1
|
Miyamoto T, Fushinobu S, Saitoh Y, Sekine M, Katane M, Sakai-Kato K, Homma H. Novel tetrahydrofolate-dependent d-serine dehydratase activity of serine hydroxymethyltransferases. FEBS J 2024; 291:308-322. [PMID: 37700610 DOI: 10.1111/febs.16953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/12/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
d-Serine plays vital physiological roles in the functional regulation of the mammalian brain, where it is produced from l-serine by serine racemase and degraded by d-amino acid oxidase. In the present study, we identified a new d-serine metabolizing activity of serine hydroxymethyltransferase (SHMT) in bacteria as well as mammals. SHMT is known to catalyze the conversion of l-serine and tetrahydrofolate (THF) to glycine and 5,10-methylenetetrahydrofolate, respectively. In addition, we found that human and Escherichia coli SHMTs have d-serine dehydratase activity, which degrades d-serine to pyruvate and ammonia. We characterized this enzymatic activity along with canonical SHMT activity. Intriguingly, SHMT required THF to catalyze d-serine dehydration and did not exhibit dehydratase activity toward l-serine. Furthermore, SHMT did not use d-serine as a substrate in the canonical hydroxymethyltransferase reaction. The d-serine dehydratase activities of two isozymes of human SHMT were inhibited in the presence of a high concentration of THF, whereas that of E. coli SHMT was increased. The pH and temperature profiles of d-serine dehydratase and serine hydroxymethyltransferase activities of these three SHMTs were partially distinct. The catalytic efficiency (kcat /Km ) of dehydratase activity was lower than that of hydroxymethyltransferase activity. Nevertheless, the d-serine dehydratase activity of SHMT was physiologically important because d-serine inhibited the growth of an SHMT deletion mutant of E. coli, ∆glyA, more than that of the wild-type strain. Collectively, these results suggest that SHMT is involved not only in l- but also in d-serine metabolism through the degradation of d-serine.
Collapse
Affiliation(s)
- Tetsuya Miyamoto
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Japan
| | - Yasuaki Saitoh
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Masae Sekine
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Masumi Katane
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Kumiko Sakai-Kato
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Hiroshi Homma
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| |
Collapse
|
2
|
Korasick DA, Owuocha LF, Kandoth PK, Tanner JJ, Mitchum MG, Beamer LJ. Structural and functional analysis of two SHMT8 variants associated with soybean cyst nematode resistance. FEBS J 2024; 291:323-337. [PMID: 37811683 DOI: 10.1111/febs.16971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Two amino acid variants in soybean serine hydroxymethyltransferase 8 (SHMT8) are associated with resistance to the soybean cyst nematode (SCN), a devastating agricultural pathogen with worldwide economic impacts on soybean production. SHMT8 is a cytoplasmic enzyme that catalyzes the pyridoxal 5-phosphate-dependent conversion of serine and tetrahydrofolate (THF) to glycine and 5,10-methylenetetrahydrofolate. A previous study of the P130R/N358Y double variant of SHMT8, identified in the SCN-resistant soybean cultivar (cv.) Forrest, showed profound impairment of folate binding affinity and reduced THF-dependent enzyme activity, relative to the highly active SHMT8 in cv. Essex, which is susceptible to SCN. Given the importance of SCN-resistance in soybean agriculture, we report here the biochemical and structural characterization of the P130R and N358Y single variants to elucidate their individual effects on soybean SHMT8. We find that both single variants have reduced THF-dependent catalytic activity relative to Essex SHMT8 (10- to 50-fold decrease in kcat /Km ) but are significantly more active than the P130R/N368Y double variant. The kinetic data also show that the single variants lack THF-substrate inhibition as found in Essex SHMT8, an observation with implications for regulation of the folate cycle. Five crystal structures of the P130R and N358Y variants in complex with various ligands (resolutions from 1.49 to 2.30 Å) reveal distinct structural impacts of the mutations and provide new insights into allosterism. Our results support the notion that the P130R/N358Y double variant in Forrest SHMT8 produces unique and unexpected effects on the enzyme, which cannot be easily predicted from the behavior of the individual variants.
Collapse
Affiliation(s)
- David A Korasick
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Luckio F Owuocha
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Pramod K Kandoth
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Melissa G Mitchum
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Plant Pathology, Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA, USA
| | - Lesa J Beamer
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Maenpuen S, Mee-Udorn P, Pinthong C, Athipornchai A, Phiwkaow K, Watchasit S, Pimviriyakul P, Rungrotmongkol T, Tinikul R, Leartsakulpanich U, Chitnumsub P. Mangiferin is a new potential antimalarial and anticancer drug for targeting serine hydroxymethyltransferase. Arch Biochem Biophys 2023; 745:109712. [PMID: 37543353 DOI: 10.1016/j.abb.2023.109712] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Mangiferin, a polyphenolic xanthone glycoside found in various botanical sources, including mango (Mangifera indica L.) leaves, can exhibit a variety of bioactivities. Although mangiferin has been reported to inhibit many targets, none of the studies have investigated the inhibition of serine hydroxymethyltransferase (SHMT), an attractive target for antimalarial and anticancer drugs. SHMT, one of the key enzymes in the deoxythymidylate synthesis cycle, catalyzes the reversible conversion of l-serine and (6S)-tetrahydrofolate (THF) into glycine and 5,10-methylene THF. Here, in vitro and in silico studies were used to probe how mangiferin isolated from mango leaves inhibits Plasmodium falciparum and human cytosolic SHMTs. The inhibition kinetics at pH 7.5 revealed that mangiferin is a competitive inhibitor against THF for enzymes from both organisms. Molecular docking and molecular dynamic (MD) simulations demonstrated the inhibitory effects of the deprotonated forms of mangiferin, specifically the C6-O- species and its resonance C9-O- species appearing at pH 7.5, combined with two docked poses, either a xanthone or glucose moiety, placed inside the THF-binding pocket. The MD analysis revealed that both C6-O- and its resonance-stabilized C9-O- species can favorably bind to SHMT in a similar fashion to THF, supporting the THF competitive inhibition of mangiferin. In addition, characterization of the proton dissociation equilibria of isolated mangiferin revealed that only three hydroxy groups of the xanthone moiety, C6-OH, C3-OH, and C7-OH, underwent varying degrees of deprotonation with pKa values of 6.38 ± 0.11, 8.21 ± 0.35, and 12.37 ± 0.30, respectively, while C1-OH remained protonated. Altogether, our findings demonstrate a new bioactivity of mangiferin and provide the basis for the future development of mangiferin as a potent antimalarial and anticancer drug.
Collapse
Affiliation(s)
- Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand.
| | - Pitchayathida Mee-Udorn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Chatchadaporn Pinthong
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Anan Athipornchai
- The Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Product for Drug Discovery, Center of Excellence for Innovation in Chemistry and Department of Chemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand
| | - Kochakorn Phiwkaow
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand
| | - Sarayut Watchasit
- Nuclear Magnetic Resonance Spectroscopic Laboratory, Science Innovation Facility, Faculty of Science, Burapha University, Chonburi, 20131, Thailand
| | - Panu Pimviriyakul
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| |
Collapse
|
4
|
Yin Y, Zhang Y, Hua Z, Wu A, Pan X, Yang J, Wang X. Muscle transcriptome analysis provides new insights into the growth gap between fast- and slow-growing Sinocyclocheilus grahami. Front Genet 2023; 14:1217952. [PMID: 37538358 PMCID: PMC10394708 DOI: 10.3389/fgene.2023.1217952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Sinocyclocheilus grahami is an economically valuable and famous fish in Yunnan Province, China. However, given its slow growth (40 g/2 years) and large growth differences among individuals, its growth performance needs to be improved for sustainable future use, in which molecular breeding technology can play an important role. In the current study, we conducted muscle transcriptomic analysis to investigate the growth gaps among individuals and the mechanism underlying growth within 14 fast- and 14 slow-growth S. grahami. In total, 1,647 differentially expressed genes (DEGs) were obtained, including 947 up-regulated and 700 down-regulated DEGs in fast-growth group. Most DEGs were significantly enriched in ECM-receptor interaction, starch and sucrose metabolism, glycolysis/gluconeogenesis, pyruvate metabolism, amino acids biosynthesis and metabolism, peroxisome, and PPAR signaling pathway. Some genes related to glycogen degradation, glucose transport, and glycolysis (e.g., adipoq, prkag1, slc2a1, agl, pygm, pgm1, pfkm, gapdh, aldoa, pgk1, pgam2, bpgm, and eno3) were up-regulated, while some genes related to fatty acid degradation and transport (e.g., acox1, acaa1, fabp1b.1, slc27a1, and slc27a2) and amino acid metabolism (e.g., agxt, shmt1, glula, and cth) were down-regulated in the fast-growth group. Weighted gene co-expression network analysis identified col1a1, col1a2, col5a1, col6a2, col10a1, col26a1, bglap, and krt15 as crucial genes for S. grahami growth. Several genes related to bone and muscle growth (e.g., bmp2, bmp3, tgfb1, tgfb2, gdf10, and myog) were also up-regulated in the fast-growth group. These results suggest that fast-growth fish may uptake adequate energy (e.g., glucose, fatty acid, and amino acids) from fodder, with excess energy substances used to synthesize collagen to accelerate bone and muscle growth after normal life activities are maintained. Moreover, energy uptake may be the root cause, while collagen synthesis may be the direct reason for the growth gap between fast- and slow-growth fish. Hence, improving food intake and collagen synthesis may be crucial for accelerating S. grahami growth, and further research is required to fully understand and confirm these associations.
Collapse
Affiliation(s)
- Yanhui Yin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yuanwei Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zexiang Hua
- Fishery Technology Extension Station of Yunnan, Kunming, Yunnan, China
| | - Anli Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaofu Pan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Junxing Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaoai Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
5
|
Mee-udorn P, Nutho B, Chootrakool R, Maenpuen S, Leartsakulpanich U, Chitnumsub P, Rungrotmongkol T. Structural dynamics and in silico design of pyrazolopyran-based inhibitors against Plasmodium serine hydroxymethyltransferases. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Chinopoulos C. From Glucose to Lactate and Transiting Intermediates Through Mitochondria, Bypassing Pyruvate Kinase: Considerations for Cells Exhibiting Dimeric PKM2 or Otherwise Inhibited Kinase Activity. Front Physiol 2020; 11:543564. [PMID: 33335484 PMCID: PMC7736077 DOI: 10.3389/fphys.2020.543564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
A metabolic hallmark of many cancers is the increase in glucose consumption coupled to excessive lactate production. Mindful that L-lactate originates only from pyruvate, the question arises as to how can this be sustained in those tissues where pyruvate kinase activity is reduced due to dimerization of PKM2 isoform or inhibited by oxidative/nitrosative stress, posttranslational modifications or mutations, all widely reported findings in the very same cells. Hereby 17 pathways connecting glucose to lactate bypassing pyruvate kinase are reviewed, some of which transit through the mitochondrial matrix. An additional 69 converging pathways leading to pyruvate and lactate, but not commencing from glucose, are also examined. The minor production of pyruvate and lactate by glutaminolysis is scrutinized separately. The present review aims to highlight the ways through which L-lactate can still be produced from pyruvate using carbon atoms originating from glucose or other substrates in cells with kinetically impaired pyruvate kinase and underscore the importance of mitochondria in cancer metabolism irrespective of oxidative phosphorylation.
Collapse
|
7
|
Ma J, Shen F, Chen L, Wu H, Huang Y, Fan Z, Hou R, Yue B, Zhang X. Gene expression profiles during postnatal development of the liver and pancreas in giant pandas. Aging (Albany NY) 2020; 12:15705-15729. [PMID: 32805731 PMCID: PMC7467380 DOI: 10.18632/aging.103783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/14/2020] [Indexed: 01/07/2023]
Abstract
Giant pandas are unique Carnivora with a strict bamboo diet. To investigate the molecular mechanism of giant panda nutrient metabolism from newborn to adult, the gene expression profiles of giant panda liver and pancreas tissues collected from three important feeding stages were investigated using RNA-seq. We found a total of 3,211 hepatic and 3,343 pancreatic differentially expressed genes (DEGs) from three comparisons between suckling and no feeding, adult and no feeding, and adult and suckling groups. Few differences in gene-expression profiles were exhibited between no feeding and suckling groups in both tissues. GO and KEGG analyses were performed to further understand the biological functions of the DEGs. In both the liver and pancreas, genes related mainly to cell cycle processes were highly up-regulated in newborn samples whereas genes related to metabolism and immunity were up-regulated in adult giant pandas. The high expression of metabolism-related genes in adult samples probably helps to fulfill the metabolic function requirements of the liver and pancreas. In contrast, several vital genes involved in cholesterol metabolism and protein digestion and absorption were over-expressed in newborn samples. This may indicate the importance of cholesterol metabolism and protein digestion and absorption processes in giant panda infancy.
Collapse
Affiliation(s)
- Jinnan Ma
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Fujun Shen
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Lei Chen
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Honglin Wu
- China Conservation and Research Center for the Giant Panda, Wolong, Sichuan 623006, China
| | - Yan Huang
- China Conservation and Research Center for the Giant Panda, Wolong, Sichuan 623006, China
| | - Zhenxin Fan
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.,Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Rong Hou
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.,Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.,Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Structural and kinetic properties of serine hydroxymethyltransferase from the halophytic cyanobacterium Aphanothece halophytica provide a rationale for salt tolerance. Int J Biol Macromol 2020; 159:517-529. [PMID: 32417544 DOI: 10.1016/j.ijbiomac.2020.05.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 11/22/2022]
Abstract
Serine hydroxymethyltransferase (SHMT) is a pyridoxal 5'-phosphate-dependent enzyme that plays a pivotal role in cellular one‑carbon metabolism. In plants and cyanobacteria, this enzyme is also involved in photorespiration and confers salt tolerance, as in the case of SHMT from the halophilic cyanobacterium Aphanothece halophytica (AhSHMT). We have characterized the catalytic properties of AhSHMT in different salt and pH conditions. Although the kinetic properties of AhSHMT correlate with those of the mesophilic orthologue from Escherichia coli, AhSHMT appears more catalytically efficient, especially in presence of salt. Our studies also reveal substrate inhibition, previously unobserved in AhSHMT. Furthermore, addition of the osmoprotectant glycine betaine under salt conditions has a distinct positive effect on AhSHMT activity. The crystal structures of AhSHMT in three forms, as internal aldimine, as external aldimine with the l-serine substrate, and as a covalent complex with malonate, give structural insights on the possible role of specific amino acid residues implicated in the halophilic features of AhSHMT. Importantly, we observed that overexpression of the gene encoding SHMT, independently from its origin, increases the capability of E. coli to grow in high salt conditions, suggesting that the catalytic activity of this enzyme in itself plays a fundamental role in salt tolerance.
Collapse
|
9
|
Korasick DA, Kandoth PK, Tanner JJ, Mitchum MG, Beamer LJ. Impaired folate binding of serine hydroxymethyltransferase 8 from soybean underlies resistance to the soybean cyst nematode. J Biol Chem 2020; 295:3708-3718. [PMID: 32014996 PMCID: PMC7076220 DOI: 10.1074/jbc.ra119.012256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/30/2020] [Indexed: 12/15/2022] Open
Abstract
Management of the agricultural pathogen soybean cyst nematode (SCN) relies on the use of SCN-resistant soybean cultivars, a strategy that has been failing in recent years. An underutilized source of resistance in the soybean genotype Peking is linked to two polymorphisms in serine hydroxy-methyltransferase 8 (SHMT8). SHMT is a pyridoxal 5'-phosphate-dependent enzyme that converts l-serine and (6S)-tetrahydrofolate to glycine and 5,10-methylenetetrahydrofolate. Here, we determined five crystal structures of the 1884-residue SHMT8 tetramers from the SCN-susceptible cultivar (cv.) Essex and the SCN-resistant cv. Forrest (whose resistance is derived from the SHMT8 polymorphisms in Peking); the crystal structures were determined in complex with various ligands at 1.4-2.35 Å resolutions. We find that the two Forrest-specific polymorphic substitutions (P130R and N358Y) impact the mobility of a loop near the entrance of the (6S)-tetrahydrofolate-binding site. Ligand-binding and kinetic studies indicate severely reduced affinity for folate and dramatically impaired enzyme activity in Forrest SHMT8. These findings imply widespread effects on folate metabolism in soybean cv. Forrest that have implications for combating the widespread increase in virulent SCN.
Collapse
Affiliation(s)
- David A Korasick
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Pramod K Kandoth
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211; Department of Chemistry, University of Missouri, Columbia, Missouri 65211
| | - Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Lesa J Beamer
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211; Department of Chemistry, University of Missouri, Columbia, Missouri 65211.
| |
Collapse
|
10
|
Haque MR, Hirowatari A, Nai N, Furuya S, Yamamoto K. Serine hydroxymethyltransferase from the silkworm Bombyx mori: Identification, distribution, and biochemical characterization. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21594. [PMID: 31298425 DOI: 10.1002/arch.21594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Serine hydroxymethyltransferase (SHMT) catalyzes the interconversion of serine and tetrahydrofolate (THF) to glycine and methylenetetrahydrofolate. cDNA encoding Bombyx mori SHMT (bmSHMT) was cloned and sequenced. The deduced amino acid sequence consisted of 465 amino acids and was found to share homology with other SHMTs. Recombinant bmSHMT was overexpressed in Escherichia coli and purified to homogeneity. The enzyme showed optimum activity at pH 3.0 and 30°C and was stable under acidic conditions. The Km and kcat /Km values for THF in the presence of Nicotinamide adenine dinucleotide phosphate (NADP+ ) were 0.055 mM and 0.081 mM-1 s-1 , respectively, whereas those toward NADP+ were 0.16 mM and 0.018 mM-1 s-1 and toward l-serine were 1.8 mM and 0.0022 mM-1 s-1 , respectively. Mutagenesis experiments revealed that His119, His132, and His135 are important for enzymatic activity. Our results provide insight into the roles and regulation mechanism of one-carbon metabolism in the silkworm B. mori.
Collapse
Affiliation(s)
- Mohammad R Haque
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, Nishi-ku, Fukuoka, Japan
| | - Aiko Hirowatari
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, Nishi-ku, Fukuoka, Japan
| | - Nonoko Nai
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, Nishi-ku, Fukuoka, Japan
| | - Shigeki Furuya
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, Nishi-ku, Fukuoka, Japan
| | - Kohji Yamamoto
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
11
|
Ubonprasert S, Jaroensuk J, Pornthanakasem W, Kamonsutthipaijit N, Wongpituk P, Mee-Udorn P, Rungrotmongkol T, Ketchart O, Chitnumsub P, Leartsakulpanich U, Chaiyen P, Maenpuen S. A flap motif in human serine hydroxymethyltransferase is important for structural stabilization, ligand binding, and control of product release. J Biol Chem 2019; 294:10490-10502. [PMID: 31118236 DOI: 10.1074/jbc.ra119.007454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/21/2019] [Indexed: 12/13/2022] Open
Abstract
Human cytosolic serine hydroxymethyltransferase (hcSHMT) is a promising target for anticancer chemotherapy and contains a flexible "flap motif" whose function is yet unknown. Here, using size-exclusion chromatography, analytical ultracentrifugation, small-angle X-ray scattering (SAXS), molecular dynamics (MD) simulations, and ligand-binding and enzyme-kinetic analyses, we studied the functional roles of the flap motif by comparing WT hcSHMT with a flap-deleted variant (hcSHMT/Δflap). We found that deletion of the flap results in a mixture of apo-dimers and holo-tetramers, whereas the WT was mostly in the tetrameric form. MD simulations indicated that the flap stabilizes structural compactness and thereby enhances oligomerization. The hcSHMT/Δflap variant exhibited different catalytic properties in (6S)-tetrahydrofolate (THF)-dependent reactions compared with the WT but had similar activity in THF-independent aldol cleavage of β-hydroxyamino acid. hcSHMT/Δflap was less sensitive to THF inhibition than the WT (Ki of 0.65 and 0.27 mm THF at pH 7.5, respectively), and the THF dissociation constant of the WT was also 3-fold lower than that of hcSHMT/Δflap, indicating that the flap is important for THF binding. hcSHMT/Δflap did not display the burst kinetics observed in the WT. These results indicate that, upon removal of the flap, product release is no longer the rate-limiting step, implying that the flap is important for controlling product release. The findings reported here improve our understanding of the functional roles of the flap motif in hcSHMT and provide fundamental insight into how a flexible loop can be involved in controlling the enzymatic reactions of hcSHMT and other enzymes.
Collapse
Affiliation(s)
- Sakunrat Ubonprasert
- From the Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Juthamas Jaroensuk
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Wichai Pornthanakasem
- Biomolecular Analysis and Application Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), and
| | | | - Peerapong Wongpituk
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, and
| | - Pitchayathida Mee-Udorn
- Bioinformatics and Computational Biology Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand, and
| | - Thanyada Rungrotmongkol
- Bioinformatics and Computational Biology Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand, and.,Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, and
| | - Onuma Ketchart
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Penchit Chitnumsub
- Biomolecular Analysis and Application Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), and
| | - Ubolsree Leartsakulpanich
- Biomolecular Analysis and Application Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), and
| | - Pimchai Chaiyen
- From the Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.,School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
12
|
Tramonti A, Nardella C, di Salvo ML, Barile A, Cutruzzolà F, Contestabile R. Human Cytosolic and Mitochondrial Serine Hydroxymethyltransferase Isoforms in Comparison: Full Kinetic Characterization and Substrate Inhibition Properties. Biochemistry 2018; 57:6984-6996. [PMID: 30500180 DOI: 10.1021/acs.biochem.8b01074] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Serine hydroxymethyltransferase (SHMT) catalyzes the reversible conversion of l-serine and tetrahydrofolate into glycine and 5,10-methylenetetrahydrofolate. This enzyme, which plays a pivotal role in one-carbon metabolism, is involved in cancer metabolic reprogramming and is a recognized target of chemotherapy intervention. In humans, two isoforms of the enzyme exist, which are commonly termed cytosolic SHMT1 and mitochondrial SHMT2. Considerable attention has been paid to the structural, mechanistic, and metabolic features of these isozymes. On the other hand, a detailed comparison of their catalytic and regulatory properties is missing, although this aspect seems to be considerably important, considering that SHMT1 and SHMT2 reside in different cellular compartments, where they play distinct roles in folate metabolism. Here we performed a full kinetic characterization of the serine hydroxymethyltransferase reaction catalyzed by SHMT1 and SHMT2, with a focus on pH dependence and substrate inhibition. Our investigation, which allowed the determination of all kinetic parameters of serine hydroxymethyltransferase forward and backward reactions, uncovered a previously unobserved substrate inhibition by l-serine and highlighted several interesting differences between SHMT1 and SHMT2. In particular, SHMT2 maintains a pronounced tetrahydrofolate substrate inhibition even at the alkaline pH characteristic of the mitochondrial matrix, whereas with SHMT1 this is almost abolished. At this pH, SHMT2 also shows a catalytic efficiency that is much higher than that of SHMT1. These observations suggest that such different properties represent an adaptation of the isoforms to the respective cellular environments and that substrate inhibition may be a form of regulation.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari , Consiglio Nazionale delle Ricerche , Piazzale Aldo Moro 5 , 00185 Roma , Italy.,Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" , Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , 00185 Roma , Italy
| | - Caterina Nardella
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" , Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , 00185 Roma , Italy
| | - Martino L di Salvo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" , Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , 00185 Roma , Italy
| | - Anna Barile
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" , Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , 00185 Roma , Italy
| | - Francesca Cutruzzolà
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" , Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , 00185 Roma , Italy
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" , Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , 00185 Roma , Italy
| |
Collapse
|
13
|
Phonbuppha J, Maenpuen S, Munkajohnpong P, Chaiyen P, Tinikul R. Selective determination of the catalytic cysteine pK a of two-cysteine succinic semialdehyde dehydrogenase from Acinetobacter baumannii using burst kinetics and enzyme adduct formation. FEBS J 2018; 285:2504-2519. [PMID: 29734522 DOI: 10.1111/febs.14497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/27/2018] [Accepted: 04/30/2018] [Indexed: 11/27/2022]
Abstract
Succinic semialdehyde dehydrogenase (SSADH) from Acinetobacter baumannii (Ab) catalyzes the oxidation of succinic semialdehyde (SSA). This enzyme has two conserved cysteines (Cys289 and Cys291) and preferentially uses NADP+ over NAD+ as a hydride acceptor. Steady-state kinetic analysis showed that AbSSADH has the highest catalytic turnover (137 s-1 ) and can tolerate SSA inhibition the most (< 500 μm) among all SSADHs reported. Alanine substitutions of the two conserved cysteines indicated that Cys291Ala has ~ 65% activity compared with the wild-type enzyme while Cys289Ala is inactive, suggesting that Cys289 is the active residue participating in catalysis. Pre-steady-state kinetics showed for the first time burst kinetics for NADPH formation in SSADH, indicating that the rate-limiting step is associated with steps that occur after the hydride transfer. As the magnitude of burst kinetics represents the amount of NADPH formed during the first turnover, it is directly dependent on the amount of the deprotonated form of cysteine. The pKa of Cys289 was calculated from a plot of the burst magnitude vs pH as 7.4 ± 0.2. The Cys289 pKa was also measured based on the ability of AbSSADH to form an NADP-cysteine adduct, which can be detected by the increase of absorbance at ~ 330 nm as 7.9 ± 0.2. The lowering of the catalytic cysteine pKa by 0.6-1 unit renders the catalytic thiol more nucleophilic, which facilitates AbSSADH catalysis under physiological conditions. The methods established herein can specifically measure the active site cysteine pKa without interference from other cysteines. These techniques may be useful for studying ionization state of other cysteine-containing aldehyde dehydrogenases. ENZYME Succinic semialdehyde dehydrogenase, EC1.2.1.24.
Collapse
Affiliation(s)
- Jittima Phonbuppha
- Department of Biomolecular Science and Engineering, School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Pobthum Munkajohnpong
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pimchai Chaiyen
- Department of Biomolecular Science and Engineering, School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Mahidol University, Nakhonsawan, Thailand
| |
Collapse
|
14
|
Zhang Y, Shang X, Lai S, Zhang Y, Hu Q, Chai X, Wang B, Liu S, Wen T. Reprogramming One-Carbon Metabolic Pathways To Decouple l-Serine Catabolism from Cell Growth in Corynebacterium glutamicum. ACS Synth Biol 2018; 7:635-646. [PMID: 29316787 DOI: 10.1021/acssynbio.7b00373] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
l-Serine, the principal one-carbon source for DNA biosynthesis, is difficult for microorganisms to accumulate due to the coupling of l-serine catabolism and microbial growth. Here, we reprogrammed the one-carbon unit metabolic pathways in Corynebacterium glutamicum to decouple l-serine catabolism from cell growth. In silico model-based simulation showed a negative influence on glyA-encoding serine hydroxymethyltransferase flux with l-serine productivity. Attenuation of glyA transcription resulted in increased l-serine accumulation, and a decrease in purine pools, poor growth and longer cell shapes. The gcvTHP-encoded glycine cleavage (Gcv) system from Escherichia coli was introduced into C. glutamicum, allowing glycine-derived 13CH2 to be assimilated into intracellular purine synthesis, which resulted in an increased amount of one-carbon units. Gcv introduction not only restored cell viability and morphology but also increased l-serine accumulation. Moreover, comparative proteomic analysis indicated that abundance changes of the enzymes involved in one-carbon unit cycles might be responsible for maintaining one-carbon unit homeostasis. Reprogramming of the one-carbon metabolic pathways allowed cells to reach a comparable growth rate to accumulate 13.21 g/L l-serine by fed-batch fermentation in minimal medium. This novel strategy provides new insights into the regulation of cellular properties and essential metabolite accumulation by introducing an extrinsic pathway.
Collapse
Affiliation(s)
- Yun Zhang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuling Shang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shujuan Lai
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Zhang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qitiao Hu
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Chai
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Wang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuwen Liu
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingyi Wen
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid
Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
McCune CD, Beio ML, Sturdivant JM, de la Salud-Bea R, Darnell BM, Berkowitz DB. Synthesis and Deployment of an Elusive Fluorovinyl Cation Equivalent: Access to Quaternary α-(1'-Fluoro)vinyl Amino Acids as Potential PLP Enzyme Inactivators. J Am Chem Soc 2017; 139:14077-14089. [PMID: 28906111 PMCID: PMC6052324 DOI: 10.1021/jacs.7b04690] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Developing specific chemical functionalities to deploy in biological environments for targeted enzyme inactivation lies at the heart of mechanism-based inhibitor development but also is central to other protein-tagging methods in modern chemical biology including activity-based protein profiling and proteolysis-targeting chimeras. We describe here a previously unknown class of potential PLP enzyme inactivators; namely, a family of quaternary, α-(1'-fluoro)vinyl amino acids, bearing the side chains of the cognate amino acids. These are obtained by the capture of suitably protected amino acid enolates with β,β-difluorovinyl phenyl sulfone, a new (1'-fluoro)vinyl cation equivalent, and an electrophile that previously eluded synthesis, capture and characterization. A significant variety of biologically relevant AA side chains are tolerated including those for alanine, valine, leucine, methionine, lysine, phenylalanine, tyrosine, and tryptophan. Following addition/elimination, the resulting transoid α-(1'-fluoro)-β-(phenylsulfonyl)vinyl AA-esters undergo smooth sulfone-stannane interchange to stereoselectively give the corresponding transoid α-(1'-fluoro)-β-(tributylstannyl)vinyl AA-esters. Protodestannylation and global deprotection then yield these sterically encumbered and densely functionalized quaternary amino acids. The α-(1'-fluoro)vinyl trigger, a potential allene-generating functionality originally proposed by Abeles, is now available in a quaternary AA context for the first time. In an initial test of this new inhibitor class, α-(1'-fluoro)vinyllysine is seen to act as a time-dependent, irreversible inactivator of lysine decarboxylase from Hafnia alvei. The enantiomers of the inhibitor could be resolved, and each is seen to give time-dependent inactivation with this enzyme. Kitz-Wilson analysis reveals similar inactivation parameters for the two antipodes, L-α-(1'-fluoro)vinyllysine (Ki = 630 ± 20 μM; t1/2 = 2.8 min) and D-α-(1'-fluoro)vinyllysine (Ki = 470 ± 30 μM; t1/2 = 3.6 min). The stage is now set for exploration of the efficacy of this trigger in other PLP-enzyme active sites.
Collapse
Affiliation(s)
| | | | | | | | - Brendan M. Darnell
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304
| | - David B. Berkowitz
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304
| |
Collapse
|
16
|
Amornwatcharapong W, Maenpuen S, Chitnumsub P, Leartsakulpanich U, Chaiyen P. Human and Plasmodium serine hydroxymethyltransferases differ in rate-limiting steps and pH-dependent substrate inhibition behavior. Arch Biochem Biophys 2017; 630:91-100. [PMID: 28760597 DOI: 10.1016/j.abb.2017.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 01/14/2023]
Abstract
Serine hydroxymethyltransferase (SHMT), an essential enzyme for cell growth and development, catalyzes the transfer of -CH2OH from l-serine to tetrahydrofolate (THF) to form glycine and 5,10-methylenetetrahydrofolate (MTHF) which is used for nucleotide synthesis. Insights into the ligand binding and inhibition properties of human cytosolic SHMT (hcSHMT) and Plasmodium SHMT (PvSHMT) are crucial for designing specific drugs against malaria and cancer. The results presented here revealed strong and pH-dependent THF inhibition of hcSHMT. In contrast, in PvSHMT, THF inhibition and the influence of pH were not as pronounced. Ligand binding experiments performed at various pH values indicated that the hcSHMT:Gly complex binds THF more tightly at lower pH conditions, while the binding affinity of the PvSHMT:Gly complex for THF is not pH-dependent. Pre-steady state kinetic (rapid-quench) analysis of hcSHMT showed burst kinetics, indicating that glycine formation occurs fastest in the first turnover relative to the subsequent turnovers i.e. glycine release is the rate-limiting step in the hcSHMT reaction. All data suggest that excess THF likely binds E:Gly binary complex and forms the E:Gly:THF dead-end complex before glycine is released. A unique flap motif found in the structure of hcSHMT may be the key structural feature that imparts these described characteristics of hcSHMT.
Collapse
Affiliation(s)
- Watcharee Amornwatcharapong
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand.
| | - Pimchai Chaiyen
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biomolecular Science and Engineering, School of Biomolecular Science & Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.
| |
Collapse
|
17
|
Muangphrom P, Seki H, Fukushima EO, Muranaka T. Artemisinin-based antimalarial research: application of biotechnology to the production of artemisinin, its mode of action, and the mechanism of resistance of Plasmodium parasites. J Nat Med 2016; 70:318-34. [PMID: 27250562 PMCID: PMC4935751 DOI: 10.1007/s11418-016-1008-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/03/2016] [Indexed: 12/27/2022]
Abstract
Malaria is a worldwide disease caused by Plasmodium parasites. A sesquiterpene endoperoxide artemisinin isolated from Artemisia annua was discovered and has been accepted for its use in artemisinin-based combinatorial therapies, as the most effective current antimalarial treatment. However, the quantity of this compound produced from the A. annua plant is very low, and the availability of artemisinin is insufficient to treat all infected patients. In addition, the emergence of artemisinin-resistant Plasmodium has been reported recently. Several techniques have been applied to enhance artemisinin availability, and studies related to its mode of action and the mechanism of resistance of malaria-causing parasites are ongoing. In this review, we summarize the application of modern technologies to improve the production of artemisinin, including our ongoing research on artemisinin biosynthetic genes in other Artemisia species. The current understanding of the mode of action of artemisinin as well as the mechanism of resistance against this compound in Plasmodium parasites is also presented. Finally, the current situation of malaria infection and the future direction of antimalarial drug development are discussed.
Collapse
Affiliation(s)
- Paskorn Muangphrom
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ery Odette Fukushima
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Continuing Professional Development Center, Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
18
|
Nyíri K, Vértessy BG. Perturbation of genome integrity to fight pathogenic microorganisms. Biochim Biophys Acta Gen Subj 2016; 1861:3593-3612. [PMID: 27217086 DOI: 10.1016/j.bbagen.2016.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/05/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Resistance against antibiotics is unfortunately still a major biomedical challenge for a wide range of pathogens responsible for potentially fatal diseases. SCOPE OF REVIEW In this study, we aim at providing a critical assessment of the recent advances in design and use of drugs targeting genome integrity by perturbation of thymidylate biosynthesis. MAJOR CONCLUSION We find that research efforts from several independent laboratories resulted in chemically highly distinct classes of inhibitors of key enzymes within the routes of thymidylate biosynthesis. The present article covers numerous studies describing perturbation of this metabolic pathway in some of the most challenging pathogens like Mycobacterium tuberculosis, Plasmodium falciparum, and Staphylococcus aureus. GENERAL SIGNIFICANCE Our comparative analysis allows a thorough summary of the current approaches to target thymidylate biosynthesis enzymes and also include an outlook suggesting novel ways of inhibitory strategies. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.
Collapse
Affiliation(s)
- Kinga Nyíri
- Dept. Biotechnology, Budapest University of Technology and Economics, 4 Szent Gellért tér, Budapest HU 1111, Hungary; Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest HU 1117, Hungary.
| | - Beáta G Vértessy
- Dept. Biotechnology, Budapest University of Technology and Economics, 4 Szent Gellért tér, Budapest HU 1111, Hungary; Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest HU 1117, Hungary.
| |
Collapse
|
19
|
Witschel MC, Rottmann M, Schwab A, Leartsakulpanich U, Chitnumsub P, Seet M, Tonazzi S, Schwertz G, Stelzer F, Mietzner T, McNamara C, Thater F, Freymond C, Jaruwat A, Pinthong C, Riangrungroj P, Oufir M, Hamburger M, Mäser P, Sanz-Alonso LM, Charman S, Wittlin S, Yuthavong Y, Chaiyen P, Diederich F. Inhibitors of Plasmodial Serine Hydroxymethyltransferase (SHMT): Cocrystal Structures of Pyrazolopyrans with Potent Blood- and Liver-Stage Activities. J Med Chem 2015; 58:3117-30. [DOI: 10.1021/jm501987h] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | - Matthias Rottmann
- Swiss Tropical and Public Health Institute (Swiss TPH), Socinstrasse 57, 4051 Basel, Switzerland
- Universität Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Anatol Schwab
- Laboratorium
für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Michael Seet
- Laboratorium
für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Sandro Tonazzi
- Laboratorium
für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Geoffrey Schwertz
- Laboratorium
für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Frank Stelzer
- BASF SE, Carl-Bosch-Strasse
38, 67056 Ludwigshafen, Germany
| | | | - Case McNamara
- California Institute for Biomedical Research (Calibr), 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Frank Thater
- BASF SE, Carl-Bosch-Strasse
38, 67056 Ludwigshafen, Germany
| | - Céline Freymond
- Swiss Tropical and Public Health Institute (Swiss TPH), Socinstrasse 57, 4051 Basel, Switzerland
- Universität Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Aritsara Jaruwat
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Chatchadaporn Pinthong
- Department
of Biochemistry and Center of Excellence in Protein Structure and
Function, Faculty of Science, Mahidol University, 272 Rama VI Road, Bangkok 10400, Thailand
| | - Pinpunya Riangrungroj
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Mouhssin Oufir
- Pharmaceutical
Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Matthias Hamburger
- Pharmaceutical
Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute (Swiss TPH), Socinstrasse 57, 4051 Basel, Switzerland
- Universität Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Laura M. Sanz-Alonso
- Diseases of the
Developing World (DDW), GlaxoSmithKline, C. Severo Ochoa, 2, 28760 Tres Cantos, Spain
| | - Susan Charman
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute (Swiss TPH), Socinstrasse 57, 4051 Basel, Switzerland
- Universität Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Yongyuth Yuthavong
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Pimchai Chaiyen
- Department
of Biochemistry and Center of Excellence in Protein Structure and
Function, Faculty of Science, Mahidol University, 272 Rama VI Road, Bangkok 10400, Thailand
| | - François Diederich
- Laboratorium
für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| |
Collapse
|
20
|
Maenpuen S, Amornwatcharapong W, Krasatong P, Sucharitakul J, Palfey BA, Yuthavong Y, Chitnumsub P, Leartsakulpanich U, Chaiyen P. Kinetic mechanism and the rate-limiting step of Plasmodium vivax serine hydroxymethyltransferase. J Biol Chem 2015; 290:8656-65. [PMID: 25678710 DOI: 10.1074/jbc.m114.612275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serine hydroxymethyltransferase (SHMT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes a hydroxymethyl group transfer from L-serine to tetrahydrofolate (H4folate) to yield glycine and 5,10-methylenetetrahydrofolate (CH2-H4folate). SHMT is crucial for deoxythymidylate biosynthesis and a target for antimalarial drug development. Our previous studies indicate that PvSHMT catalyzes the reaction via a ternary complex mechanism. To define the kinetic mechanism of this catalysis, we explored the PvSHMT reaction by employing various methodologies including ligand binding, transient, and steady-state kinetics as well as product analysis by rapid-quench and HPLC/MS techniques. The results indicate that PvSHMT can bind first to either L-serine or H4folate. The dissociation constants for the enzyme·L-serine and enzyme·H4folate complexes were determined as 0.18 ± 0.08 and 0.35 ± 0.06 mM, respectively. The amounts of glycine formed after single turnovers of different preformed binary complexes were similar, indicating that the reaction proceeds via a random-order binding mechanism. In addition, the rate constant of glycine formation measured by rapid-quench and HPLC/MS analysis is similar to the kcat value (1.09 ± 0.05 s(-1)) obtained from the steady-state kinetics, indicating that glycine formation is the rate-limiting step of SHMT catalysis. This information will serve as a basis for future investigation on species-specific inhibition of SHMT for antimalarial drug development.
Collapse
Affiliation(s)
- Somchart Maenpuen
- From the Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok, Thailand 10400, the Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, Thailand 20131
| | - Watcharee Amornwatcharapong
- From the Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok, Thailand 10400
| | - Pasupat Krasatong
- the Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, Thailand 20131
| | - Jeerus Sucharitakul
- the Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand 10300
| | - Bruce A Palfey
- the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Yongyuth Yuthavong
- the National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand 12120
| | - Penchit Chitnumsub
- the National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand 12120
| | - Ubolsree Leartsakulpanich
- the National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand 12120
| | - Pimchai Chaiyen
- From the Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok, Thailand 10400,
| |
Collapse
|
21
|
Chitnumsub P, Jaruwat A, Riangrungroj P, Ittarat W, Noytanom K, Oonanant W, Vanichthanankul J, Chuankhayan P, Maenpuen S, Chen CJ, Chaiyen P, Yuthavong Y, Leartsakulpanich U. Structures of Plasmodium vivax serine hydroxymethyltransferase: implications for ligand-binding specificity and functional control. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:3177-86. [PMID: 25478836 PMCID: PMC4257618 DOI: 10.1107/s1399004714023128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/20/2014] [Indexed: 01/22/2023]
Abstract
Plasmodium parasites, the causative agent of malaria, rely heavily on de novo folate biosynthesis, and the enzymes in this pathway have therefore been explored extensively for antimalarial development. Serine hydroxymethyltransferase (SHMT) from Plasmodium spp., an enzyme involved in folate recycling and dTMP synthesis, has been shown to catalyze the conversion of L- and D-serine to glycine (Gly) in a THF-dependent reaction, the mechanism of which is not yet fully understood. Here, the crystal structures of P. vivax SHMT (PvSHMT) in a binary complex with L-serine and in a ternary complex with D-serine (D-Ser) and (6R)-5-formyltetrahydrofolate (5FTHF) provide clues to the mechanism underlying the control of enzyme activity. 5FTHF in the ternary-complex structure was found in the 6R form, thus differing from the previously reported structures of SHMT-Gly-(6S)-5FTHF from other organisms. This suggested that the presence of D-Ser in the active site can alter the folate-binding specificity. Investigation of binding in the presence of D-Ser and the (6R)- or (6S)-5FTHF enantiomers indicated that both forms of 5FTHF can bind to the enzyme but that only (6S)-5FTHF gives rise to a quinonoid intermediate. Likewise, a large surface area with a highly positively charged electrostatic potential surrounding the PvSHMT folate pocket suggested a preference for a polyglutamated folate substrate similar to the mammalian SHMTs. Furthermore, as in P. falciparum SHMT, a redox switch created from a cysteine pair (Cys125-Cys364) was observed. Overall, these results assert the importance of features such as stereoselectivity and redox status for control of the activity and specificity of PvSHMT.
Collapse
Affiliation(s)
- Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand
| | - Aritsara Jaruwat
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand
| | - Pinpunya Riangrungroj
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand
| | - Wanwipa Ittarat
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand
| | - Krittikar Noytanom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand
| | - Worrapoj Oonanant
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand
| | - Jarunee Vanichthanankul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand
| | - Phimonphan Chuankhayan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Pimchai Chaiyen
- Department of Biochemistry and Center for Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Yongyuth Yuthavong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|