1
|
Pugalenthi PV, He B, Xie L, Nho K, Saykin AJ, Yan J. Deciphering the tissue-specific functional effect of Alzheimer risk SNPs with deep genome annotation. BioData Min 2024; 17:50. [PMID: 39538253 PMCID: PMC11558841 DOI: 10.1186/s13040-024-00400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is a highly heritable brain dementia, along with substantial failure of cognitive function. Large-scale genome-wide association studies (GWASs) have led to a set of SNPs significantly associated with AD and related traits. GWAS hits usually emerge as clusters where a lead SNP with the highest significance is surrounded by other less significant neighboring SNPs. Although functionality is not guaranteed even with the strongest associations in GWASs, lead SNPs have historically been the focus of the field, with the remaining associations inferred to be redundant. Recent deep genome annotation tools enable the prediction of function from a segment of a DNA sequence with significantly improved precision, which allows in-silico mutagenesis to interrogate the functional effect of SNP alleles. In this project, we explored the impact of top AD GWAS hits around APOE region on chromatin functions and whether it will be altered by the genetic context (i.e., alleles of neighboring SNPs). Our results showed that highly correlated SNPs in the same LD block could have distinct impacts on downstream functions. Although some GWAS lead SNPs showed dominant functional effects regardless of the neighborhood SNP alleles, several other SNPs did exhibit enhanced loss or gain of function under certain genetic contexts, suggesting potential additional information hidden in the LD blocks.
Collapse
Affiliation(s)
- Pradeep Varathan Pugalenthi
- Department of Biomedical Engineering and Informatics, Indiana University Indianapolis, 420 University Blvd, Indianapolis, IN, 46202, USA
| | - Bing He
- Department of Biomedical Engineering and Informatics, Indiana University Indianapolis, 420 University Blvd, Indianapolis, IN, 46202, USA
| | - Linhui Xie
- Department of Electrical and Computer Engineering, Purdue University Indianapolis, 420 University Blvd, Indianapolis, IN, 46202, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 University Blvd, Indianapolis, IN, 46202, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 University Blvd, Indianapolis, IN, 46202, USA
| | - Jingwen Yan
- Department of Biomedical Engineering and Informatics, Indiana University Indianapolis, 420 University Blvd, Indianapolis, IN, 46202, USA.
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 University Blvd, Indianapolis, IN, 46202, USA.
| |
Collapse
|
2
|
Yan J, Wang L, Yang QL, Yang QX, He X, Dong Y, Hu Z, Seeliger MW, Jiao K, Paquet-Durand F. T-type voltage-gated channels, Na +/Ca 2+-exchanger, and calpain-2 promote photoreceptor cell death in inherited retinal degeneration. Cell Commun Signal 2024; 22:92. [PMID: 38303059 PMCID: PMC10836022 DOI: 10.1186/s12964-023-01391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/09/2023] [Indexed: 02/03/2024] Open
Abstract
Inherited retinal degenerations (IRDs) are a group of untreatable and commonly blinding diseases characterized by progressive photoreceptor loss. IRD pathology has been linked to an excessive activation of cyclic nucleotide-gated channels (CNGC) leading to Na+- and Ca2+-influx, subsequent activation of voltage-gated Ca2+-channels (VGCC), and further Ca2+ influx. However, a connection between excessive Ca2+ influx and photoreceptor loss has yet to be proven.Here, we used whole-retina and single-cell RNA-sequencing to compare gene expression between the rd1 mouse model for IRD and wild-type (wt) mice. Differentially expressed genes indicated links to several Ca2+-signalling related pathways. To explore these, rd1 and wt organotypic retinal explant cultures were treated with the intracellular Ca2+-chelator BAPTA-AM or inhibitors of different Ca2+-permeable channels, including CNGC, L-type VGCC, T-type VGCC, Ca2+-release-activated channel (CRAC), and Na+/Ca2+ exchanger (NCX). Moreover, we employed the novel compound NA-184 to selectively inhibit the Ca2+-dependent protease calpain-2. Effects on the retinal activity of poly(ADP-ribose) polymerase (PARP), sirtuin-type histone-deacetylase, calpains, as well as on activation of calpain-1, and - 2 were monitored, cell death was assessed via the TUNEL assay.While rd1 photoreceptor cell death was reduced by BAPTA-AM, Ca2+-channel blockers had divergent effects: While inhibition of T-type VGCC and NCX promoted survival, blocking CNGCs and CRACs did not. The treatment-related activity patterns of calpains and PARPs corresponded to the extent of cell death. Remarkably, sirtuin activity and calpain-1 activation were linked to photoreceptor protection, while calpain-2 activity was related to degeneration. In support of this finding, the calpain-2 inhibitor NA-184 protected rd1 photoreceptors.These results suggest that Ca2+ overload in rd1 photoreceptors may be triggered by T-type VGCCs and NCX. High Ca2+-levels likely suppress protective activity of calpain-1 and promote retinal degeneration via activation of calpain-2. Overall, our study details the complexity of Ca2+-signalling in photoreceptors and emphasizes the importance of targeting degenerative processes specifically to achieve a therapeutic benefit for IRDs. Video Abstract.
Collapse
Affiliation(s)
- Jie Yan
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, 176 Qingnian, Kunming, 650021, China
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, 72076, Germany
| | - Lan Wang
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, 72076, Germany
| | - Qian-Lu Yang
- The Third Affiliated Hospital of Kunming Medical University &Yunnan Cancer Hospital, Kunming, Yunnan, 650118, China
| | - Qian-Xi Yang
- The Third Affiliated Hospital of Kunming Medical University &Yunnan Cancer Hospital, Kunming, Yunnan, 650118, China
| | - Xinyi He
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, 72076, Germany
- High-resolution Functional Imaging and Test Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany
| | - Yujie Dong
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, 176 Qingnian, Kunming, 650021, China
| | - Zhulin Hu
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, 176 Qingnian, Kunming, 650021, China
| | - Mathias W Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany
| | - Kangwei Jiao
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, 176 Qingnian, Kunming, 650021, China
| | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany.
| |
Collapse
|
3
|
Varathan P, Xie L, He B, Saykin AJ, Nho K, Yan J. Deciphering the tissue-specific functional effect of Alzheimer risk SNPs with deep genome annotation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.23.23297399. [PMID: 37961458 PMCID: PMC10635176 DOI: 10.1101/2023.10.23.23297399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Alzheimer's disease (AD) is a highly heritable brain dementia, along with substantial failure of cognitive function. Large-scale genome-wide association studies (GWAS) have led to a significant set of SNPs associated with AD and related traits. GWAS hits usually emerge as clusters where a lead SNP with the highest significance is surrounded by other less significant neighboring SNPs. Although functionality is not guaranteed with even the strongest associations in the GWAS, the lead SNPs have been historically the focus of the field, with the remaining associations inferred as redundant. Recent deep genome annotation tools enable the prediction of function from a segment of DNA sequence with significantly improved precision, which allows in-silico mutagenesis to interrogate the functional effect of SNP alleles. In this project, we explored the impact of top AD GWAS hits on the chromatin functions, and whether it will be altered by the genomic context (i.e., alleles of neighborhood SNPs). Our results showed that highly correlated SNPs in the same LD block could have distinct impact on the downstream functions. Although some GWAS lead SNPs showed dominating functional effect regardless of the neighborhood SNP alleles, several other ones do get enhanced loss or gain of function under certain genomic context, suggesting potential extra information hidden in the LD blocks.
Collapse
|
4
|
Matsui Y, Kanou T, Matsui T, Fukui E, Kimura T, Ose N, Funaki S, Shintani Y. Protective Effect of Calpain Inhibition During Cold Ischemia on Ischemia-reperfusion Injury After Lung Transplantation. Transplantation 2023; 107:1945-1954. [PMID: 36648297 DOI: 10.1097/tp.0000000000004515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Necroptosis, one of the types of regulated necrosis, causes ischemia-reperfusion (IR) lung injury. N-acetyl-leucyl-leucyl-norleucinal (ALLN), a calpain inhibitor, is known to attenuate necroptosis and apoptosis, and the purpose of this study was to evaluate the protective effect of ALLN during cold ischemia against IR injury in a rat lung transplant model. METHODS Male Lewis rats (250-350 g) were divided into 3 groups: sham group (n = 4), nontransplantation; control group (n = 8), transplantation with IR lung injury; and ALLN group (n = 8), transplantation with IR lung injury/ALLN. Rats in the sham group underwent a simple thoracotomy, and the remaining 2 groups of rats underwent an orthotopic left lung transplant. Cold ischemic time was 15 h. After 2 h of reperfusion, physiological function, inflammatory cytokine expression, pathway activation, and the degrees of necroptosis and apoptosis were evaluated. RESULTS Lung gas exchange (PaO 2 /FiO 2 ) was significantly better, and pulmonary edema was significantly improved in the ALLN group compared with the control group ( P = 0.0009, P = 0.0014). Plasma expression of interleukin-1β was significantly lower in the ALLN group than in the control group ( P = 0.0313). The proportion of necroptotic and apoptotic cells was significantly lower in the ALLN group than in the control group ( P = 0.0009), whereas the proportion of apoptotic cells remained unchanged ( P = 0.372); therefore, the calpain inhibitor was thought to suppress necroptosis. CONCLUSIONS The administration of ALLN during cold ischemia appears to improve IR lung injury in a lung transplant animal model via the inhibition of necroptosis.
Collapse
Affiliation(s)
- Yuuki Matsui
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takashi Kanou
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takahiro Matsui
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Eriko Fukui
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Toru Kimura
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Naoko Ose
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Soichiro Funaki
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Abstract
INTRODUCTION Calpain-1 and calpain-2 are prototypical classical isoforms of the calpain family of calcium-activated cysteine proteases. Their substrate proteins participate in a wide range of cellular processes, including transcription, survival, proliferation, apoptosis, migration, and invasion. Dysregulated calpain activity has been implicated in tumorigenesis, suggesting that calpains may be promising therapeutic targets. AREAS COVERED This review covers clinical and basic research studies implicating calpain-1 and calpain-2 expression and activity in tumorigenesis and metastasis. We highlight isoform specific functions and provide an overview of substrates and cancer-related signalling pathways affected by calpain-mediated proteolytic cleavage. We also discuss efforts to develop clinically relevant calpain specific inhibitors and spotlight the challenges facing inhibitor development. EXPERT OPINION Rationale for targeting calpain-1 and calpain-2 in cancer is supported by pre-clinical and clinical studies demonstrating that calpain inhibition has the potential to attenuate carcinogenesis and block metastasis of aggressive tumors. The wide range of substrates and cleavage products, paired with inconsistencies in model systems, underscores the need for more complete understanding of physiological substrates and how calpain cleavage alters their function in cellular processes. The development of isoform specific calpain inhibitors remains an important goal with therapeutic potential in cancer and other diseases.
Collapse
Affiliation(s)
- Ivan Shapovalov
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| | - Danielle Harper
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| |
Collapse
|
6
|
Abstract
Neuroepigenetics, a new branch of epigenetics, plays an important role in the regulation of gene expression. Neuroepigenetics is associated with holistic neuronal function and helps in formation and maintenance of memory and learning processes. This includes neurodevelopment and neurodegenerative defects in which histone modification enzymes appear to play a crucial role. These modifications, carried out by acetyltransferases and deacetylases, regulate biologic and cellular processes such as apoptosis and autophagy, inflammatory response, mitochondrial dysfunction, cell-cycle progression and oxidative stress. Alterations in acetylation status of histone as well as non-histone substrates lead to transcriptional deregulation. Histone deacetylase decreases acetylation status and causes transcriptional repression of regulatory genes involved in neural plasticity, synaptogenesis, synaptic and neural plasticity, cognition and memory, and neural differentiation. Transcriptional deactivation in the brain results in development of neurodevelopmental and neurodegenerative disorders. Mounting evidence implicates histone deacetylase inhibitors as potential therapeutic targets to combat neurologic disorders. Recent studies have targeted naturally-occurring biomolecules and micro-RNAs to improve cognitive defects and memory. Multi-target drug ligands targeting HDAC have been developed and used in cell-culture and animal-models of neurologic disorders to ameliorate synaptic and cognitive dysfunction. Herein, we focus on the implications of histone deacetylase enzymes in neuropathology, their regulation of brain function and plausible involvement in the pathogenesis of neurologic defects.
Collapse
|
7
|
Yang T, Wang P, Yin X, Zhang J, Huo M, Gao J, Li G, Teng X, Yu H, Huang W, Wang Y. The histone deacetylase inhibitor PCI-24781 impairs calcium influx and inhibits proliferation and metastasis in breast cancer. Am J Cancer Res 2021; 11:2058-2076. [PMID: 33500709 PMCID: PMC7797697 DOI: 10.7150/thno.48314] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Histone deacetylases (HDACs) are involved in key cellular processes and have been implicated in cancer. As such, compounds that target HDACs or drugs that target epigenetic markers may be potential candidates for cancer therapy. This study was therefore aimed to identify a potential epidrug with low toxicity and high efficiency as anti-tumor agents. Methods: We first screened an epigenetic small molecule inhibitor library to screen for an epidrug for breast cancer. The candidate was identified as PCI-24781 and was characterized for half maximal inhibitory concentration (IC50), for specificity to breast cancer cells, and for effects on carcinogenesis and metastatic properties of breast cancer cell lines in vitro. A series of in silico and in vitro analyses were further performed of PCI-24781 to identify and understand its target. Results: Screening of an epigenetic inhibitor library in MDA-MB-231 cells, a malignant cancer cell line, showed that PCI-24781 is a potential anti-tumor drug specific to breast cancer. Ca2+ related pathways were identified as a potential target of PCI-24781. Further analyses showed that PCI-24781 inhibited Gαq-PLCβ3-mediated calcium signaling by activating the expression of regulator of G-protein signaling 2 (RGS2) to reduce cell proliferation, metastasis, and differentiation, resulting in cell death in breast cancer. In addition, RGS2 depletion reversed anti-tumor effect and inhibition of calcium influx induced by PCI-24781 treatment in breast cancer cells. Conclusions: We have demonstrated that PCI-24781 is an effective anti-tumor therapeutic agent that targets calcium signaling by activating RGS2. This study also provides a novel perspective into the use of HDAC inhibitors for cancer therapy.
Collapse
|
8
|
Pharmacological intervention of histone deacetylase enzymes in the neurodegenerative disorders. Life Sci 2020; 243:117278. [PMID: 31926248 DOI: 10.1016/j.lfs.2020.117278] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023]
Abstract
Reversal of aging symptoms and related disorders are the challenging task where epigenetic is a crucial player that includes DNA methylation, histone modification; chromatin remodeling and regulation that are linked to the progression of various neurodegenerative disorders (NDDs). Overexpression of various histone deacetylase (HDACs) can activate Glycogen synthase kinase 3 which promotes the hyperphosphorylation of tau and inhibits its degradation. While HDAC is important for maintaining the neuronal morphology and brain homeostasis, at the same time, these enzymes are promoting neurodegeneration, if it is deregulated. Different experimental models have also confirmed the neuroprotective effects caused by HDAC enzymes through the regulation of neuronal apoptosis, inflammatory response, DNA damage, cell cycle regulation, and metabolic dysfunction. Apart from transcriptional regulation, protein-protein interaction, histone post-translational modifications, deacetylation mechanism of non-histone protein and direct association with disease proteins have been linked to neuronal imbalance. Histone deacetylases inhibitors (HDACi) can be able to alter gene expression and shown its efficacy on experimental models, and in clinical trials for NDD's and found to be a very promising therapeutic agent with certain limitation, for instance, non-specific target effect, isoform-selectivity, specificity, and limited number of predicted biomarkers. Herein, we discussed (i) the catalytic mechanism of the deacetylation process of various HDAC's in in vivo and in vitro experimental models, (ii) how HDACs are participating in neuroprotection as well as in neurodegeneration, (iii) a comprehensive role of HDACi in maintaining neuronal homeostasis and (iv) therapeutic role of biomolecules to modulate HDACs.
Collapse
|
9
|
Li LH, Peng WN, Deng Y, Li JJ, Tian XR. Action of trichostatin A on Alzheimer's disease-like pathological changes in SH-SY5Y neuroblastoma cells. Neural Regen Res 2020; 15:293-301. [PMID: 31552902 PMCID: PMC6905323 DOI: 10.4103/1673-5374.265564] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The histone deacetylase inhibitor, trichostatin A, is used to treat Alzheimer's disease and can improve learning and memory but its underlying mechanism of action is unknown. To determine whether the therapeutic effect of trichostatin A on Alzheimer's disease is associated with the nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like epichlorohydrin-related protein-1 (Keap1) signaling pathway, amyloid β-peptide 25-35 (Aβ25-35) was used to induce Alzheimer's disease-like pathological changes in SH-SY5Y neuroblastoma cells. Cells were then treated with trichostatin A. The effects of trichostatin A on the expression of Keap1 and Nrf2 were detected by real-time quantitative polymerase chain reaction, western blot assays and immunofluorescence. Total antioxidant capacity and autophagy activity were evaluated by total antioxidant capacity assay kit and light chain 3-I/II levels, respectively. We found that trichostatin A increased cell viability and Nrf2 expression, and decreased Keap1 expression in SH-SY5Y cells. Furthermore, trichostatin A increased the expression of Nrf2-related target genes, such as superoxide dismutase, NAD(P)H quinone dehydrogenase 1 and glutathione S-transferase, thereby increasing the total antioxidant capacity of SH-SY5Y cells and inhibiting amyloid β-peptide-induced autophagy. Knockdown of Keap1 in SH-SY5Y cells further increased trichostatin A-induced Nrf2 expression. These results indicate that the therapeutic effect of trichostatin A on Alzheimer's disease is associated with the Keap1-Nrf2 pathway. The mechanism for this action may be that trichostatin A increases cell viability and the antioxidant capacity of SH-SY5Y cells by alleviating Keap1-mediated inhibition Nrf2 signaling, thereby alleviating amyloid β-peptide-induced cell damage.
Collapse
Affiliation(s)
- Li-Hua Li
- College of Medicine, Jishou University, Jishou, Hunan Province, China
| | - Wen-Na Peng
- Department of Rehabilitation, Second Xiangya Hospital, Changsha, Hunan Province, China
| | - Yu Deng
- College of Medicine, Jishou University, Jishou, Hunan Province, China
| | - Jing-Jing Li
- College of Medicine, Jishou University, Jishou, Hunan Province, China
| | - Xiang-Rong Tian
- College of Biology and Environmental Science, Jishou University, Jishou, Hunan Province, China
| |
Collapse
|
10
|
Siuda D, Randriamboavonjy V, Fleming I. Regulation of calpain 2 expression by miR-223 and miR-145. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194438. [PMID: 31634637 DOI: 10.1016/j.bbagrm.2019.194438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/26/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022]
Abstract
Calpain 2 (CAPN2) is a Ca2+-dependent cysteine-protease that is involved in different cellular processes. Despite its important role, little is known about how CAPN2 expression is regulated. This study addressed the potential regulation of CAPN2 by microRNAs (miRNAs) in human endothelial cells. Two miRNAs were found to regulate CAPN2 expression by two distinct mechanisms, one direct and the other indirect. MiR-223 directly targeted CAPN2 by binding to the CAPN2 3'-untranslated region. Mir-223 overexpression decreased CAPN2 protein levels in cultured cells and in mice miR-223 antagonism led to an increase in CAPN2 protein in lung tissue. MiR-145 overexpression also decreased CAPN2 expression but did not affect a CAPN2 luciferase construct, indicating that the effect was indirect. MiR-145 targets histone deacetylase (HDAC) 2, and HDAC inhibition transcriptionally regulated CAPN2 expression by hyperacetylation of the promoter of CAPN2 gene and a subsequent decrease in polymerase 2 binding. Indeed, down regulation of HDAC2 by miR-145 not only decreased CAPN2 protein expression and calpain activity, but also protected paxillin against calpain-dependent degradation. Thus, protein levels of CAPN2 are regulated by miR-223, acting directly on the 3'-untranslated region as well as by miR-145, which acts via an increase in HDAC2. ENZYMES: Calpain 2 (EC 3.4.22.53), histone deacetylase 2 (EC 3.5.1.98).
Collapse
Affiliation(s)
- Daniel Siuda
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt am Main, Germany
| | - Voahanginirina Randriamboavonjy
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Fan YG, Guo T, Han XR, Liu JL, Cai YT, Xue H, Huang XS, Li YC, Wang ZY, Guo C. Paricalcitol accelerates BACE1 lysosomal degradation and inhibits calpain-1 dependent neuronal loss in APP/PS1 transgenic mice. EBioMedicine 2019; 45:393-407. [PMID: 31303501 PMCID: PMC6642335 DOI: 10.1016/j.ebiom.2019.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Recent studies have revealed that vitamin D deficiency may increase the risk of Alzheimer's disease, and vitamin D supplementation may be effective strategy to ameliorate the neurodegenerative process in Alzheimer's disease patients. Paricalcitol (PAL), a low-calcemic vitamin D receptor agonist, is clinically used to treat secondary hyperparathyroidism. However, the potential application of PAL for treating neurodegenerative disorders remains unexplored. METHODS The APP/PS1 mice were intraperitoneally injected with PAL or vehicle every other day for 15 weeks. The β-amyloid (Aβ) production was confirmed using immunostaining and enzyme linked immunosorbent assay. The underlying mechanism was verified by western blot and immunostaining in vivo and in vitro. FINDINGS Long-term PAL treatment clearly reduced β-amyloid (Aβ) generation and neuronal loss in APP/PS1 transgenic mouse brains. PAL stimulated the expression of low-density lipoprotein receptor-related protein 1 (LRP1) possibly through inhibiting sterol regulatory element binding protein-2 (SREBP2); PAL also promoted LRP1-mediated β-site APP cleavage enzyme 1 (BACE1) transport to late endosomes, thus increasing the lysosomal degradation of BACE1. Furthermore, PAL diminished 8-hydroxyguanosine (8-OHdG) generation in neuronal mitochondria via enhancing base excision repair (BER), resulting in the attenuation of calpain-1-mediated neuronal loss. INTERPRETATION The present data demonstrate that PAL can reduce Aβ generation through accelerating BACE1 lysosomal degradation and can inhibit neuronal loss through suppressing mitochondrial 8-OHdG generation. Hence, PAL might be a promising agent for treating Alzheimer's disease. FUND: This study was financially supported by the Natural Science Foundation of China (U1608282).
Collapse
Affiliation(s)
- Yong-Gang Fan
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Tian Guo
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Xiao-Ran Han
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Jun-Lin Liu
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Yu-Ting Cai
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Han Xue
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Xue-Shi Huang
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Yan-Chun Li
- Department of Medicine, the University of Chicago, Chicago, IL 60637, USA
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China; Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110122, China.
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China.
| |
Collapse
|
12
|
Pierzynowska K, Gaffke L, Cyske Z, Puchalski M, Rintz E, Bartkowski M, Osiadły M, Pierzynowski M, Mantej J, Piotrowska E, Węgrzyn G. Autophagy stimulation as a promising approach in treatment of neurodegenerative diseases. Metab Brain Dis 2018; 33:989-1008. [PMID: 29542037 PMCID: PMC6060747 DOI: 10.1007/s11011-018-0214-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/08/2018] [Indexed: 12/19/2022]
Abstract
Autophagy is a process of degradation of macromolecules in the cytoplasm, particularly proteins of a long half-life, as well as whole organelles, in eukaryotic cells. Lysosomes play crucial roles during this degradation. Autophagy is a phylogenetically old, and evolutionarily conserved phenomenon which occurs in all eukaryotic cells. It can be found in yeast Saccharomyces cerevisiae, insect Drosophila melanogaster, and mammals, including humans. Its high importance for cell physiology has been recognized, and in fact, dysfunctions causing impaired autophagy are associated with many severe disorders, including cancer and metabolic brain diseases. The types and molecular mechanisms of autophagy have been reviewed recently by others, and in this paper they will be summarized only briefly. Regulatory networks controlling the autophagy process are usually described as negative regulations. In contrast, here, we focus on different ways by which autophagy can be stimulated. In fact, activation of this process by different factors or processes can be considered as a therapeutic strategy in metabolic neurodegenerative diseases. These aspects are reviewed and discussed in this article.
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Zuzanna Cyske
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Michał Puchalski
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Michał Bartkowski
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Marta Osiadły
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Michał Pierzynowski
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Ewa Piotrowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
13
|
McDevitt J, Krynetskiy E. Genetic findings in sport-related concussions: potential for individualized medicine? Concussion 2017; 2:CNC26. [PMID: 30202567 PMCID: PMC6096436 DOI: 10.2217/cnc-2016-0020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/28/2016] [Indexed: 11/24/2022] Open
Abstract
Concussion is a traumatic transient disturbance of the brain. In sport, the initial time and severity of concussion is known giving an opportunity for subsequent analysis. Variability in susceptibility and recovery between individual athletes depends, among other parameters, on genetic factors. The genes-encoding polypeptides that determine incidence, severity and prognosis for concussion are the primary candidates for genetic analysis. Genetic polymorphisms in the genes contributing to plasticity and repair (APOE), synaptic connectivity (GRIN2A), calcium influx (CACNA1E), uptake and deposit of glutamate (SLC17A7) are potential biomarkers of concussion incidence and recovery rate. With catalogued genetic variants, prospective genotyping of athletes at the beginning of their career will allow medical professionals to improve concussion management and return-to-play decisions.
Collapse
Affiliation(s)
- Jane McDevitt
- East Stroudsburg University, Athletic Training Department, East Stroudsburg, PA 18301, USA.,East Stroudsburg University, Athletic Training Department, East Stroudsburg, PA 18301, USA
| | - Evgeny Krynetskiy
- Temple University School of Pharmacy, Pharmaceutical Sciences Department, Philadelphia, PA 19140, USA.,Temple University School of Pharmacy, Pharmaceutical Sciences Department, Philadelphia, PA 19140, USA
| |
Collapse
|
14
|
Ganai SA, Ramadoss M, Mahadevan V. Histone Deacetylase (HDAC) Inhibitors - emerging roles in neuronal memory, learning, synaptic plasticity and neural regeneration. Curr Neuropharmacol 2016; 14:55-71. [PMID: 26487502 PMCID: PMC4787286 DOI: 10.2174/1570159x13666151021111609] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/23/2015] [Accepted: 10/08/2015] [Indexed: 11/22/2022] Open
Abstract
Epigenetic regulation of neuronal signalling through histone acetylation dictates transcription programs that govern neuronal memory, plasticity and learning paradigms. Histone Acetyl Transferases (HATs) and Histone Deacetylases (HDACs) are antagonistic enzymes that regulate gene expression through acetylation and deacetylation of histone proteins around which DNA is wrapped inside a eukaryotic cell nucleus. The epigenetic control of HDACs and the cellular imbalance between HATs and HDACs dictate disease states and have been implicated in muscular dystrophy, loss of memory, neurodegeneration and autistic disorders. Altering gene expression profiles through inhibition of HDACs is now emerging as a powerful technique in therapy. This review presents evolving applications of HDAC inhibitors as potential drugs in neurological research and therapy. Mechanisms that govern their
expression profiles in neuronal signalling, plasticity and learning will be covered. Promising and exciting possibilities of HDAC inhibitors in memory formation, fear conditioning, ischemic stroke and neural regeneration have been detailed.
Collapse
Affiliation(s)
| | | | - Vijayalakshmi Mahadevan
- School of Chemical & Biotechnology SASTRA University Tirumalaisamudram, Thanjavur - 613 401 India.
| |
Collapse
|
15
|
Curcio M, Salazar IL, Mele M, Canzoniero LMT, Duarte CB. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury. Prog Neurobiol 2016; 143:1-35. [PMID: 27283248 DOI: 10.1016/j.pneurobio.2016.06.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/26/2022]
Abstract
The excessive extracellular accumulation of glutamate in the ischemic brain leads to an overactivation of glutamate receptors with consequent excitotoxic neuronal death. Neuronal demise is largely due to a sustained activation of NMDA receptors for glutamate, with a consequent increase in the intracellular Ca(2+) concentration and activation of calcium- dependent mechanisms. Calpains are a group of Ca(2+)-dependent proteases that truncate specific proteins, and some of the cleavage products remain in the cell, although with a distinct function. Numerous studies have shown pre- and post-synaptic effects of calpains on glutamatergic and GABAergic synapses, targeting membrane- associated proteins as well as intracellular proteins. The resulting changes in the presynaptic proteome alter neurotransmitter release, while the cleavage of postsynaptic proteins affects directly or indirectly the activity of neurotransmitter receptors and downstream mechanisms. These alterations also disturb the balance between excitatory and inhibitory neurotransmission in the brain, with an impact in neuronal demise. In this review we discuss the evidence pointing to a role for calpains in the dysregulation of excitatory and inhibitory synapses in brain ischemia, at the pre- and post-synaptic levels, as well as the functional consequences. Although targeting calpain-dependent mechanisms may constitute a good therapeutic approach for stroke, specific strategies should be developed to avoid non-specific effects given the important regulatory role played by these proteases under normal physiological conditions.
Collapse
Affiliation(s)
- Michele Curcio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ivan L Salazar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - Miranda Mele
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
16
|
Abstract
Alzheimer disease (AD) is a fatal progressive disease and the most common form of dementia without effective treatments. Previous studies support that the disruption of endoplasmic reticulum Ca through overactivation of ryanodine receptors plays an important role in the pathogenesis of AD. Normalization of intracellular Ca homeostasis could be an effective strategy for AD therapies. Dantrolene, an antagonist of ryanodine receptors and an FDA-approved drug for clinical treatment of malignant hyperthermia and muscle spasms, exhibits neuroprotective effects in multiple models of neurodegenerative disorders. Recent preclinical studies consistently support the therapeutic effects of dantrolene in various types of AD animal models and were summarized in the current review.
Collapse
|
17
|
Tan CSH, Ng YK, Ong WY. Epigenetic Regulation of Cytosolic Phospholipase A2 in SH-SY5Y Human Neuroblastoma Cells. Mol Neurobiol 2015; 53:3854-3872. [PMID: 26162318 DOI: 10.1007/s12035-015-9314-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/23/2015] [Indexed: 12/19/2022]
Abstract
Group IVA cytosolic phospholipase A2 (cPLA2 or PLA2G4A) is a key enzyme that contributes to inflammation via the generation of arachidonic acid and eicosanoids. While much is known about regulation of cPLA2 by posttranslational modification such as phosphorylation, little is known about its epigenetic regulation. In this study, treatment with histone deacetylase (HDAC) inhibitors, trichostatin A (TSA), valproic acid, tubacin and the class I HDAC inhibitor, MS-275, were found to increase cPLA2α messenger RNA (mRNA) expression in SH-SY5Y human neuroblastoma cells. Co-treatment of the histone acetyltransferase (HAT) inhibitor, anacardic acid, modulated upregulation of cPLA2α induced by TSA. Specific involvement of class I HDACs and HAT in cPLA2α regulation was further shown, and a Tip60-specific HAT inhibitor, NU9056, modulated the upregulation of cPLA2α induced by MS-275. In addition, co-treatment of with histone methyltransferase (HMT) inhibitor, 5'-deoxy-5'-methylthioadenosine (MTA) suppressed TSA-induced cPLA2α upregulation. The above changes in cPLA2 mRNA expression were reflected at the protein level by Western blots and immunocytochemistry. Chromatin immunoprecipitation (ChIP) showed TSA increased binding of trimethylated H3K4 to the proximal promoter region of the cPLA2α gene. Cell injury after TSA treatment as indicated by lactate dehydrogenase (LDH) release was modulated by anacardic acid, and a role of cPLA2 in mediating TSA-induced injury shown, after co-incubation with the cPLA2 selective inhibitor, arachidonoyl trifluoromethyl ketone (AACOCF3). Together, results indicate epigenetic regulation of cPLA2 and the potential of such regulation for treatment of chronic inflammation.
Collapse
Affiliation(s)
- Charlene Siew-Hon Tan
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore
| | - Yee-Kong Ng
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore. .,Neurobiology and Ageing Research Programme, National University of Singapore, Singapore, 119260, Singapore.
| |
Collapse
|
18
|
Increased acetyl and total histone levels in post-mortem Alzheimer's disease brain. Neurobiol Dis 2015; 74:281-94. [DOI: 10.1016/j.nbd.2014.11.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/20/2014] [Accepted: 11/26/2014] [Indexed: 11/19/2022] Open
|
19
|
Yu P, McKinney EC, Kandasamy MM, Albert AL, Meagher RB. Characterization of brain cell nuclei with decondensed chromatin. Dev Neurobiol 2014; 75:738-56. [PMID: 25369517 DOI: 10.1002/dneu.22245] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/22/2014] [Accepted: 10/30/2014] [Indexed: 12/14/2022]
Abstract
Although multipotent cell types have enlarged nuclei with decondensed chromatin, this property has not been exploited to enhance the characterization of neural progenitor cell (NPC) populations in the brain. We found that mouse brain cell nuclei that expressed exceptionally high levels of the pan neuronal marker NeuN/FOX3 (NeuN-High) had decondensed chromatin relative to most NeuN-Low or NeuN-Neg (negative) nuclei. Purified NeuN-High nuclei expressed significantly higher levels of transcripts encoding markers of neurogenesis, neuroplasticity, and learning and memory (ARC, BDNF, ERG1, HOMER1, NFL/NEF1, SYT1), subunits of chromatin modifying machinery (SIRT1, HDAC1, HDAC2, HDAC11, KAT2B, KAT3A, KAT3B, KAT5, DMNT1, DNMT3A, Gadd45a, Gadd45b) and markers of NPC and cell cycle activity (BRN2, FOXG1, KLF4, c-MYC, OCT4, PCNA, SHH, SOX2) relative to neuronal NeuN-Low or to mostly non-neuronal NeuN-Neg nuclei. NeuN-High nuclei expressed higher levels of HDAC1, 2, 4, and 5 proteins. The cortex, hippocampus, hypothalamus, thalamus, and nucleus accumbens contained high percentages of large decondensed NeuN-High nuclei, while the cerebellum, and pons contained very few. NeuN-High nuclei have the properties consistent with their being derived from extremely active neurons with elevated rates of chromatin modification and/or NPC-like cells with multilineage developmental potential. The further analysis of decondensed neural cell nuclei should provide novel insights into neurobiology and neurodegenerative disease.
Collapse
Affiliation(s)
- Ping Yu
- Department of Genetics, University of Georgia, Davison Life Sciences Building, Athens, Georgia, 30602
| | - Elizabeth C McKinney
- Department of Genetics, University of Georgia, Davison Life Sciences Building, Athens, Georgia, 30602
| | - Muthugapatti M Kandasamy
- Department of Genetics, University of Georgia, Davison Life Sciences Building, Athens, Georgia, 30602
| | | | - Richard B Meagher
- Department of Genetics, University of Georgia, Davison Life Sciences Building, Athens, Georgia, 30602
| |
Collapse
|