1
|
Murray M, Wetmore S. Unlocking precision in aptamer engineering: a case study of the thrombin binding aptamer illustrates why modification size, quantity, and position matter. Nucleic Acids Res 2024; 52:10823-10835. [PMID: 39217472 PMCID: PMC11472061 DOI: 10.1093/nar/gkae729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The thrombin binding aptamer (TBA) is a prototypical platform used to understand the impact of chemically-modified nucleotides on aptamer stability and target affinity. To provide structural insight into the experimentally-observed effects of modification size, location, and number on aptamer performance, long time-scale molecular dynamics (MD) simulations were performed on multiple binding orientations of TBA-thrombin complexes that contain a large, flexible tryptophan thymine derivative (T-W) or a truncated analogue (T-K). Depending on modification position, T-W alters aptamer-target binding orientations, fine-tunes aptamer-target interactions, strengthens networks of nucleic acid-protein contacts, and/or induces target conformational changes to enhance binding. The proximity and 5'-to-3' directionality of nucleic acid structural motifs also play integral roles in the behavior of the modifications. Modification size can differentially influence target binding by promoting more than one aptamer-target binding pose. Multiple modifications can synergistically strengthen aptamer-target binding by generating novel nucleic acid-protein structural motifs that are unobtainable for single modifications. By studying a diverse set of modified aptamers, our work uncovers design principles that must be considered in the future development of aptamers containing chemically-modified nucleotides for applications in medicine and biotechnology, highlighting the value of computational studies in nucleic acids research.
Collapse
Affiliation(s)
- Makay T Murray
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
2
|
Kim H, Pak Y. Improving All-Atom Force Field to Accurately Describe DNA G-Quadruplex Loops. J Phys Chem B 2022; 126:6199-6209. [PMID: 35951994 DOI: 10.1021/acs.jpcb.2c04256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The DNA G-quadruplex (GQ) displays structural polymorphisms, and interactions between its loops and flanking sequences critically determine which of the diverse GQ conformers is adopted. All-atom molecular dynamics (MD) simulations of GQs are computationally challenging due to slow folding times and force field (ff) artifacts. In an earlier study, a direct folding simulation of the simplest DNA GQ (TBA15) was first reported using a modified version of the AMBER bsc1 ff (bsc1_vdW ff). Despite this successful folding simulation, it was later found that the bsc1_vdW ff is somewhat limited in terms of describing loop structures of GQs, which is problematic because GQ loop regions play key roles in ligand binding to modulate GQ activities. In this study, we further modified the bsc1_vdW ff to enhance the GQ loop prediction by fine-tuning a limited number of van der Waals (vdW) parameters of the standard AMBER bsc1 ff to improve the GQ loop distribution of a target GQ system (three-layered antiparallel GQ; mHtel21). Test simulations of this newly generated ff (bsc1_vdWL ff) on DNA GQs with diverse topologies (hybrid1, hybrid2, and parallel propeller) revealed that loop structures were predicted more accurately than by the bsc1_vdW ff. We consider that enhanced sampling MD simulation methods in combination with bsc1_vdWL provide useful simulation protocols for resolving outstanding issues of DNA GQ folding and GQ/ligand binding at the all-atom level.
Collapse
Affiliation(s)
- Hyeonjun Kim
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, S. Korea
| | - Youngshang Pak
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, S. Korea
| |
Collapse
|
3
|
Imperatore C, Varriale A, Rivieccio E, Pennacchio A, Staiano M, D’Auria S, Casertano M, Altucci C, Valadan M, Singh M, Menna M, Varra M. Spectroscopic Properties of Two 5'-(4-Dimethylamino)Azobenzene Conjugated G-Quadruplex Forming Oligonucleotides. Int J Mol Sci 2020; 21:E7103. [PMID: 32993097 PMCID: PMC7582650 DOI: 10.3390/ijms21197103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
The synthesis of two 5'-end (4-dimethylamino)azobenzene conjugated G-quadruplex forming aptamers, the thrombin binding aptamer (TBA) and the HIV-1 integrase aptamer (T30695), was performed. Their structural behavior was investigated by means of UV, CD, fluorescence spectroscopy, and gel electrophoresis techniques in K+-containing buffers and water-ethanol blends. Particularly, we observed that the presence of the 5'-(4-dimethylamino)azobenzene moiety leads TBA to form multimers instead of the typical monomolecular chair-like G-quadruplex and almost hampers T30695 G-quadruplex monomers to dimerize. Fluorescence studies evidenced that both the conjugated G-quadruplexes possess unique fluorescence features when excited at wavelengths corresponding to the UV absorption of the conjugated moiety. Furthermore, a preliminary investigation of the trans-cis conversion of the dye incorporated at the 5'-end of TBA and T30695 showed that, unlike the free dye, in K+-containing water-ethanol-triethylamine blend the trans-to-cis conversion was almost undetectable by means of a standard UV spectrophotometer.
Collapse
Affiliation(s)
- Concetta Imperatore
- Department of Pharmacy, School of Medicine, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.I.); (E.R.); (M.C.); (M.M.)
| | - Antonio Varriale
- Institute of Food Sciences, National Research Council of Italy, via Roma 64, 83100 Avellino, Italy; (A.V.); (A.P.); (M.S.); (S.D.)
| | - Elisa Rivieccio
- Department of Pharmacy, School of Medicine, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.I.); (E.R.); (M.C.); (M.M.)
| | - Angela Pennacchio
- Institute of Food Sciences, National Research Council of Italy, via Roma 64, 83100 Avellino, Italy; (A.V.); (A.P.); (M.S.); (S.D.)
| | - Maria Staiano
- Institute of Food Sciences, National Research Council of Italy, via Roma 64, 83100 Avellino, Italy; (A.V.); (A.P.); (M.S.); (S.D.)
| | - Sabato D’Auria
- Institute of Food Sciences, National Research Council of Italy, via Roma 64, 83100 Avellino, Italy; (A.V.); (A.P.); (M.S.); (S.D.)
| | - Marcello Casertano
- Department of Pharmacy, School of Medicine, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.I.); (E.R.); (M.C.); (M.M.)
| | - Carlo Altucci
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Via Cinthia, 21—Building 6, 80126 Naples, Italy; (C.A.); (M.V.); (M.S.)
| | - Mohammadhassan Valadan
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Via Cinthia, 21—Building 6, 80126 Naples, Italy; (C.A.); (M.V.); (M.S.)
| | - Manjot Singh
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Via Cinthia, 21—Building 6, 80126 Naples, Italy; (C.A.); (M.V.); (M.S.)
| | - Marialuisa Menna
- Department of Pharmacy, School of Medicine, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.I.); (E.R.); (M.C.); (M.M.)
| | - Michela Varra
- Department of Pharmacy, School of Medicine, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.I.); (E.R.); (M.C.); (M.M.)
| |
Collapse
|
4
|
Riccardi C, Napolitano E, Platella C, Musumeci D, Montesarchio D. G-quadruplex-based aptamers targeting human thrombin: Discovery, chemical modifications and antithrombotic effects. Pharmacol Ther 2020; 217:107649. [PMID: 32777331 DOI: 10.1016/j.pharmthera.2020.107649] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
First studies on thrombin-inhibiting DNA aptamers were reported in 1992, and since then a large number of anticoagulant aptamers has been discovered. TBA - also named HD1, a 15-mer G-quadruplex (G4)-forming oligonucleotide - is the best characterized thrombin binding aptamer, able to specifically recognize the protein exosite I, thus inhibiting the conversion of soluble fibrinogen into insoluble fibrin strands. Unmodified nucleic acid-based aptamers, in general, and TBA in particular, exhibit limited pharmacokinetic properties and are rapidly degraded in vivo by nucleases. In order to improve the biological performance of aptamers, a widely investigated strategy is the introduction of chemical modifications in their backbone at the level of the nucleobases, sugar moieties or phosphodiester linkages. Besides TBA, also other thrombin binding aptamers, able to adopt a well-defined G4 structure, e.g. mixed duplex/quadruplex sequences, as well as homo- and hetero-bivalent constructs, have been identified and optimized. Considering the growing need of new efficient anticoagulant agents associated with the strong therapeutic potential of these thrombin inhibitors, the research on thrombin binding aptamers is still a very hot and intriguing field. Herein, we comprehensively described the state-of-the-art knowledge on the DNA-based aptamers targeting thrombin, especially focusing on the optimized analogues obtained by chemically modifying the oligonucleotide backbone, and their biological performances in therapeutic applications.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; Department of Advanced Medical and Surgical Sciences, 2(nd) Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini, 5, I-80131 Naples, Italy.
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| |
Collapse
|
5
|
Portella G, Orozco M, Vendruscolo M. Determination of a Structural Ensemble Representing the Dynamics of a G-Quadruplex DNA. Biochemistry 2019; 59:379-388. [PMID: 31815441 DOI: 10.1021/acs.biochem.9b00493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is increasingly recognized that the structures and dynamics of G-quadruplex DNA molecules are dictated by their sequences and greatly affected by environmental factors. The core guanine tetrads (G-tetrads) coordinate cations and display a strong conformational rigidity compared with that of the connecting loops. Although long loops linking the G-tetrads are typically disfavored, when present, they provide a striking illustration of the dynamics of short, single-stranded DNA regions. In addition to their role in determining the stability of the G-quadruplex state, these loops are also interesting as potential drug targets. To characterize accurately the dynamics of this DNA state, we apply here the principles of structural ensemble determination developed in the past two decades for protein molecules to DNA molecules. We thus perform extensive molecular dynamics simulations restrained with nuclear magnetic resonance residual dipolar couplings to determine a structural ensemble of the human CEB25 minisatellite G-quadruplex, which contains a connecting loop of nine nucleotides. This structural ensemble displays a wide set of arrangements for the loop and a compact, well-defined G-quadruplex core. Our results show the importance of stacking interactions in the loop and strengthen the ability of the closing base pairs to confer a large thermodynamic stability to the G-quadruplex structure.
Collapse
Affiliation(s)
- Guillem Portella
- Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , U.K.,Institute for Research in Biomedicine (IRB Barcelona) , Barcelona Institute for Science and Technology (BIST) , 08028 Barcelona , Spain.,Joint BSC-CRG-IRB Research Program in Computational Biology , 08028 Barcelona , Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona) , Barcelona Institute for Science and Technology (BIST) , 08028 Barcelona , Spain.,Joint BSC-CRG-IRB Research Program in Computational Biology , 08028 Barcelona , Spain.,Department of Biochemistry and Biomedicine , University of Barcelona , 08028 Barcelona , Spain
| | | |
Collapse
|
6
|
Benabou S, Mazzini S, Aviñó A, Eritja R, Gargallo R. A pH-dependent bolt involving cytosine bases located in the lateral loops of antiparallel G-quadruplex structures within the SMARCA4 gene promotor. Sci Rep 2019; 9:15807. [PMID: 31676783 PMCID: PMC6825181 DOI: 10.1038/s41598-019-52311-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/15/2019] [Indexed: 01/01/2023] Open
Abstract
Some lung and ovarian tumors are connected to the loss of expression of SMARCA4 gene. In its promoter region, a 44-nucleotides long guanine sequence prone to form G-quadruplex structures has been studied by means of spectroscopic techniques (circular dichroism, molecular absorption and nuclear magnetic resonance), size exclusion chromatography and multivariate analysis. The results have shown that the central 21-nucleotides long sequence comprising four guanine tracts of disparate length is able to fold into a pH-dependent ensemble of G-quadruplex structures. Based on acid-base titrations and melting experiments of wild and mutated sequences, the formation of a C·C+ base pair between cytosine bases present at the two lateral loops is shown to promote a reduction in conformational heterogeneity, as well as an increase in thermal stability. The formation of this base pair is characterized by a pKa value of 7.1 ± 0.2 at 20 °C and 150 mM KCl. This value, higher than those usually found in i-motif structures, is related to the additional stability provided by guanine tetrads in the G-quadruplex. To our knowledge, this is the first thermodynamic description of this base pair in loops of antiparallel G-quadruplex structures.
Collapse
Affiliation(s)
- Sanae Benabou
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, Milan, Italy
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
7
|
Seelam Prabhakar P, A Manderville R, D Wetmore S. Impact of the Position of the Chemically Modified 5-Furyl-2'-Deoxyuridine Nucleoside on the Thrombin DNA Aptamer-Protein Complex: Structural Insights into Aptamer Response from MD Simulations. Molecules 2019; 24:molecules24162908. [PMID: 31405145 PMCID: PMC6720718 DOI: 10.3390/molecules24162908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
Aptamers are functional nucleic acids that bind to a range of targets (small molecules, proteins or cells) with a high affinity and specificity. Chemically-modified aptamers are of interest because the incorporation of novel nucleobase components can enhance aptamer binding to target proteins, while fluorescent base analogues permit the design of functional aptasensors that signal target binding. However, since optimally modified nucleoside designs have yet to be identified, information about how to fine tune aptamer stability and target binding affinity is required. The present work uses molecular dynamics (MD) simulations to investigate modifications to the prototypical thrombin-binding aptamer (TBA), which is a 15-mer DNA sequence that folds into a G-quadruplex structure connected by two TT loops and one TGT loop. Specifically, we modeled a previously synthesized thymine (T) analog, namely 5-furyl-2′-deoxyuridine (5FurU), into each of the six aptamer locations occupied by a thymine base in the TT or TGT loops of unbound and thrombin bound TBA. This modification and aptamer combination were chosen as a proof-of-principle because previous experimental studies have shown that TBA displays emissive sensitivity to target binding based on the local environment polarity at different 5FurU modification sites. Our simulations reveal that the chemically-modified base imparts noticeable structural changes to the aptamer without affecting the global conformation. Depending on the modification site, 5FurU performance is altered due to changes in the local environment, including the modification site structural dynamics, degree of solvent exposure, stacking with neighboring bases, and interactions with thrombin. Most importantly, these changes directly correlate with the experimentally-observed differences in the stability, binding affinity and emissive response of the modified aptamers. Therefore, the computational protocols implemented in the present work can be used in subsequent studies in a predictive way to aid the fine tuning of aptamer target recognition for use as biosensors (aptasensors) and/or therapeutics.
Collapse
Affiliation(s)
- Preethi Seelam Prabhakar
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AL T1K 3M4, Canada
| | - Richard A Manderville
- Department of Chemistry and Toxicology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AL T1K 3M4, Canada.
| |
Collapse
|
8
|
Brcic J, Plavec J. NMR structure of a G-quadruplex formed by four d(G4C2) repeats: insights into structural polymorphism. Nucleic Acids Res 2019; 46:11605-11617. [PMID: 30277522 PMCID: PMC6265483 DOI: 10.1093/nar/gky886] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), is a largely increased number of d(G4C2)n•(G2C4)n repeats located in the non-coding region of C9orf72 gene. Non-canonical structures, including G-quadruplexes, formed within expanded repeats have been proposed to drive repeat expansion and pathogenesis of ALS and FTD. Oligonucleotide d[(G4C2)3G4], which represents the shortest oligonucleotide model of d(G4C2) repeats with the ability to form a unimolecular G-quadruplex, forms two major G-quadruplex structures in addition to several minor species which coexist in solution with K+ ions. Herein, we used solution-state NMR to determine the high-resolution structure of one of the major G-quadruplex species adopted by d[(G4C2)3G4]. Structural characterization of the G-quadruplex named AQU was facilitated by a single substitution of dG with 8Br-dG at position 21 and revealed an antiparallel fold composed of four G-quartets and three lateral C-C loops. The G-quadruplex exhibits high thermal stability and is favored kinetically and under slightly acidic conditions. An unusual structural element distinct from a C-quartet is observed in the structure. Two C•C base pairs are stacked on the nearby G-quartet and are involved in a dynamic equilibrium between symmetric N3-amino and carbonyl-amino geometries and protonated C+•C state.
Collapse
Affiliation(s)
- Jasna Brcic
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana SI-1000, Slovenia
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana SI-1000, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana SI-1000, Slovenia.,EN-FIST Center of Excellence, Ljubljana SI-1000, Slovenia
| |
Collapse
|
9
|
Mo M, Kong D, Ji H, Lin D, Tang X, Yang Z, He Y, Wu L. Reversible Photocontrol of Thrombin Activity by Replacing Loops of Thrombin Binding Aptamer using Azobenzene Derivatives. Bioconjug Chem 2019; 30:231-241. [PMID: 30582682 DOI: 10.1021/acs.bioconjchem.8b00848] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The photoisomerization of azobenzenes provides a general means for the photocontrol of many important biomolecular structures and organismal functions. For temporal and spatial control activity of thrombin binding aptamer (TBA) by light, azobenzene derivatives were carefully selected as light-triggered molecular switches to replace TT loops and the TGT loop of TBA to reversibly control enzyme activity. These molecules interconverted between the trans and cis states under alternate UV and visible light irradiation, which consequently triggered reversible formation of G-quadruplex morphology. In addition, we investigated the impact of three azobenzene derivatives on stability, thrombin binding ability, and anticoagulant properties. The result showed that 4,4'-bis(hydroxymethyl)azobenzene at the TGT loop position significantly photoregulated affinity to thrombin and blood clotting in human plasma, which provided a successful strategy to control blood clotting in human plasma and a further evidence for design of TBA analogues with pivotal positions of modifications.
Collapse
Affiliation(s)
- Mengwu Mo
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Dejia Kong
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Heming Ji
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Dao Lin
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Yujian He
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Li Wu
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| |
Collapse
|
10
|
Kotkowiak W, Czapik T, Pasternak A. Novel isoguanine derivative of unlocked nucleic acid-Investigations of thermodynamics and biological potential of modified thrombin binding aptamer. PLoS One 2018; 13:e0197835. [PMID: 29795635 PMCID: PMC5967839 DOI: 10.1371/journal.pone.0197835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/09/2018] [Indexed: 11/18/2022] Open
Abstract
Thrombin binding aptamer (TBA), is a short DNA 15-mer that forms G-quadruplex structure and possesses anticoagulant properties. Some chemical modifications, including unlocked nucleic acids (UNA), 2'-deoxy-isoguanosine and 2'-deoxy-4-thiouridine were previously found to enhance the biological activity of TBA. In this paper, we present thermodynamic and biological characteristics of TBA variants that have been modified with novel isoguanine derivative of UNA as well as isoguanosine. Additionally, UNA-4-thiouracil and 4-thiouridine were also introduced simultaneously with isoguanine derivatives. Thermodynamic analysis indicates that the presence of isoguanosine in UNA or RNA series significantly decreases the stability of G-quadruplex structure. The highest destabilization is observed for substitution at one of the G-tetrad position. Addition of 4-thiouridine in UNA or RNA series usually decreases the unfavorable energetic cost of the presence of UNA or RNA isoguanine. Circular dichroism and thermal denaturation spectra in connection with thrombin time assay indicate that the introduction of UNA-isoguanine or isoguanosine into TBA negatively affects G-quadruplex folding and TBA anticoagulant properties. These findings demonstrate that the highly-ordered structure of TBA is essential for inhibition of thrombin activity.
Collapse
Affiliation(s)
- Weronika Kotkowiak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego, Poznan, Poland
| | - Tomasz Czapik
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego, Poznan, Poland
| | - Anna Pasternak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego, Poznan, Poland
- * E-mail:
| |
Collapse
|
11
|
Yang C, Kulkarni M, Lim M, Pak Y. Insilico direct folding of thrombin-binding aptamer G-quadruplex at all-atom level. Nucleic Acids Res 2017; 45:12648-12656. [PMID: 29112755 PMCID: PMC5728390 DOI: 10.1093/nar/gkx1079] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/13/2017] [Accepted: 10/20/2017] [Indexed: 12/25/2022] Open
Abstract
The reversible folding of the thrombin-binding DNA aptamer G-quadruplexes (GQs) (TBA-15) starting from fully unfolded states was demonstrated using a prolonged time scale (10-12 μs) parallel tempering metadynamics (PTMetaD) simulation method in conjunction with a modified version of the AMBER bsc1 force field. For unbiased descriptions of the folding free energy landscape of TBA-15, this force field was minimally modified. From this direct folding simulation using the modified bsc1 force field, reasonably converged free energy landscapes were obtained in K+-rich aqueous solution (150 mM), providing detailed atomistic pictures of GQ folding mechanisms for TBA-15. This study found that the TBA folding occurred via multiple folding pathways with two major free energy barriers of 13 and 15 kcal/mol in the presence of several intermediate states of G-triplex variants. The early formation of these intermediates was associated with a single K+ ion capturing. Interestingly, these intermediate states appear to undergo facile transitions among themselves through relatively small energy barriers.
Collapse
Affiliation(s)
- Changwon Yang
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 609-735, South Korea
| | - Mandar Kulkarni
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 609-735, South Korea
| | - Manho Lim
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 609-735, South Korea
| | - Youngshang Pak
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 609-735, South Korea
| |
Collapse
|
12
|
Lech CJ, Phan AT. Ball with hair: modular functionalization of highly stable G-quadruplex DNA nano-scaffolds through N2-guanine modification. Nucleic Acids Res 2017; 45:6265-6274. [PMID: 28499037 PMCID: PMC5499775 DOI: 10.1093/nar/gkx243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/10/2017] [Indexed: 12/13/2022] Open
Abstract
Functionalized nanoparticles have seen valuable applications, particularly in the delivery of therapeutic and diagnostic agents in biological systems. However, the manufacturing of such nano-scale systems with the consistency required for biological application can be challenging, as variation in size and shape have large influences in nanoparticle behavior in vivo. We report on the development of a versatile nano-scaffold based on the modular functionalization of a DNA G-quadruplex. DNA sequences are functionalized in a modular fashion using well-established phosphoramidite chemical synthesis with nucleotides containing modification of the amino (N2) position of the guanine base. In physiological conditions, these sequences fold into well-defined G-quadruplex structures. The resulting DNA nano-scaffolds are thermally stable, consistent in size, and functionalized in a manner that allows for control over the density and relative orientation of functional chemistries on the nano-scaffold surface. Various chemistries including small modifications (N2-methyl-guanine), bulky aromatic modifications (N2-benzyl-guanine), and long chain-like modifications (N2-6-amino-hexyl-guanine) are tested and are found to be generally compatible with G-quadruplex formation. Furthermore, these modifications stabilize the G-quadruplex scaffold by 2.0–13.3 °C per modification in the melting temperature, with concurrent modifications producing extremely stable nano-scaffolds. We demonstrate the potential of this approach by functionalizing nano-scaffolds for use within the biotin–avidin conjugation approach.
Collapse
Affiliation(s)
- Christopher Jacques Lech
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Anh Tuân Phan
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
13
|
Sagi J. In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids? J Nucleic Acids 2017; 2017:1641845. [PMID: 29181193 PMCID: PMC5664352 DOI: 10.1155/2017/1641845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events.
Collapse
Affiliation(s)
- Janos Sagi
- Rimstone Laboratory, RLI, Carlsbad, CA 92010, USA
| |
Collapse
|
14
|
Kejnovská I, Bednárová K, Renciuk D, Dvoráková Z, Školáková P, Trantírek L, Fiala R, Vorlícková M, Sagi J. Clustered abasic lesions profoundly change the structure and stability of human telomeric G-quadruplexes. Nucleic Acids Res 2017; 45:4294-4305. [PMID: 28369584 PMCID: PMC5416849 DOI: 10.1093/nar/gkx191] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/21/2017] [Indexed: 01/02/2023] Open
Abstract
Ionizing radiation produces clustered damage to DNA which is difficult to repair and thus more harmful than single lesions. Clustered lesions have only been investigated in dsDNA models. Introducing the term 'clustered damage to G-quadruplexes' we report here on the structural effects of multiple tetrahydrofuranyl abasic sites replacing loop adenines (A/AP) and tetrad guanines (G/AP) in quadruplexes formed by the human telomere d[AG3(TTAG3)3] (htel-22) and d[TAG3(TTAG3)3TT] (htel-25) in K+ solutions. Single to triple A/APs increased the population of parallel strands in their structures by stabilizing propeller type loops, shifting the antiparallel htel-22 into hybrid or parallel quadruplexes. In htel-25, the G/APs inhibited the formation of parallel strands and these adopted antiparallel topologies. Clustered G/AP and A/APs reduced the thermal stability of the wild-type htel-25. Depending on position, A/APs diminished or intensified the damaging effect of the G/APs. Taken together, clustered lesions can disrupt the topology and stability of the htel quadruplexes and restrict their conformational space. These in vitro results suggest that formation of clustered lesions in the chromosome capping structure can result in the unfolding of existing G-quadruplexes which can lead to telomere shortening.
Collapse
Affiliation(s)
- Iva Kejnovská
- Institute of Biophysics, Czech Academy of Sciences, v.v.i., Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Klára Bednárová
- Institute of Biophysics, Czech Academy of Sciences, v.v.i., Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Daniel Renciuk
- Institute of Biophysics, Czech Academy of Sciences, v.v.i., Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Zuzana Dvoráková
- Institute of Biophysics, Czech Academy of Sciences, v.v.i., Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Petra Školáková
- Institute of Biophysics, Czech Academy of Sciences, v.v.i., Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Lukáš Trantírek
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Radovan Fiala
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michaela Vorlícková
- Institute of Biophysics, Czech Academy of Sciences, v.v.i., Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Janos Sagi
- Rimstone Laboratory, RLI, Carlsbad, CA 92010, USA
| |
Collapse
|
15
|
Platella C, Riccardi C, Montesarchio D, Roviello GN, Musumeci D. G-quadruplex-based aptamers against protein targets in therapy and diagnostics. Biochim Biophys Acta Gen Subj 2017; 1861:1429-1447. [PMID: 27865995 PMCID: PMC7117017 DOI: 10.1016/j.bbagen.2016.11.027] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 12/17/2022]
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA molecules identified to recognize with high affinity specific targets including proteins, small molecules, ions, whole cells and even entire organisms, such as viruses or bacteria. They can be identified from combinatorial libraries of DNA or RNA oligonucleotides by SELEX technology, an in vitro iterative selection procedure consisting of binding (capture), partitioning and amplification steps. Remarkably, many of the aptamers selected against biologically relevant protein targets are G-rich sequences that can fold into stable G-quadruplex (G4) structures. Aiming at disseminating novel inspiring ideas within the scientific community in the field of G4-structures, the emphasis of this review is placed on: 1) recent advancements in SELEX technology for the efficient and rapid identification of new candidate aptamers (introduction of microfluidic systems and next generation sequencing); 2) recurrence of G4 structures in aptamers selected by SELEX against biologically relevant protein targets; 3) discovery of several G4-forming motifs in important regulatory regions of the human or viral genome bound by endogenous proteins, which per se can result into potential aptamers; 4) an updated overview of G4-based aptamers with therapeutic potential and 5) a discussion on the most attractive G4-based aptamers for diagnostic applications. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy
| | | | - Domenica Musumeci
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy; Institute of Biostructures and Bioimages, CNR, Napoli, Italy.
| |
Collapse
|
16
|
Critical role of select peptides in the loop region of G-rich PNA in the preferred G-quadruplex topology and stability. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.01.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
The effect of l-thymidine, acyclic thymine and 8-bromoguanine on the stability of model G-quadruplex structures. Biochim Biophys Acta Gen Subj 2016; 1861:1205-1212. [PMID: 27705754 DOI: 10.1016/j.bbagen.2016.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Guanine-rich oligonucleotides are capable of forming tetrahelical structures known as G-quadruplexes with interesting biological properties. We have investigated the effects of site-specific substitution in the loops and in the tetrads model G-quadruplexes using thymine glycol nucleic acid (GNA) units, l-thymidine and 8-Br-2'-deoxyguanosine. METHODS Modified oligonucleotides were chemically synthesized and spectroscopic techniques were used to determine the relative stability of the modified G-quadruplex. The double 8-BrdG-modified quadruplexes were further characterized by Nuclear Magnetic Resonance. Binding to thrombin of selected quadruplex was analyzed by gel electrophoresis retention assay. RESULTS The most interesting results were found with a 8-bromoG substitution that had the larger stabilization of the quadruplex. NMR studies indicate a tight relationship between the loops and the tetrads to accommodate 8-bromoG modifications within the TBA. CONCLUSIONS The substitutions of loop positions with GNA T affect the TBA stability except for single modification in T7 position. Single l-thymidine substitutions produced destabilization of TBA. Larger changes on quadruplex stability are observed with the use of 8-bromoG finding a single substitution with the highest thermal stabilization found in thrombin binding aptamers modified at the guanine residues and having good affinity for thrombin. Double 8-BrdG modification in anti positions of different tetrads produce a conformational flip from syn to anti conformation of 8-Br-dG to favor loop-tetrad interaction and preserve the overall TBA stability. GENERAL SIGNIFICANCE Modified guanine-rich oligonucleotides are valuable tools for the search for G-quadruplex structures with higher thermal stability and may provide compounds with interesting protein-nucleic acid binding properties. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
|
18
|
Virgilio A, Esposito V, Mayol L, Giancola C, Petraccone L, Galeone A. The oxidative damage to the human telomere: effects of 5-hydroxymethyl-2'-deoxyuridine on telomeric G-quadruplex structures. Org Biomol Chem 2016; 13:7421-9. [PMID: 25997822 DOI: 10.1039/c5ob00748h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As part of the genome, human telomeric regions can be damaged by the chemically reactive molecules responsible for oxidative DNA damage. Considering that G-quadruplex structures have been proven to occur in human telomere regions, several studies have been devoted to investigating the effect of oxidation products on the properties of these structures. However only investigations concerning the presence in G-quadruplexes of the main oxidation products of deoxyguanosine and deoxyadenosine have appeared in the literature. Here, we investigated the effects of 5-hydroxymethyl-2'-deoxyuridine (5-hmdU), one of the main oxidation products of T, on the physical-chemical properties of the G-quadruplex structures formed by two human telomeric sequences. Collected calorimetric, circular dichroism and electrophoretic data suggest that, in contrast to most of the results on other damage, the replacement of a T with a 5-hmdU results in only negligible effects on structural stability. Reported results and other data from literature suggest a possible protecting effect of the loop residues on the other parts of the G-quadruplexes.
Collapse
Affiliation(s)
- Antonella Virgilio
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, I-80131 Napoli, Italy.
| | | | | | | | | | | |
Collapse
|
19
|
Unusual Chair-Like G-Quadruplex Structures: Heterochiral TBA Analogues Containing Inversion of Polarity Sites. J CHEM-NY 2015. [DOI: 10.1155/2015/473051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterochiral oligodeoxynucleotides based on the thrombin binding aptamer sequence, namely, 5′gg3′-3′TT5′-5′ggtgtgg3′-3′TT5′-5′gg3′ (H1), 5′gg3′-3′TT5′-5′gg3′-3′TGT5′-5′gg3′-3′TT5′-5′gg3′ (H2), and 5′gGTTGgtgtgGTTGg3′ (H3), where lower case letters indicate L-residues, have been investigated in their ability to fold in G-quadruplex structures through a combination of gel electrophoresis, circular dichroism, and UV spectroscopy techniques. InH1andH2inversions of polarity sites have been introduced to control the strand direction in the loop regions. Collected data suggest that all modified sequences are able to fold in chair-like G-quadruplexes mimicking the originalTBAstructure.
Collapse
|
20
|
Aher MN, Erande ND, Fernandes M, Kumar VA. Unimolecular antiparallel G-quadruplex folding topology of 2′–5′-isoTBA sequences remains unaltered by loop composition. Org Biomol Chem 2015; 13:11696-703. [DOI: 10.1039/c5ob01923k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Unlike 3′–5′-linked TBA, the 2′–5′-linked isoTBA formed only unimolecular antiparallel G-quadruplexes independent of loop length.
Collapse
Affiliation(s)
- Manisha N. Aher
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - Namrata D. Erande
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - Moneesha Fernandes
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | | |
Collapse
|
21
|
Gargallo R. Hard/Soft hybrid modeling of temperature-induced unfolding processes involving G-quadruplex and i-motif nucleic acid structures. Anal Biochem 2014; 466:4-15. [DOI: 10.1016/j.ab.2014.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/25/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
|
22
|
Zhao X, Liu B, Yan J, Yuan Y, An L, Guan Y. Structure variations of TBA G-quadruplex induced by 2'-O-methyl nucleotide in K+ and Ca2+ environments. Acta Biochim Biophys Sin (Shanghai) 2014; 46:837-50. [PMID: 25246433 DOI: 10.1093/abbs/gmu077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Thrombin binding aptamer (TBA), a 15-mer oligonucleotide of d(GGTTGGTGTGGTTGG) sequence, folds into a chair-type antiparallel G-quadruplex in the K(+) environment, and each of two G-tetrads is characterized by a syn-anti-syn-anti glycosidic conformation arrangement. To explore its folding topology and structural stability, 2'-O-methyl nucleotide (OMe) with the C3'-endo sugar pucker conformation and anti glycosidic angle was used to selectively substitute for the guanine residues of G-tetrads of TBA, and these substituted TBAs were characterized using a circular dichroism spectrum, thermally differential spectrum, ultraviolet stability analysis, electrophoresis mobility shift assay, and thermodynamic analysis in K(+) and Ca(2+) environments. Results showed that single substitutions for syn-dG residues destabilized the G-quadruplex structure, while single substitutions for anti-dG residues could preserve the G-quadruplex in the K(+) environment. When one or two G-tetrads were modified with OMe, TBA became unstructured. In contrast, in Ca(2+) environment, the native TBA appeared to be unstructured. When two G-tetrads were substituted with OMe, TBA seemed to become a more stable parallel G-4 structure. Further thermodynamic data suggested that OMe-substitutions were an enthalpy-driven event. The results in this study enrich our understanding about the effects of nucleotide derivatives on the G-quadruplex structure stability in different ionic environments, which will help to design G-quadruplex for biological and medical applications.
Collapse
Affiliation(s)
- Xiaoyang Zhao
- Key Laboratory of Medical Cell Biology, Ministry of Education, Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001, China Department of Chemistry, Shenyang Medical College, Shenyang 110034, China
| | - Bo Liu
- Key Laboratory of Medical Cell Biology, Ministry of Education, Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001, China
| | - Jing Yan
- Key Laboratory of Medical Cell Biology, Ministry of Education, Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001, China
| | - Ying Yuan
- Key Laboratory of Medical Cell Biology, Ministry of Education, Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001, China
| | - Liwen An
- Key Laboratory of Medical Cell Biology, Ministry of Education, Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001, China
| | - Yifu Guan
- Key Laboratory of Medical Cell Biology, Ministry of Education, Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001, China
| |
Collapse
|
23
|
Zhao D, Dong X, Jiang N, Zhang D, Liu C. Selective recognition of parallel and anti-parallel thrombin-binding aptamer G-quadruplexes by different fluorescent dyes. Nucleic Acids Res 2014; 42:11612-21. [PMID: 25245945 PMCID: PMC4191408 DOI: 10.1093/nar/gku833] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G-quadruplexes (G4) have been found increasing potential in applications, such as molecular therapeutics, diagnostics and sensing. Both Thioflavin T (ThT) and N-Methyl mesoporphyrin IX (NMM) become fluorescent in the presence of most G4, but thrombin-binding aptamer (TBA) has been reported as the only exception of the known G4-forming oligonucleotides when ThT is used as a high-throughput assay to identify G4 formation. Here, we investigate the interactions between ThT/NMM and TBA through fluorescence spectroscopy, circular dichroism and molecular docking simulation experiments in the absence or presence of cations. The results display that a large ThT fluorescence enhancement can be observed only when ThT bind to the parallel TBA quadruplex, which is induced to form by ThT in the absence of cations. On the other hand, great promotion in NMM fluorescence can be obtained only in the presence of anti-parallel TBA quadruplex, which is induced to fold by K+ or thrombin. The highly selective recognition of TBA quadruplex with different topologies by the two probes may be useful to investigate the interactions between conformation-specific G4 and the associated proteins, and could also be applied in label-free fluorescent sensing of other biomolecules.
Collapse
Affiliation(s)
- Dan Zhao
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education and School of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiongwei Dong
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education and School of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Nan Jiang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education and School of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Dan Zhang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education and School of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Changlin Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education and School of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|