1
|
Putscher E, Hecker M, Fitzner B, Boxberger N, Schwartz M, Koczan D, Lorenz P, Zettl UK. Genetic risk variants for multiple sclerosis are linked to differences in alternative pre-mRNA splicing. Front Immunol 2022; 13:931831. [PMID: 36405756 PMCID: PMC9670805 DOI: 10.3389/fimmu.2022.931831] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/12/2022] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic immune-mediated disease of the central nervous system to which a genetic predisposition contributes. Over 200 genetic regions have been associated with increased disease risk, but the disease-causing variants and their functional impact at the molecular level are mostly poorly defined. We hypothesized that single-nucleotide polymorphisms (SNPs) have an impact on pre-mRNA splicing in MS. METHODS Our study focused on 10 bioinformatically prioritized SNP-gene pairs, in which the SNP has a high potential to alter alternative splicing events (ASEs). We tested for differential gene expression and differential alternative splicing in B cells from MS patients and healthy controls. We further examined the impact of the SNP genotypes on ASEs and on splice isoform expression levels. Novel genotype-dependent effects on splicing were verified with splicing reporter minigene assays. RESULTS We were able to confirm previously described findings regarding the relation of MS-associated SNPs with the ASEs of the pre-mRNAs from GSDMB and SP140. We also observed an increased IL7R exon 6 skipping when comparing relapsing and progressive MS patients to healthy subjects. Moreover, we found evidence that the MS risk alleles of the SNPs rs3851808 (EFCAB13), rs1131123 (HLA-C), rs10783847 (TSFM), and rs2014886 (TSFM) may contribute to a differential splicing pattern. Of particular interest is the genotype-dependent exon skipping of TSFM due to the SNP rs2014886. The minor allele T creates a donor splice site, resulting in the expression of the exon 3 and 4 of a short TSFM transcript isoform, whereas in the presence of the MS risk allele C, this donor site is absent, and thus the short transcript isoform is not expressed. CONCLUSION In summary, we found that genetic variants from MS risk loci affect pre-mRNA splicing. Our findings substantiate the role of ASEs with respect to the genetics of MS. Further studies on how disease-causing genetic variants may modify the interactions between splicing regulatory sequence elements and RNA-binding proteins can help to deepen our understanding of the genetic susceptibility to MS.
Collapse
Affiliation(s)
- Elena Putscher
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Michael Hecker
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Brit Fitzner
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Nina Boxberger
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Margit Schwartz
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Dirk Koczan
- Rostock University Medical Center, Institute of Immunology, Rostock, Germany
| | - Peter Lorenz
- Rostock University Medical Center, Institute of Immunology, Rostock, Germany
| | - Uwe Klaus Zettl
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| |
Collapse
|
2
|
In silico derived small molecules targeting the finger-finger interaction between the histone lysine methyltransferase NSD1 and Nizp1 repressor. Comput Struct Biotechnol J 2020; 18:4082-4092. [PMID: 33363704 PMCID: PMC7736721 DOI: 10.1016/j.csbj.2020.11.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
PHD fingers are small chromatin binding domains, that alone or in tandem work as versatile interaction platforms for diversified activities, ranging from the decoding of the modification status of histone tails to the specific recognition of non-histone proteins. They play a crucial role in their host protein as mutations thereof cause several human malignancies. Thus, PHD fingers are starting to be considered as valuable pharmacological targets. While inhibitors or chemical probes of the histone binding activity of PHD fingers are emerging, their druggability as non-histone interaction platform is still unexplored. In the current study, using a computational and experimental pipeline, we provide proof of concept that the tandem PHD finger of Nuclear receptor-binding SET (Su(var)3–9, Enhancer of zeste, Trithorax) domain protein 1 (PHDVC5HCHNSD1) is ligandable. Combining virtual screening of a small subset of the ZINC database (Zinc Drug Database, ZDD, 2924 molecules) to NMR binding assays and ITC measurements, we have identified Mitoxantrone dihydrochloride, Quinacrine dihydrochloride and Chloroquine diphosphate as the first molecules able to bind to PHDVC5HCHNSD1 and to reduce its documented interaction with the Zinc finger domain (C2HRNizp1) of the transcriptional repressor Nizp1 (NSD1-interacting Zn-finger protein). These results pave the way for the design of small molecules with improved effectiveness in inhibiting this finger-finger interaction.
Collapse
Key Words
- C2HRNizp1, C2HR finger domain of Nizp1
- NMR
- NMR, Nuclear Magnetic Resonance
- NSD1
- NSD1, Nuclear receptor-binding SET (Su(var)3–9, Enhancer of zeste, Trithorax) domain protein 1
- Nizp1
- Nizp1, (NSD1-interacting Zn-finger protein)
- PHD finger
- PHD finger, Plant Homeodomain finger
- PHDVC5HCHNSD1, Fifth PHD and C5HCH tandem domain of NSD1
- Protein-protein interactions
- STD, saturation transfer difference
- VS, Virtual Screening
- Virtual screening
Collapse
|
3
|
Fraschilla I, Jeffrey KL. The Speckled Protein (SP) Family: Immunity's Chromatin Readers. Trends Immunol 2020; 41:572-585. [PMID: 32386862 PMCID: PMC8327362 DOI: 10.1016/j.it.2020.04.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/25/2020] [Accepted: 04/04/2020] [Indexed: 01/25/2023]
Abstract
Chromatin 'readers' are central interpreters of the epigenome that facilitate cell-specific transcriptional programs and are therapeutic targets in cancer and inflammation. The Speckled Protein (SP) family of chromatin 'readers' in humans consists of SP100, SP110, SP140, and SP140L. SPs possess functional domains (SAND, PHD, bromodomain) that dock to DNA or post-translationally modified histones and a caspase activation and recruitment domain (CARD) to promote multimerization. Mutations within immune expressed SPs associate with numerous immunological diseases including Crohn's disease, multiple sclerosis, chronic lymphocytic leukemia, veno-occlusive disease with immunodeficiency, as well as Mycobacterium tuberculosis infection, underscoring their importance in immune regulation. In this review, we posit that SPs are central chromatin regulators of gene silencing that establish immune cell identity and function.
Collapse
Affiliation(s)
- Isabella Fraschilla
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Immunology, Harvard Medical School, Boston, MA 02114, USA
| | - Kate L Jeffrey
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Immunology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
4
|
Karaky M, Fedetz M, Potenciano V, Andrés-León E, Codina AE, Barrionuevo C, Alcina A, Matesanz F. SP140 regulates the expression of immune-related genes associated with multiple sclerosis and other autoimmune diseases by NF-κB inhibition. Hum Mol Genet 2019; 27:4012-4023. [PMID: 30102396 DOI: 10.1093/hmg/ddy284] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022] Open
Abstract
SP140 locus has been associated with multiple sclerosis (MS) as well as other autoimmune diseases by genome-wide association studies (GWAS). The causal variant of these associations (rs28445040-T) alters the splicing of the SP140 gene transcripts reducing the protein expression. We aimed to understand why the reduction of SP140 expression produced by the risk variant can increase the susceptibility to MS. To this end, we determined by RNA sequencing (RNA-seq) analysis the differentially expressed genes after SP140 silencing in lymphoblastoid cell lines (LCLs). We analyzed these genes by gene ontology (GO), comparative transcriptome profiles, enrichment of transcription factors (TFs) in the promoters of these genes and colocalization with GWAS risk variants. We also monitored the activity of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in SP140-silenced cells by luciferase reporter system. We identified 100 genes that were up-regulated and 22 genes down-regulated in SP140-silenced LCLs. GO analysis revealed that genes affected by SP140 were involved in regulation of cytokine production, inflammatory response and cell-cell adhesion. We observed enrichment of NF-κB TF in the promoter of up-regulated genes and NF-κB-increased activity in SP140-silenced cell lines. We showed enrichment of genes regulated by SP140 in GWAS-detected risk loci for MS (14.63 folds), Crohn's disease (4.82 folds) and inflammatory bowel disease (4.47 folds), not observed in other unrelated immune diseases. Our findings showed that SP140 is an important repressor of genes implicated in inflammation, suggesting that decreased expression of SP140, promoted by the rs28445040-T risk variant, may lead to up-regulation of these genes by means of NF-κB inhibition in B cells.
Collapse
Affiliation(s)
- Mohamad Karaky
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | - María Fedetz
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | - Victor Potenciano
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | - Eduardo Andrés-León
- Bioinformatic Facility, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | - Anna Esteve Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Barrionuevo
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | - Antonio Alcina
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | - Fuencisla Matesanz
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| |
Collapse
|
5
|
Mugoni V, Panella R, Cheloni G, Chen M, Pozdnyakova O, Stroopinsky D, Guarnerio J, Monteleone E, Lee JD, Mendez L, Menon AV, Aster JC, Lane AA, Stone RM, Galinsky I, Zamora JC, Lo-Coco F, Bhasin MK, Avigan D, Longo L, Clohessy JG, Pandolfi PP. Vulnerabilities in mIDH2 AML confer sensitivity to APL-like targeted combination therapy. Cell Res 2019; 29:446-459. [PMID: 31024166 DOI: 10.1038/s41422-019-0162-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 03/12/2019] [Indexed: 12/14/2022] Open
Abstract
Although targeted therapies have proven effective and even curative in human leukaemia, resistance often ensues. IDH enzymes are mutated in ~20% of human AML, with targeted therapies under clinical evaluation. We here characterize leukaemia evolution from mutant IDH2 (mIDH2)-dependence to independence identifying key targetable vulnerabilities of mIDH2 leukaemia that are retained during evolution and progression from early to late stages. Mechanistically, we find that mIDH2 leukaemia are metastable and vulnerable at two distinct levels. On the one hand, they are characterized by oxidative and genotoxic stress, in spite of increased 1-carbon metabolism and glutathione levels. On the other hand, mIDH2 leukaemia display inhibition of LSD1 and a resulting transcriptional signature of all-trans retinoic acid (ATRA) sensitization, in spite of a state of suppressed ATRA signalling due to increased levels of PIN1. We further identify GSH/ROS and PIN1/LSD1 as critical nodes for leukaemia maintenance and the combination of ATRA and arsenic trioxide (ATO) as a key therapeutic modality to target these vulnerabilities. Strikingly, we demonstrate that the combination of ATRA and ATO proves to be a powerfully synergistic and effective therapy in a number of mouse and human mIDH1/2 leukemic models. Thus, our findings pave the way towards the treatment of a sizable fraction of human AMLs through targeted APL-like combinatorial therapies.
Collapse
Affiliation(s)
- Vera Mugoni
- Cancer Research Institute, Beth Israel Deaconess Cancer Center; Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Riccardo Panella
- Cancer Research Institute, Beth Israel Deaconess Cancer Center; Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Giulia Cheloni
- Cancer Research Institute, Beth Israel Deaconess Cancer Center; Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Ming Chen
- Cancer Research Institute, Beth Israel Deaconess Cancer Center; Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Olga Pozdnyakova
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dina Stroopinsky
- Division of Hematology and Hematologic Malignancies, Department of Medicine, Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jlenia Guarnerio
- Cancer Research Institute, Beth Israel Deaconess Cancer Center; Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Emanuele Monteleone
- Cancer Research Institute, Beth Israel Deaconess Cancer Center; Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.,Molecular Biotechnology Center and Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Jonathan David Lee
- Cancer Research Institute, Beth Israel Deaconess Cancer Center; Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Lourdes Mendez
- Cancer Research Institute, Beth Israel Deaconess Cancer Center; Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Archita Venugopal Menon
- Cancer Research Institute, Beth Israel Deaconess Cancer Center; Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Jon Christopher Aster
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew A Lane
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard Maury Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ilene Galinsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - José Cervera Zamora
- Biobanco La Fe - Instituto de Investigation Sanitaria La Fe (IIS-LA FE), Avda. de Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Neuro-Oncohematology Unit, Santa Lucia Foundation, Rome, Italy
| | - Manoj Kumar Bhasin
- Division of IMBIO, Department of Medicine, BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - David Avigan
- Division of Hematology and Hematologic Malignancies, Department of Medicine, Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Letizia Longo
- Cancer Research Institute, Beth Israel Deaconess Cancer Center; Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - John Gerard Clohessy
- Cancer Research Institute, Beth Israel Deaconess Cancer Center; Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.,Preclinical Murine Pharmacogenetics Core, Beth Israel Deaconess Cancer Center, Dana Farber/Harvard Cancer Center, Boston, USA
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center; Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Zucchelli C, Tamburri S, Filosa G, Ghitti M, Quilici G, Bachi A, Musco G. Sp140 is a multi-SUMO-1 target and its PHD finger promotes SUMOylation of the adjacent Bromodomain. Biochim Biophys Acta Gen Subj 2018; 1863:456-465. [PMID: 30465816 DOI: 10.1016/j.bbagen.2018.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/25/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Human Sp140 protein is a leukocyte-specific member of the speckled protein (Sp) family (Sp100, Sp110, Sp140, Sp140L), a class of multi-domain nuclear proteins involved in intrinsic immunity and transcriptional regulation. Sp140 regulates macrophage transcriptional program and is implicated in several haematologic malignancies. Little is known about Sp140 structural domains and its post-translational modifications. METHODS We used mass spectrometry and biochemical experiments to investigate endogenous Sp140 SUMOylation in Burkitt's Lymphoma cells and Sp140 SUMOylation sites in HEK293T cells, FLAG-Sp140 transfected and His6-SUMO-1T95K infected. NMR spectroscopy and in vitro SUMOylation reactions were applied to investigate the role of Sp140 PHD finger in the SUMOylation of the adjacent BRD. RESULTS Endogenous Sp140 is a SUMO-1 target, whereby FLAG-Sp140 harbors at least 13 SUMOylation sites distributed along the protein sequence, including the BRD. NMR experiments prove direct binding of the SUMO E2 ligase Ubc9 and SUMO-1 to PHD-BRDSp140. In vitro SUMOylation reactions show that the PHDSp140 behaves as SUMO E3 ligase, assisting intramolecular SUMOylation of the adjacent BRD. CONCLUSIONS Sp140 is multi-SUMOylated and its PHD finger works as versatile protein-protein interaction platform promoting intramolecular SUMOylation of the adjacent BRD. Thus, combinatorial association of Sp140 chromatin binding domains generates a multifaceted interaction scaffold, whose function goes beyond the canonical histone recognition. GENERAL SIGNIFICANCE The addition of Sp140 to the increasing lists of multi-SUMOylated proteins opens new perspectives for molecular studies on Sp140 transcriptional activity, where SUMOylation could represent a regulatory route and a docking surface for the recruitment and assembly of leukocyte-specific transcription regulators.
Collapse
Affiliation(s)
- Chiara Zucchelli
- Biomolecular NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Simone Tamburri
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy; San Raffaele Vita-Salute University, Via Olgettina 60, 20132 Milano, Italy
| | - Giuseppe Filosa
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Michela Ghitti
- Biomolecular NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Giacomo Quilici
- Biomolecular NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy.
| | - Giovanna Musco
- Biomolecular NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy.
| |
Collapse
|
7
|
Park E, Pan Z, Zhang Z, Lin L, Xing Y. The Expanding Landscape of Alternative Splicing Variation in Human Populations. Am J Hum Genet 2018; 102:11-26. [PMID: 29304370 PMCID: PMC5777382 DOI: 10.1016/j.ajhg.2017.11.002] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/03/2017] [Indexed: 12/16/2022] Open
Abstract
Alternative splicing is a tightly regulated biological process by which the number of gene products for any given gene can be greatly expanded. Genomic variants in splicing regulatory sequences can disrupt splicing and cause disease. Recent developments in sequencing technologies and computational biology have allowed researchers to investigate alternative splicing at an unprecedented scale and resolution. Population-scale transcriptome studies have revealed many naturally occurring genetic variants that modulate alternative splicing and consequently influence phenotypic variability and disease susceptibility in human populations. Innovations in experimental and computational tools such as massively parallel reporter assays and deep learning have enabled the rapid screening of genomic variants for their causal impacts on splicing. In this review, we describe technological advances that have greatly increased the speed and scale at which discoveries are made about the genetic variation of alternative splicing. We summarize major findings from population transcriptomic studies of alternative splicing and discuss the implications of these findings for human genetics and medicine.
Collapse
Affiliation(s)
- Eddie Park
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhicheng Pan
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zijun Zhang
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lan Lin
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Xing
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
8
|
Mehta S, Cronkite DA, Basavappa M, Saunders TL, Adiliaghdam F, Amatullah H, Morrison SA, Pagan JD, Anthony RM, Tonnerre P, Lauer GM, Lee JC, Digumarthi S, Pantano L, Ho Sui SJ, Ji F, Sadreyev R, Zhou C, Mullen AC, Kumar V, Li Y, Wijmenga C, Xavier RJ, Means TK, Jeffrey KL. Maintenance of macrophage transcriptional programs and intestinal homeostasis by epigenetic reader SP140. Sci Immunol 2017; 2:eaag3160. [PMID: 28783698 PMCID: PMC5549562 DOI: 10.1126/sciimmunol.aag3160] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/08/2017] [Indexed: 12/29/2022]
Abstract
Epigenetic "readers" that recognize defined posttranslational modifications on histones have become desirable therapeutic targets for cancer and inflammation. SP140 is one such bromodomain- and plant homeodomain (PHD)-containing reader with immune-restricted expression, and single-nucleotide polymorphisms (SNPs) within SP140 associate with Crohn's disease (CD). However, the function of SP140 and the consequences of disease-associated SP140 SNPs have remained unclear. We show that SP140 is critical for transcriptional programs that uphold the macrophage state. SP140 preferentially occupies promoters of silenced, lineage-inappropriate genes bearing the histone modification H3K27me3, such as the HOXA cluster in human macrophages, and ensures their repression. Depletion of SP140 in mouse or human macrophages resulted in severely compromised microbe-induced activation. We reveal that peripheral blood mononuclear cells (PBMCs) or B cells from individuals carrying CD-associated SNPs within SP140 have defective SP140 messenger RNA splicing and diminished SP140 protein levels. Moreover, CD patients carrying SP140 SNPs displayed suppressed innate immune gene signatures in a mixed population of PBMCs that stratified them from other CD patients. Hematopoietic-specific knockdown of Sp140 in mice resulted in exacerbated dextran sulfate sodium (DSS)-induced colitis, and low SP140 levels in human CD intestinal biopsies correlated with relatively lower intestinal innate cytokine levels and improved response to anti-tumor necrosis factor (TNF) therapy. Thus, the epigenetic reader SP140 is a key regulator of macrophage transcriptional programs for cellular state, and a loss of SP140 due to genetic variation contributes to a molecularly defined subset of CD characterized by ineffective innate immunity, normally critical for intestinal homeostasis.
Collapse
Affiliation(s)
- Stuti Mehta
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - D Alexander Cronkite
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Megha Basavappa
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Tahnee L Saunders
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Fatemeh Adiliaghdam
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hajera Amatullah
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sara A Morrison
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jose D Pagan
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Robert M Anthony
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Pierre Tonnerre
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Georg M Lauer
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - James C Lee
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, U.K
| | - Sreehaas Digumarthi
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lorena Pantano
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shannan J Ho Sui
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Chan Zhou
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alan C Mullen
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Vinod Kumar
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Yang Li
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ramnik J Xavier
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Terry K Means
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Kate L Jeffrey
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
9
|
Peloquin JM, Goel G, Kong L, Huang H, Haritunians T, Sartor RB, Daly MJ, Newberry RD, McGovern DP, Yajnik V, Lira SA, Xavier RJ. Characterization of candidate genes in inflammatory bowel disease-associated risk loci. JCI Insight 2016; 1:e87899. [PMID: 27668286 DOI: 10.1172/jci.insight.87899] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
GWAS have linked SNPs to risk of inflammatory bowel disease (IBD), but a systematic characterization of disease-associated genes has been lacking. Prior studies utilized microarrays that did not capture many genes encoded within risk loci or defined expression quantitative trait loci (eQTLs) using peripheral blood, which is not the target tissue in IBD. To address these gaps, we sought to characterize the expression of IBD-associated risk genes in disease-relevant tissues and in the setting of active IBD. Terminal ileal (TI) and colonic mucosal tissues were obtained from patients with Crohn's disease or ulcerative colitis and from healthy controls. We developed a NanoString code set to profile 678 genes within IBD risk loci. A subset of patients and controls were genotyped for IBD-associated risk SNPs. Analyses included differential expression and variance analysis, weighted gene coexpression network analysis, and eQTL analysis. We identified 116 genes that discriminate between healthy TI and colon samples and uncovered patterns in variance of gene expression that highlight heterogeneity of disease. We identified 107 coexpressed gene pairs for which transcriptional regulation is either conserved or reversed in an inflammation-independent or -dependent manner. We demonstrate that on average approximately 60% of disease-associated genes are differentially expressed in inflamed tissue. Last, we identified eQTLs with either genotype-only effects on expression or an interaction effect between genotype and inflammation. Our data reinforce tissue specificity of expression in disease-associated candidate genes, highlight genes and gene pairs that are regulated in disease-relevant tissue and inflammation, and provide a foundation to advance the understanding of IBD pathogenesis.
Collapse
Affiliation(s)
- Joanna M Peloquin
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease.,Center for Computational and Integrative Biology
| | - Gautam Goel
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease.,Center for Computational and Integrative Biology
| | - Lingjia Kong
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease.,Center for Computational and Integrative Biology
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Talin Haritunians
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - R Balfour Sartor
- Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Rodney D Newberry
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dermot P McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Vijay Yajnik
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease
| | - Sergio A Lira
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ramnik J Xavier
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease.,Center for Computational and Integrative Biology.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Zhang X, Zhao D, Xiong X, He Z, Li H. Multifaceted Histone H3 Methylation and Phosphorylation Readout by the Plant Homeodomain Finger of Human Nuclear Antigen Sp100C. J Biol Chem 2016; 291:12786-12798. [PMID: 27129259 PMCID: PMC4933467 DOI: 10.1074/jbc.m116.721159] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/06/2016] [Indexed: 02/05/2023] Open
Abstract
The decoding of histone post-translational modifications by chromatin-binding modules ("readers") constitutes one major mechanism of epigenetic regulation. Nuclear antigen Sp100 (SPECKLED, 100 kDa), a constitutive component of the promyelocytic leukemia nuclear bodies, plays key roles in intrinsic immunity and transcriptional repression. Sp100C, a splicing isoform specifically up-regulated upon interferon stimulation, harbors a unique tandem plant homeodomain (PHD) finger and bromodomain at its C terminus. Combining structural, quantitative binding, and cellular co-localization studies, we characterized Sp100C PHD finger as an unmethylated histone H3 Lys(4) (H3K4me0) reader that tolerates histone H3 Thr(3) phosphorylation (H3T3ph), histone H3 Lys(9) trimethylation (H3K9me3), and histone H3 Ser(10) phosphorylation (H3S10ph), hallmarks associated with the mitotic chromosome. In contrast, whereas H3K4me0 reader activity is conserved in Sp140, an Sp100C paralog, the multivalent tolerance of H3T3ph, H3K9me3, and H3S10ph was lost for Sp140. The complex structure determined at 2.1 Å revealed a highly coordinated lysine ϵ-amine recognition sphere formed by an extended N-terminal motif for H3K4me0 readout. Interestingly, reader pocket rigidification by disulfide bond formation enhanced H3K4me0 binding by Sp100C. An additional complex structure solved at 2.7 Å revealed that H3T3ph is recognized by the arginine residue, Arg(713), that is unique to the PHD finger of Sp100C. Consistent with a restrictive cellular role of Sp100C, these results establish a direct chromatin targeting function of Sp100C that may regulate transcriptional gene silencing and promyelocytic leukemia nuclear body-mediated intrinsic immunity in response to interferon stimulation.
Collapse
Affiliation(s)
- Xiaojie Zhang
- From the Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084 and
| | - Dan Zhao
- From the Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084 and
| | - Xiaozhe Xiong
- From the Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084 and
| | - Zhimin He
- From the Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084 and
| | - Haitao Li
- From the Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084 and; the Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
11
|
Berardi A, Quilici G, Spiliotopoulos D, Corral-Rodriguez MA, Martin-Garcia F, Degano M, Tonon G, Ghitti M, Musco G. Structural basis for PHDVC5HCHNSD1-C2HRNizp1 interaction: implications for Sotos syndrome. Nucleic Acids Res 2016; 44:3448-63. [PMID: 26896805 PMCID: PMC4838375 DOI: 10.1093/nar/gkw103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/09/2016] [Indexed: 12/19/2022] Open
Abstract
Sotos syndrome is an overgrowth syndrome caused by mutations within the functional domains ofNSD1 gene coding for NSD1, a multidomain protein regulating chromatin structure and gene expression. In particular, PHDVC5HCHNSD1 tandem domain, composed by a classical (PHDV) and an atypical (C5HCH) plant homeo-domain (PHD) finger, is target of several pathological missense-mutations. PHDVC5HCHNSD1 is also crucial for NSD1-dependent transcriptional regulation and interacts with the C2HR domain of transcriptional repressor Nizp1 (C2HRNizp1)in vitro To get molecular insights into the mechanisms dictating the patho-physiological relevance of the PHD finger tandem domain, we solved its solution structure and provided a structural rationale for the effects of seven Sotos syndrome point-mutations. To investigate PHDVC5HCHNSD1 role as structural platform for multiple interactions, we characterized its binding to histone H3 peptides and to C2HRNizp1 by ITC and NMR. We observed only very weak electrostatic interactions with histone H3 N-terminal tails, conversely we proved specific binding to C2HRNizp1 We solved C2HRNizp1 solution structure and generated a 3D model of the complex, corroborated by site-directed mutagenesis. We suggest a mechanistic scenario where NSD1 interactions with cofactors such as Nizp1 are impaired by PHDVC5HCHNSD1 pathological mutations, thus impacting on the repression of growth-promoting genes, leading to overgrowth conditions.
Collapse
Affiliation(s)
- Andrea Berardi
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy Università degli Studi di Milano, Italy
| | - Giacomo Quilici
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy
| | - Dimitrios Spiliotopoulos
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy Università Vita e Salute San Raffaele, Milano 21032, Italy
| | - Maria Angeles Corral-Rodriguez
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy Università Vita e Salute San Raffaele, Milano 21032, Italy
| | - Fernando Martin-Garcia
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy
| | - Massimo Degano
- Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy
| | - Giovanni Tonon
- Functional genomics of cancer, Division of Experimental Oncology, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy
| | - Michela Ghitti
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy
| | - Giovanna Musco
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy
| |
Collapse
|
12
|
Deeb SJ, Tyanova S, Hummel M, Schmidt-Supprian M, Cox J, Mann M. Machine Learning-based Classification of Diffuse Large B-cell Lymphoma Patients by Their Protein Expression Profiles. Mol Cell Proteomics 2015; 14:2947-60. [PMID: 26311899 PMCID: PMC4638038 DOI: 10.1074/mcp.m115.050245] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Indexed: 11/22/2022] Open
Abstract
Characterization of tumors at the molecular level has improved our knowledge of cancer causation and progression. Proteomic analysis of their signaling pathways promises to enhance our understanding of cancer aberrations at the functional level, but this requires accurate and robust tools. Here, we develop a state of the art quantitative mass spectrometric pipeline to characterize formalin-fixed paraffin-embedded tissues of patients with closely related subtypes of diffuse large B-cell lymphoma. We combined a super-SILAC approach with label-free quantification (hybrid LFQ) to address situations where the protein is absent in the super-SILAC standard but present in the patient samples. Shotgun proteomic analysis on a quadrupole Orbitrap quantified almost 9,000 tumor proteins in 20 patients. The quantitative accuracy of our approach allowed the segregation of diffuse large B-cell lymphoma patients according to their cell of origin using both their global protein expression patterns and the 55-protein signature obtained previously from patient-derived cell lines (Deeb, S. J., D'Souza, R. C., Cox, J., Schmidt-Supprian, M., and Mann, M. (2012) Mol. Cell. Proteomics 11, 77–89). Expression levels of individual segregation-driving proteins as well as categories such as extracellular matrix proteins behaved consistently with known trends between the subtypes. We used machine learning (support vector machines) to extract candidate proteins with the highest segregating power. A panel of four proteins (PALD1, MME, TNFAIP8, and TBC1D4) is predicted to classify patients with low error rates. Highly ranked proteins from the support vector analysis revealed differential expression of core signaling molecules between the subtypes, elucidating aspects of their pathobiology.
Collapse
Affiliation(s)
- Sally J Deeb
- From the ‡Proteomics and Signal Transduction Group and
| | - Stefka Tyanova
- From the ‡Proteomics and Signal Transduction Group and §Computational Systems Biochemistry, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Michael Hummel
- ¶Institute of Pathology, Campus Benjamin Franklin, Molecular Diagnostics, Charité-Universitätsmedizin Berlin, 12200 Berlin, Germany, and
| | - Marc Schmidt-Supprian
- ‖Institute of Oncology and Hematology, III. Medizinische Klinik, Technische Universität München, 81675 Munich, Germany
| | - Juergen Cox
- §Computational Systems Biochemistry, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Matthias Mann
- From the ‡Proteomics and Signal Transduction Group and
| |
Collapse
|
13
|
SP140L, an Evolutionarily Recent Member of the SP100 Family, Is an Autoantigen in Primary Biliary Cirrhosis. J Immunol Res 2015; 2015:526518. [PMID: 26347895 PMCID: PMC4548144 DOI: 10.1155/2015/526518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/07/2015] [Indexed: 12/21/2022] Open
Abstract
The SP100 family members comprise a set of closely related genes on chromosome 2q37.1. The widely expressed SP100 and the leukocyte-specific proteins SP110 and SP140 have been associated with transcriptional regulation and various human diseases. Here, we have characterized the SP100 family member SP140L. The genome sequence analysis showed the formation of SP140L gene through rearrangements of the two neighboring genes, SP100 and SP140, during the evolution of higher primates. The SP140L expression is interferon-inducible with high transcript levels in B cells and other peripheral blood mononuclear cells. Subcellularly, SP140L colocalizes with SP100 and SP140 in nuclear structures that are devoid of SP110, PML, or p300 proteins. Similarly to SP100 and SP140 protein, we detected serum autoantibodies to SP140L in patients with primary biliary cirrhosis using luciferase immunoprecipitation system and immunoblotting assays. In conclusion, our results show that SP140L is phylogenetically recent member of SP100 proteins and acts as an autoantigen in primary biliary cirrhosis patients.
Collapse
|
14
|
Matesanz F, Potenciano V, Fedetz M, Ramos-Mozo P, Abad-Grau MDM, Karaky M, Barrionuevo C, Izquierdo G, Ruiz-Peña JL, García-Sánchez MI, Lucas M, Fernández Ó, Leyva L, Otaegui D, Muñoz-Culla M, Olascoaga J, Vandenbroeck K, Alloza I, Astobiza I, Antigüedad A, Villar LM, Álvarez-Cermeño JC, Malhotra S, Comabella M, Montalban X, Saiz A, Blanco Y, Arroyo R, Varadé J, Urcelay E, Alcina A. A functional variant that affects exon-skipping and protein expression of SP140 as genetic mechanism predisposing to multiple sclerosis. Hum Mol Genet 2015; 24:5619-27. [PMID: 26152201 DOI: 10.1093/hmg/ddv256] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 07/01/2015] [Indexed: 12/25/2022] Open
Abstract
Several variants in strong linkage disequilibrium (LD) at the SP140 locus have been associated with multiple sclerosis (MS), Crohn's disease (CD) and chronic lymphocytic leukemia (CLL). To determine the causal polymorphism, we have integrated high-density data sets of expression quantitative trait loci (eQTL), using GEUVADIS RNA sequences and 1000 Genomes genotypes, with MS-risk variants of the high-density Immunochip array performed by the International Multiple Sclerosis Genetic Consortium (IMSGC). The variants most associated with MS were also correlated with a decreased expression of the full-length RNA isoform of SP140 and an increase of an isoform lacking exon 7. By exon splicing assay, we have demonstrated that the rs28445040 variant was the causal factor for skipping of exon 7. Western blots of peripheral blood mononuclear cells from MS patients showed a significant allele-dependent reduction of the SP140 protein expression. To confirm the association of this functional variant with MS and to compare it with the best-associated variant previously reported by GWAS (rs10201872), a case-control study including 4384 MS patients and 3197 controls was performed. Both variants, in strong LD (r(2) = 0.93), were found similarly associated with MS [P-values, odds ratios: 1.9E-9, OR = 1.35 (1.22-1.49) and 4.9E-10, OR = 1.37 (1.24-1.51), respectively]. In conclusion, our data uncover the causal variant for the SP140 locus and the molecular mechanism associated with MS risk. In addition, this study and others previously reported strongly suggest that this functional variant may be shared with other immune-mediated diseases as CD and CLL.
Collapse
Affiliation(s)
- Fuencisla Matesanz
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain,
| | - Victor Potenciano
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain, Department of Computer Languages and Systems-CITIC, Universidad de Granada, Granada, Spain
| | - Maria Fedetz
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | | | | | - Mohamad Karaky
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | - Cristina Barrionuevo
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | - Guillermo Izquierdo
- Unidad de Esclerosis Múltiple, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Juan Luis Ruiz-Peña
- Unidad de Esclerosis Múltiple, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | | | - Miguel Lucas
- Servicio de Biología Molecular, Facultad de Medicina, Hospital Virgen Macarena, Sevilla, Spain
| | - Óscar Fernández
- Unidad de Gestión Clínica de Neurociencias, Instituto de Biomedicina de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Laura Leyva
- Unidad de Gestión Clínica de Neurociencias, Instituto de Biomedicina de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Málaga, Spain
| | - David Otaegui
- Área de Neurociencias, Inst. Investigación Sanitaria Biodonostia, San Sebastián, Spain
| | - Maider Muñoz-Culla
- Área de Neurociencias, Inst. Investigación Sanitaria Biodonostia, San Sebastián, Spain
| | - Javier Olascoaga
- Área de Neurociencias, Inst. Investigación Sanitaria Biodonostia, San Sebastián, Spain
| | - Koen Vandenbroeck
- Neurogenomiks Group, Universidad del País Vasco (UPV/EHU), Leioa, Spain, Achucarro Basque Center for Neuroscience, Zamudio, Spain, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Iraide Alloza
- Neurogenomiks Group, Universidad del País Vasco (UPV/EHU), Leioa, Spain, Achucarro Basque Center for Neuroscience, Zamudio, Spain, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ianire Astobiza
- Neurogenomiks Group, Universidad del País Vasco (UPV/EHU), Leioa, Spain, Achucarro Basque Center for Neuroscience, Zamudio, Spain
| | | | - Luisa María Villar
- Department of Immunology, Department of Neurology. MS Unit. (IRYCIS), Hospital Ramon y Cajal, Madrid, Spain
| | | | - Sunny Malhotra
- Servei de Neurologia-Neuroimmunologia, Centre D'Esclerosi Múltiple de Catalunya, Cemcat, Hospital Universitari Vall d'Hebron, Barcelona, Spain and
| | - Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre D'Esclerosi Múltiple de Catalunya, Cemcat, Hospital Universitari Vall d'Hebron, Barcelona, Spain and
| | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre D'Esclerosi Múltiple de Catalunya, Cemcat, Hospital Universitari Vall d'Hebron, Barcelona, Spain and
| | - Albert Saiz
- Neurology Service, Hospital Clinic and I. d'Investigació Biomèdica Pi iSunyer (IDIBAPS), Barcelona, Spain
| | - Yolanda Blanco
- Neurology Service, Hospital Clinic and I. d'Investigació Biomèdica Pi iSunyer (IDIBAPS), Barcelona, Spain
| | - Rafael Arroyo
- Multiple Sclerosis Unit, Hospital Clínico San Carlos. Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | | | | | - Antonio Alcina
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain,
| |
Collapse
|
15
|
Kungulovski G, Kycia I, Mauser R, Jeltsch A. Specificity Analysis of Histone Modification-Specific Antibodies or Reading Domains on Histone Peptide Arrays. Methods Mol Biol 2015; 1348:275-284. [PMID: 26424280 DOI: 10.1007/978-1-4939-2999-3_24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Histone posttranslational modifications (PTMs) have a crucial role in chromatin regulation and dynamics. They are specifically bound by so-called reading domains, which mediate the biological effects of histone PTMs. On a similar note, antibodies are invaluable reagents in chromatin biology for the detection, characterization, and mapping of histone PTMs. Despite these central roles in chromatin research and biology, the specificity of many antibodies and reading domains has been insufficiently characterized and documented. Here we describe in detail the application of the MODified™ Histone Peptide Array for the investigation of the binding specificity of histone binding antibodies or domains. The array contains 384 histone tail peptides carrying 59 posttranslational modifications in different combinations which can be used to study the primary binding specificity, but at the same time also allow to determine the combinatorial effect of secondary marks on antibody or reading domain binding.
Collapse
Affiliation(s)
- Goran Kungulovski
- Institute of Biochemistry, Faculty of Chemistry, University Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Ina Kycia
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Rebekka Mauser
- Institute of Biochemistry, Faculty of Chemistry, University Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry, Faculty of Chemistry, University Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany.
| |
Collapse
|