrand, F-63000; Clermont-Ferrand BP 80026, F- 63171 Aubière France
| | - Nadia Touisni
- Université Clermont Auvergne; CNRS; SIGMA Clermont; Institut de Chimie de Clermont-Ferrand, F-63000; Clermont-Ferrand BP 80026, F- 63171 Aubière France
| | - Laurence Hecquet
- Université Clermont Auvergne; CNRS; SIGMA Clermont; Institut de Chimie de Clermont-Ferrand, F-63000; Clermont-Ferrand BP 80026, F- 63171 Aubière France
| | - Marielle Lemaire
- Université Clermont Auvergne; CNRS; SIGMA Clermont; Institut de Chimie de Clermont-Ferrand, F-63000; Clermont-Ferrand BP 80026, F- 63171 Aubière France
| | - Virgil Hélaine
- Université Clermont Auvergne; CNRS; SIGMA Clermont; Institut de Chimie de Clermont-Ferrand, F-63000; Clermont-Ferrand BP 80026, F- 63171 Aubière France
| |
Collapse
|
8
|
Vergauwe RMA, George J, Chervy T, Hutchison JA, Shalabney A, Torbeev VY, Ebbesen TW. Quantum Strong Coupling with Protein Vibrational Modes. J Phys Chem Lett 2016; 7:4159-4164. [PMID: 27689759 DOI: 10.1021/acs.jpclett.6b01869] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In quantum electrodynamics, matter can be hybridized to confined optical fields by a process known as light-matter strong coupling. This gives rise to new hybrid light-matter states and energy levels in the coupled material, leading to modified physical and chemical properties. Here, we report for the first time the strong coupling of vibrational modes of proteins with the vacuum field of a Fabry-Perot mid-infrared cavity. For two model systems, poly(l-glutamic acid) and bovine serum albumin, strong coupling is confirmed by the anticrossing in the dispersion curve, the square root dependence on the concentration, and a vacuum Rabi splitting that is larger than the cavity and vibration line widths. These results demonstrate that strong coupling can be applied to the study of proteins with many possible applications including the elucidation of the role of vibrational dynamics in enzyme catalysis and in H/D exchange experiments.
Collapse
Affiliation(s)
- Robrecht M A Vergauwe
- University of Strasbourg, CNRS, ISIS , 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Jino George
- University of Strasbourg, CNRS, ISIS , 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Thibault Chervy
- University of Strasbourg, CNRS, ISIS , 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - James A Hutchison
- University of Strasbourg, CNRS, ISIS , 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Atef Shalabney
- Department of Physics and Optical Engineering, Ort Braude College , Karmiel 21982, Israel
| | - Vladimir Y Torbeev
- University of Strasbourg, CNRS, ISIS , 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Thomas W Ebbesen
- University of Strasbourg, CNRS, ISIS , 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
9
|
|
10
|
DC-Analyzer-facilitated combinatorial strategy for rapid directed evolution of functional enzymes with multiple mutagenesis sites. J Biotechnol 2014; 192 Pt A:102-7. [DOI: 10.1016/j.jbiotec.2014.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 12/25/2022]
|
11
|
Brugger D, Krondorfer I, Shelswell C, Huber-Dittes B, Haltrich D, Peterbauer CK. Engineering pyranose 2-oxidase for modified oxygen reactivity. PLoS One 2014; 9:e109242. [PMID: 25296188 PMCID: PMC4190269 DOI: 10.1371/journal.pone.0109242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/12/2014] [Indexed: 01/15/2023] Open
Abstract
Pyranose 2-oxidase (POx), a member of the GMC family of flavoproteins, catalyzes the regioselective oxidation of aldopyranoses at position C2 to the corresponding 2-ketoaldoses. During the first half-reaction, FAD is reduced to FADH2 and reoxidized in the second half-reaction by reducing molecular oxygen to H2O2. Alternative electron acceptors including quinones, radicals or chelated metal ions show significant and in some cases even higher activity. While oxygen as cheap and abundantly available electron acceptor is favored for many processes, reduced oxygen reactivity is desirable for some applications such as in biosensors/biofuel cells because of reduced oxidative damages to the biocatalyst from concomitant H2O2 production as well as reduced electron "leakage" to oxygen. The reactivity of flavoproteins with oxygen is of considerable scientific interest, and the determinants of oxygen activation and reactivity are the subject of numerous studies. We applied site-saturation mutagenesis on a set of eleven amino acids around the active site based on the crystal structure of the enzyme. Using microtiter plate screening assays with peroxidase/2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) and 2,6-dichlorophenolindophenol, variants of POx with decreased oxidase activity and maintained dehydrogenase activity were identified. Variants T166R, Q448H, L545C, L547R and N593C were characterized with respect to their apparent steady-state constants with oxygen and the alternative electron acceptors DCPIP, 1,4-benzoquinone and ferricenium ion, and the effect of the mutations was rationalized based on structural properties.
Collapse
Affiliation(s)
- Dagmar Brugger
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Iris Krondorfer
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christopher Shelswell
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benjamin Huber-Dittes
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens K. Peterbauer
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
12
|
A review of metabolic and enzymatic engineering strategies for designing and optimizing performance of microbial cell factories. Comput Struct Biotechnol J 2014; 11:91-9. [PMID: 25379147 PMCID: PMC4212277 DOI: 10.1016/j.csbj.2014.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Microbial cell factories (MCFs) are of considerable interest to convert low value renewable substrates to biofuels and high value chemicals. This review highlights the progress of computational models for the rational design of an MCF to produce a target bio-commodity. In particular, the rational design of an MCF involves: (i) product selection, (ii) de novo biosynthetic pathway identification (i.e., rational, heterologous, or artificial), (iii) MCF chassis selection, (iv) enzyme engineering of promiscuity to enable the formation of new products, and (v) metabolic engineering to ensure optimal use of the pathway by the MCF host. Computational tools such as (i) de novo biosynthetic pathway builders, (ii) docking, (iii) molecular dynamics (MD) and steered MD (SMD), and (iv) genome-scale metabolic flux modeling all play critical roles in the rational design of an MCF. Genome-scale metabolic flux models are of considerable use to the design process since they can reveal metabolic capabilities of MCF hosts. These can be used for host selection as well as optimizing precursors and cofactors of artificial de novo biosynthetic pathways. In addition, recent advances in genome-scale modeling have enabled the derivation of metabolic engineering strategies, which can be implemented using the genomic tools reviewed here as well.
Collapse
|
13
|
Bunik VI, Tylicki A, Lukashev NV. Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models. FEBS J 2013; 280:6412-42. [PMID: 24004353 DOI: 10.1111/febs.12512] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/29/2013] [Accepted: 08/21/2013] [Indexed: 02/06/2023]
Abstract
Bringing a knowledge of enzymology into research in vivo and in situ is of great importance in understanding systems biology and metabolic regulation. The central metabolic significance of thiamin (vitamin B1 ) and its diphosphorylated derivative (thiamin diphosphate; ThDP), and the fundamental differences in the ThDP-dependent enzymes of metabolic networks in mammals versus plants, fungi and bacteria, or in health versus disease, suggest that these enzymes are promising targets for biotechnological and medical applications. Here, the in vivo action of known regulators of ThDP-dependent enzymes, such as synthetic structural analogs of the enzyme substrates and thiamin, is analyzed in light of the enzymological data accumulated during half a century of research. Mimicking the enzyme-specific catalytic intermediates, the phosphonate analogs of 2-oxo acids selectively inhibit particular ThDP-dependent enzymes. Because of their selectivity, use of these compounds in cellular and animal models of ThDP-dependent enzyme malfunctions improves the validity of the model and its predictive power when compared with the nonselective and enzymatically less characterized oxythiamin and pyrithiamin. In vitro studies of the interaction of thiamin analogs and their biological derivatives with potential in vivo targets are necessary to identify and attenuate the analog selectivity. For both the substrate and thiamin synthetic analogs, in vitro reactivities with potential targets are highly relevant in vivo. However, effective concentrations in vivo are often higher than in vitro studies would suggest. The significance of specific inihibition of the ThDP-dependent enzymes for the development of herbicides, antibiotics, anticancer and neuroprotective strategies is discussed.
Collapse
Affiliation(s)
- Victoria I Bunik
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | | | | |
Collapse
|
14
|
Improvement of biocatalysts for industrial and environmental purposes by saturation mutagenesis. Biomolecules 2013; 3:778-811. [PMID: 24970191 PMCID: PMC4030971 DOI: 10.3390/biom3040778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/22/2013] [Accepted: 09/23/2013] [Indexed: 11/16/2022] Open
Abstract
Laboratory evolution techniques are becoming increasingly widespread among protein engineers for the development of novel and designed biocatalysts. The palette of different approaches ranges from complete randomized strategies to rational and structure-guided mutagenesis, with a wide variety of costs, impacts, drawbacks and relevance to biotechnology. A technique that convincingly compromises the extremes of fully randomized vs. rational mutagenesis, with a high benefit/cost ratio, is saturation mutagenesis. Here we will present and discuss this approach in its many facets, also tackling the issue of randomization, statistical evaluation of library completeness and throughput efficiency of screening methods. Successful recent applications covering different classes of enzymes will be presented referring to the literature and to research lines pursued in our group. The focus is put on saturation mutagenesis as a tool for designing novel biocatalysts specifically relevant to production of fine chemicals for improving bulk enzymes for industry and engineering technical enzymes involved in treatment of waste, detoxification and production of clean energy from renewable sources.
Collapse
|