1
|
Wishard R, Jayaram M, Ramesh SR, Nongthomba U. Spatial and temporal requirement of Mlp60A isoforms during muscle development and function in Drosophila melanogaster. Exp Cell Res 2023; 422:113430. [PMID: 36423661 DOI: 10.1016/j.yexcr.2022.113430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Many myofibrillar proteins undergo isoform switching in a spatio-temporal manner during muscle development. The biological significance of the variants of several of these myofibrillar proteins remains elusive. One such myofibrillar protein, the Muscle LIM Protein (MLP), is a vital component of the Z-discs. In this paper, we show that one of the Drosophila MLP encoding genes, Mlp60A, gives rise to two isoforms: a short (279 bp, 10 kDa) and a long (1461 bp, 54 kDa) one. The short isoform is expressed throughout development, but the long isoform is adult-specific, being the dominant of the two isoforms in the indirect flight muscles (IFMs). A concomitant, muscle-specific knockdown of both isoforms leads to partial developmental lethality, with most of the surviving flies being flight defective. A global loss of both isoforms in a Mlp60A-null background also leads to developmental lethality, with muscle defects in the individuals that survive to the third instar larval stage. This lethality could be rescued partially by a muscle-specific overexpression of the short isoform. Genetic perturbation of only the long isoform, through a P-element insertion in the long isoform-specific coding sequence, leads to defective flight, in around 90% of the flies. This phenotype was completely rescued when the P-element insertion was precisely excised from the locus. Hence, our data show that the two Mlp60A isoforms are functionally specialized: the short isoform being essential for normal embryonic muscle development and the long isoform being necessary for normal adult flight muscle function.
Collapse
Affiliation(s)
- Rohan Wishard
- Department of Molecular Reproduction, Development and Genetics; Indian Institute of Science, Bengaluru, 560012, India.
| | - Mohan Jayaram
- Department of Molecular Reproduction, Development and Genetics; Indian Institute of Science, Bengaluru, 560012, India; Department of Studies in Zoology, University of Mysore, Manasgangotri, Mysuru, 570006, India
| | - Saraf R Ramesh
- Department of Studies in Zoology, University of Mysore, Manasgangotri, Mysuru, 570006, India; Department of Life Sciences, Pooja Bhagvat Memorial Mahajana Education Center, K. R. S. Road, Mysuru, 570016, India
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics; Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
2
|
Germain P, Delalande A, Pichon C. Role of Muscle LIM Protein in Mechanotransduction Process. Int J Mol Sci 2022; 23:ijms23179785. [PMID: 36077180 PMCID: PMC9456170 DOI: 10.3390/ijms23179785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/14/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
The induction of protein synthesis is crucial to counteract the deconditioning of neuromuscular system and its atrophy. In the past, hormones and cytokines acting as growth factors involved in the intracellular events of these processes have been identified, while the implications of signaling pathways associated with the anabolism/catabolism ratio in reference to the molecular mechanism of skeletal muscle hypertrophy have been recently identified. Among them, the mechanotransduction resulting from a mechanical stress applied to the cell appears increasingly interesting as a potential pathway for therapeutic intervention. At present, there is an open question regarding the type of stress to apply in order to induce anabolic events or the type of mechanical strain with respect to the possible mechanosensing and mechanotransduction processes involved in muscle cells protein synthesis. This review is focused on the muscle LIM protein (MLP), a structural and mechanosensing protein with a LIM domain, which is expressed in the sarcomere and costamere of striated muscle cells. It acts as a transcriptional cofactor during cell proliferation after its nuclear translocation during the anabolic process of differentiation and rebuilding. Moreover, we discuss the possible opportunity of stimulating this mechanotransduction process to counteract the muscle atrophy induced by anabolic versus catabolic disorders coming from the environment, aging or myopathies.
Collapse
Affiliation(s)
- Philippe Germain
- UFR Sciences and Techniques, University of Orleans, 45067 Orleans, France
- Center for Molecular Biophysics, CNRS Orleans, 45071 Orleans, France
| | - Anthony Delalande
- UFR Sciences and Techniques, University of Orleans, 45067 Orleans, France
- Center for Molecular Biophysics, CNRS Orleans, 45071 Orleans, France
| | - Chantal Pichon
- UFR Sciences and Techniques, University of Orleans, 45067 Orleans, France
- Center for Molecular Biophysics, CNRS Orleans, 45071 Orleans, France
- Institut Universitaire de France, 1 Rue Descartes, 75231 Paris, France
- Correspondence:
| |
Collapse
|
3
|
Anderson B, Ordaz A, Zlomislic V, Allen RT, Garfin SR, Schuepbach R, Farshad M, Schenk S, Ward SR, Shahidi B. Paraspinal Muscle Health is Related to Fibrogenic, Adipogenic, and Myogenic Gene Expression in Patients with Lumbar Spine Pathology. BMC Musculoskelet Disord 2022; 23:608. [PMID: 35739523 PMCID: PMC9229083 DOI: 10.1186/s12891-022-05572-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/14/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Lumbar spine pathology is a common feature of lower back and/or lower extremity pain and is associated with observable degenerative changes in the lumbar paraspinal muscles that are associated with poor clinical prognosis. Despite the commonly observed phenotype of muscle degeneration in this patient population, its underlying molecular mechanisms are not well understood. The aim of this study was to investigate the relationships between groups of genes within the atrophic, myogenic, fibrogenic, adipogenic, and inflammatory pathways and multifidus muscle health in individuals undergoing surgery for lumbar spine pathology. METHODS Multifidus muscle biopsies were obtained from patients (n = 59) undergoing surgery for lumbar spine pathology to analyze 42 genes from relevant adipogenic/metabolic, atrophic, fibrogenic, inflammatory, and myogenic gene pathways using quantitative polymerase chain reaction. Multifidus muscle morphology was examined preoperatively in these patients at the level and side of biopsy using T2-weighted magnetic resonance imaging to determine whole muscle compartment area, lean muscle area, fat cross-sectional areas, and proportion of fat within the muscle compartment. These measures were used to investigate the relationships between gene expression patterns and muscle size and quality. RESULTS Relationships between gene expression and imaging revealed significant associations between decreased expression of adipogenic/metabolic gene (PPARD), increased expression of fibrogenic gene (COL3A1), and lower fat fraction on MRI (r = -0.346, p = 0.018, and r = 0.386, p = 0.047 respectively). Decreased expression of myogenic gene (mTOR) was related to greater lean muscle cross-sectional area (r = 0.388, p = 0.045). CONCLUSION Fibrogenic and adipogenic/metabolic genes were related to pre-operative muscle quality, and myogenic genes were related to pre-operative muscle size. These findings provide insight into molecular pathways associated with muscle health in the presence of lumbar spine pathology, establishing a foundation for future research that addresses how these changes impact outcomes in this patient population.
Collapse
Affiliation(s)
- Brad Anderson
- Department of Orthopaedic Surgery, University of California San Diego, 350 Dickinson Street, Suite 121, Mail Code 8894, San Diego, CA, 92103-8894, USA
| | - Angel Ordaz
- Department of Orthopaedic Surgery, University of California San Diego, 350 Dickinson Street, Suite 121, Mail Code 8894, San Diego, CA, 92103-8894, USA.
| | - Vinko Zlomislic
- Department of Orthopaedic Surgery, University of California San Diego, 350 Dickinson Street, Suite 121, Mail Code 8894, San Diego, CA, 92103-8894, USA
| | - R Todd Allen
- Department of Orthopaedic Surgery, University of California San Diego, 350 Dickinson Street, Suite 121, Mail Code 8894, San Diego, CA, 92103-8894, USA
| | - Steven R Garfin
- Department of Orthopaedic Surgery, University of California San Diego, 350 Dickinson Street, Suite 121, Mail Code 8894, San Diego, CA, 92103-8894, USA
| | - Regula Schuepbach
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Mazda Farshad
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California San Diego, 350 Dickinson Street, Suite 121, Mail Code 8894, San Diego, CA, 92103-8894, USA
| | - Samuel R Ward
- Department of Orthopaedic Surgery, University of California San Diego, 350 Dickinson Street, Suite 121, Mail Code 8894, San Diego, CA, 92103-8894, USA
| | - Bahar Shahidi
- Department of Orthopaedic Surgery, University of California San Diego, 350 Dickinson Street, Suite 121, Mail Code 8894, San Diego, CA, 92103-8894, USA
| |
Collapse
|
4
|
Aberrant PLN-R14del Protein Interactions Intensify SERCA2a Inhibition, Driving Impaired Ca2+ Handling and Arrhythmogenesis. Int J Mol Sci 2022; 23:ijms23136947. [PMID: 35805951 PMCID: PMC9266971 DOI: 10.3390/ijms23136947] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Phospholamban (PLN), a key modulator of Ca2+-homeostasis, inhibits sarcoplasmic reticulum (SR) calcium-ATPase (SERCA2a) and regulates cardiac contractility. The human PLN mutation R14del has been identified in arrhythmogenic cardiomyopathy patients worldwide and is currently extensively investigated. In search of the molecular mechanisms mediating the pathological phenotype, we examined PLN-R14del associations to known PLN-interacting partners. We determined that PLN-R14del interactions to key Ca2+-handling proteins SERCA2a and HS-1-associated protein X-1 (HAX-1) were enhanced, indicating the super-inhibition of SERCA2a’s Ca2+-affinity. Additionally, histidine-rich calcium binding protein (HRC) binding to SERCA2a was increased, suggesting the inhibition of SERCA2a maximal velocity. As phosphorylation relieves the inhibitory effect of PLN on SERCA2a activity, we examined the impact of phosphorylation on the PLN-R14del/SERCA2a interaction. Contrary to PLN-WT, phosphorylation did not affect PLN-R14del binding to SERCA2a, due to a lack of Ser-16 phosphorylation in PLN-R14del. No changes were observed in the subcellular distribution of PLN-R14del or its co-localization to SERCA2a. However, in silico predictions suggest structural perturbations in PLN-R14del that could impact its binding and function. Our findings reveal for the first time that by increased binding to SERCA2a and HAX-1, PLN-R14del acts as an enhanced inhibitor of SERCA2a, causing a cascade of molecular events contributing to impaired Ca2+-homeostasis and arrhythmogenesis. Relieving SERCA2a super-inhibition could offer a promising therapeutic approach for PLN-R14del patients.
Collapse
|
5
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
6
|
Mak RH, Querfeld U, Gonzalez A, Gunta S, Cheung WW. Differential Effects of 25-Hydroxyvitamin D 3 versus 1α 25-Dihydroxyvitamin D 3 on Adipose Tissue Browning in CKD-Associated Cachexia. Cells 2021; 10:3382. [PMID: 34943890 PMCID: PMC8699879 DOI: 10.3390/cells10123382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Patients with chronic kidney disease (CKD) often have low serum concentrations of 25(OH)D3 and 1,25(OH)2D3. We investigated the differential effects of 25(OH)D3 versus 1,25(OH)2D3 repletion in mice with surgically induced CKD. Intraperitoneal supplementation of 25(OH)D3 (75 μg/kg/day) or 1,25(OH)2D3 (60 ng/kg/day) for 6 weeks normalized serum 25(OH)D3 or 1,25(OH)2D3 concentrations in CKD mice, respectively. Repletion of 25(OH)D3 normalized appetite, significantly improved weight gain, increased fat and lean mass content and in vivo muscle function, as well as attenuated elevated resting metabolic rate relative to repletion of 1,25(OH)2D3 in CKD mice. Repletion of 25(OH)D3 in CKD mice attenuated adipose tissue browning as well as ameliorated perturbations of energy homeostasis in adipose tissue and skeletal muscle, whereas repletion of 1,25(OH)2D3 did not. Significant improvement of muscle fiber size and normalization of fat infiltration of gastrocnemius was apparent with repletion of 25(OH)D3 but not with 1,25(OH)2D3 in CKD mice. This was accompanied by attenuation of the aberrant gene expression of muscle mass regulatory signaling, molecular pathways related to muscle fibrosis as well as muscle expression profile associated with skeletal muscle wasting in CKD mice. Our findings provide evidence that repletion of 25(OH)D3 exerts metabolic advantages over repletion of 1,25(OH)2D3 by attenuating adipose tissue browning and muscle wasting in CKD mice.
Collapse
Affiliation(s)
- Robert H. Mak
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093, USA; (A.G.); (S.G.); (W.W.C.)
| | - Uwe Querfeld
- Department of Paediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Alex Gonzalez
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093, USA; (A.G.); (S.G.); (W.W.C.)
| | - Sujana Gunta
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093, USA; (A.G.); (S.G.); (W.W.C.)
- Pediatric Services, Vista Community Clinic, Vista, CA 92084, USA
| | - Wai W. Cheung
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093, USA; (A.G.); (S.G.); (W.W.C.)
| |
Collapse
|
7
|
Integrated proteomic and transcriptomic profiling identifies aberrant gene and protein expression in the sarcomere, mitochondrial complex I, and the extracellular matrix in Warmblood horses with myofibrillar myopathy. BMC Genomics 2021; 22:438. [PMID: 34112090 PMCID: PMC8194174 DOI: 10.1186/s12864-021-07758-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Background Myofibrillar myopathy in humans causes protein aggregation, degeneration, and weakness of skeletal muscle. In horses, myofibrillar myopathy is a late-onset disease of unknown origin characterized by poor performance, atrophy, myofibrillar disarray, and desmin aggregation in skeletal muscle. This study evaluated molecular and ultrastructural signatures of myofibrillar myopathy in Warmblood horses through gluteal muscle tandem-mass-tag quantitative proteomics (5 affected, 4 control), mRNA-sequencing (8 affected, 8 control), amalgamated gene ontology analyses, and immunofluorescent and electron microscopy. Results We identified 93/1533 proteins and 47/27,690 genes that were significantly differentially expressed. The top significantly differentially expressed protein CSRP3 and three other differentially expressed proteins, including, PDLIM3, SYNPO2, and SYNPOL2, are integrally involved in Z-disc signaling, gene transcription and subsequently sarcomere integrity. Through immunofluorescent staining, both desmin aggregates and CSRP3 were localized to type 2A fibers. The highest differentially expressed gene CHAC1, whose protein product degrades glutathione, is associated with oxidative stress and apoptosis. Amalgamated transcriptomic and proteomic gene ontology analyses identified 3 enriched cellular locations; the sarcomere (Z-disc & I-band), mitochondrial complex I and the extracellular matrix which corresponded to ultrastructural Z-disc disruption and mitochondrial cristae alterations found with electron microscopy. Conclusions A combined proteomic and transcriptomic analysis highlighted three enriched cellular locations that correspond with MFM ultrastructural pathology in Warmblood horses. Aberrant Z-disc mechano-signaling, impaired Z-disc stability, decreased mitochondrial complex I expression, and a pro-oxidative cellular environment are hypothesized to contribute to the development of myofibrillar myopathy in Warmblood horses. These molecular signatures may provide further insight into diagnostic biomarkers, treatments, and the underlying pathophysiology of MFM. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07758-0.
Collapse
|
8
|
The nuclear envelope protein Net39 is essential for muscle nuclear integrity and chromatin organization. Nat Commun 2021; 12:690. [PMID: 33514739 PMCID: PMC7846557 DOI: 10.1038/s41467-021-20987-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 12/24/2020] [Indexed: 01/14/2023] Open
Abstract
Lamins and transmembrane proteins within the nuclear envelope regulate nuclear structure and chromatin organization. Nuclear envelope transmembrane protein 39 (Net39) is a muscle nuclear envelope protein whose functions in vivo have not been explored. We show that mice lacking Net39 succumb to severe myopathy and juvenile lethality, with concomitant disruption in nuclear integrity, chromatin accessibility, gene expression, and metabolism. These abnormalities resemble those of Emery-Dreifuss muscular dystrophy (EDMD), caused by mutations in A-type lamins (LMNA) and other genes, like Emerin (EMD). We observe that Net39 is downregulated in EDMD patients, implicating Net39 in the pathogenesis of this disorder. Our findings highlight the role of Net39 at the nuclear envelope in maintaining muscle chromatin organization, gene expression and function, and its potential contribution to the molecular etiology of EDMD.
Collapse
|
9
|
Wette SG, Birch NP, Soop M, Zügel M, Murphy RM, Lamb GD, Smith HK. Expression of titin-linked putative mechanosensing proteins in skeletal muscle after power resistance exercise in resistance-trained men. J Appl Physiol (1985) 2020; 130:545-561. [PMID: 33356984 DOI: 10.1152/japplphysiol.00711.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Little is known about the molecular responses to power resistance exercise that lead to skeletal muscle remodeling and enhanced athletic performance. We assessed the expression of titin-linked putative mechanosensing proteins implicated in muscle remodeling: muscle ankyrin repeat proteins (Ankrd 1, Ankrd 2, and Ankrd 23), muscle-LIM proteins (MLPs), muscle RING-finger protein-1 (MuRF-1), and associated myogenic proteins (MyoD1, myogenin, and myostatin) in skeletal muscle in response to power resistance exercise with or without a postexercise meal, in fed, resistance-trained men. A muscle sample was obtained from the vastus lateralis of seven healthy men on separate days, 3 h after 90 min of rest (Rest) or power resistance exercise with (Ex + Meal) or without (Ex) a postexercise meal to quantify mRNA and protein levels. The levels of phosphorylated HSP27 (pHSP27-Ser15) and cytoskeletal proteins in muscle and creatine kinase activity in serum were also assessed. The exercise increased (P ≤ 0.05) pHSP27-Ser15 (∼6-fold) and creatine kinase (∼50%), whereas cytoskeletal protein levels were unchanged (P > 0.05). Ankrd 1 (∼15-fold) and MLP (∼2-fold) mRNA increased, whereas Ankrd 2, Ankrd 23, MuRF-1, MyoD1, and myostatin mRNA were unchanged. Ankrd 1 (∼3-fold, Ex) and MLPb (∼20-fold, Ex + Meal) protein increased, but MLPa, Ankrd 2, Ankrd 23, and the myogenic proteins were unchanged. The postexercise meal did not affect the responses observed. Power resistance exercise, as performed in practice, induced subtle early responses in the expression of MLP and Ankrd 1 yet had little effect on the other proteins investigated. These findings suggest possible roles for MLP and Ankrd 1 in the remodeling of skeletal muscle in individuals who regularly perform this type of exercise.NEW & NOTEWORTHY This is the first study to assess the early changes in the expression of titin-linked putative mechanosensing proteins and associated myogenic regulatory factors in skeletal muscle after power resistance exercise in fed, resistance-trained men. We report that power resistance exercise induces subtle early responses in the expression of Ankrd 1 and MLP, suggesting these proteins play a role in the remodeling of skeletal muscle in individuals who regularly perform this type of exercise.
Collapse
Affiliation(s)
- Stefan G Wette
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Nigel P Birch
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Mattias Soop
- Department of Surgery, Ersta Hospital, Karolinska Institutet at Danderyd Hospital, Stockholm, Sweden
| | - Martina Zügel
- Division of Sports and Rehabilitation Medicine, Department of Internal Medicine, University of Ulm, Ulm, Germany
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Graham D Lamb
- School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Heather K Smith
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
The Cardioprotective PKA-Mediated Hsp20 Phosphorylation Modulates Protein Associations Regulating Cytoskeletal Dynamics. Int J Mol Sci 2020; 21:ijms21249572. [PMID: 33339131 PMCID: PMC7765622 DOI: 10.3390/ijms21249572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
The cytoskeleton has a primary role in cardiomyocyte function, including the response to mechanical stimuli and injury. The small heat shock protein 20 (Hsp20) conveys protective effects in cardiac muscle that are linked to serine-16 (Ser16) Hsp20 phosphorylation by stress-induced PKA, but the link between Hsp20 and the cytoskeleton remains poorly understood. Herein, we demonstrate a physical and functional interaction of Hsp20 with the cytoskeletal protein 14-3-3. We show that, upon phosphorylation at Ser16, Hsp20 translocates from the cytosol to the cytoskeleton where it binds to 14-3-3. This leads to dissociation of 14-3-3 from the F-actin depolymerization regulator cofilin-2 (CFL2) and enhanced F-actin depolymerization. Importantly, we demonstrate that the P20L Hsp20 mutation associated with dilated cardiomyopathy exhibits reduced physical interaction with 14-3-3 due to diminished Ser16 phosphorylation, with subsequent failure to translocate to the cytoskeleton and inability to disassemble the 14-3-3/CFL2 complex. The topological sequestration of Hsp20 P20L ultimately results in impaired regulation of F-actin dynamics, an effect implicated in loss of cytoskeletal integrity and amelioration of the cardioprotective functions of Hsp20. These findings underscore the significance of Hsp20 phosphorylation in the regulation of actin cytoskeleton dynamics, with important implications in cardiac muscle physiology and pathophysiology.
Collapse
|
11
|
Olie CS, van der Wal E, Cikes D, Maton L, de Greef JC, Lin IH, Chen YF, Kareem E, Penninger JM, Kessler BM, Raz V. Cytoskeletal disorganization underlies PABPN1-mediated myogenic disability. Sci Rep 2020; 10:17621. [PMID: 33077830 PMCID: PMC7572364 DOI: 10.1038/s41598-020-74676-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/28/2020] [Indexed: 12/30/2022] Open
Abstract
Muscle wasting and atrophy are regulated by multiple molecular processes, including mRNA processing. Reduced levels of the polyadenylation binding protein nucleus 1 (PABPN1), a multifactorial regulator of mRNA processing, cause muscle atrophy. A proteomic study in muscles with reduced PABPN1 levels suggested dysregulation of sarcomeric and cytoskeletal proteins. Here we investigated the hypothesis that reduced PABPN1 levels lead to an aberrant organization of the cytoskeleton. MURC, a plasma membrane-associated protein, was found to be more abundant in muscles with reduced PABPN1 levels, and it was found to be expressed at regions showing regeneration. A polarized cytoskeletal organization is typical for muscle cells, but muscle cells with reduced PABPN1 levels (named as shPAB) were characterized by a disorganized cytoskeleton that lacked polarization. Moreover, cell mechanical features and myogenic differentiation were significantly reduced in shPAB cells. Importantly, restoring cytoskeletal stability, by actin overexpression, was beneficial for myogenesis, expression of sarcomeric proteins and proper localization of MURC in shPAB cell cultures and in shPAB muscle bundle. We suggest that poor cytoskeletal mechanical features are caused by altered expression levels of cytoskeletal proteins and contribute to muscle wasting and atrophy.
Collapse
Affiliation(s)
| | - Erik van der Wal
- Human Genetics Department, Leiden University Medical Center, Leiden, The Netherlands
| | - Domagoj Cikes
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Loes Maton
- Human Genetics Department, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessica C de Greef
- Human Genetics Department, Leiden University Medical Center, Leiden, The Netherlands
| | - I-Hsuan Lin
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Fan Chen
- College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Elsayad Kareem
- Advanced Microscopy Facility, Vienna Biocenter Core Facilities, Vienna Biocenter (VBC), Vienna, Austria
| | - Josef M Penninger
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield, Department of Medicine, University of Oxford, Oxford, UK
| | - Vered Raz
- Human Genetics Department, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
12
|
Cheung WW, Ding W, Hoffman HM, Wang Z, Hao S, Zheng R, Gonzalez A, Zhan JY, Zhou P, Li S, Esparza MC, Lieber RL, Mak RH. Vitamin D ameliorates adipose browning in chronic kidney disease cachexia. Sci Rep 2020; 10:14175. [PMID: 32843714 PMCID: PMC7447759 DOI: 10.1038/s41598-020-70190-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Patients with chronic kidney disease (CKD) are often 25(OH)D3 and 1,25(OH)2D3 insufficient. We studied whether vitamin D repletion could correct aberrant adipose tissue and muscle metabolism in a mouse model of CKD-associated cachexia. Intraperitoneal administration of 25(OH)D3 and 1,25(OH)2D3 (75 μg/kg/day and 60 ng/kg/day respectively for 6 weeks) normalized serum concentrations of 25(OH)D3 and 1,25(OH)2D3 in CKD mice. Vitamin D repletion stimulated appetite, normalized weight gain, and improved fat and lean mass content in CKD mice. Vitamin D supplementation attenuated expression of key molecules involved in adipose tissue browning and ameliorated expression of thermogenic genes in adipose tissue and skeletal muscle in CKD mice. Furthermore, repletion of vitamin D improved skeletal muscle fiber size and in vivo muscle function, normalized muscle collagen content and attenuated muscle fat infiltration as well as pathogenetic molecular pathways related to muscle mass regulation in CKD mice. RNAseq analysis was performed on the gastrocnemius muscle. Ingenuity Pathway Analysis revealed that the top 12 differentially expressed genes in CKD were correlated with impaired muscle and neuron regeneration, enhanced muscle thermogenesis and fibrosis. Importantly, vitamin D repletion normalized the expression of those 12 genes in CKD mice. Vitamin D repletion may be an effective therapeutic strategy for adipose tissue browning and muscle wasting in CKD patients.
Collapse
MESH Headings
- Adipocytes, Beige/drug effects
- Adipocytes, Beige/metabolism
- Adipocytes, Brown/metabolism
- Adipocytes, White/metabolism
- Animals
- Cachexia/drug therapy
- Cachexia/etiology
- Cachexia/physiopathology
- Calcifediol/blood
- Calcifediol/deficiency
- Calcifediol/pharmacology
- Calcifediol/therapeutic use
- Calcitriol/blood
- Calcitriol/deficiency
- Calcitriol/pharmacology
- Calcitriol/therapeutic use
- Disease Models, Animal
- Eating/drug effects
- Fibrosis/genetics
- Gene Expression Regulation/drug effects
- Hand Strength
- Mice
- Mice, Inbred C57BL
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/pathology
- Nephrectomy
- Parathyroid Hormone/blood
- RNA, Messenger/biosynthesis
- Renal Insufficiency, Chronic/blood
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/drug therapy
- Rotarod Performance Test
- Sequence Analysis, RNA
- Thermogenesis/drug effects
- Weight Gain/drug effects
Collapse
Affiliation(s)
- Wai W Cheung
- Pediatric Nephrology, Rady Children's Hospital San Diego, University of California, San Diego, USA
| | - Wei Ding
- Division of Nephrology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Hal M Hoffman
- Department of Pediatrics, University of California, San Diego, USA
| | - Zhen Wang
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Hao
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ronghao Zheng
- Department of Pediatrics, Hubei Maternal and Child Health Hospital, Wuhan, China
| | - Alex Gonzalez
- Pediatric Nephrology, Rady Children's Hospital San Diego, University of California, San Diego, USA
| | - Jian-Ying Zhan
- Children's Hospital, Zhejiang University, Hangzhou, China
| | - Ping Zhou
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shiping Li
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Mary C Esparza
- Department of Orthopedic Surgery, University of California, San Diego, USA
| | - Richard L Lieber
- Shirley Ryan AbilityLab and Northwestern University, Chicago, USA
| | - Robert H Mak
- Pediatric Nephrology, Rady Children's Hospital San Diego, University of California, San Diego, USA.
- Division of Pediatric Nephrology, Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0831, La Jolla, CA, 92093-0831, USA.
| |
Collapse
|
13
|
Dompe C, Kranc W, Jopek K, Kowalska K, Ciesiółka S, Chermuła B, Bryja A, Jankowski M, Perek J, Józkowiak M, Moncrieff L, Hutchings G, Janowicz K, Pawelczyk L, Bruska M, Petitte J, Mozdziak P, Kulus M, Piotrowska-Kempisty H, Spaczyński RZ, Nowicki M, Kempisty B. Muscle Cell Morphogenesis, Structure, Development and Differentiation Processes Are Significantly Regulated during Human Ovarian Granulosa Cells In Vitro Cultivation. J Clin Med 2020; 9:jcm9062006. [PMID: 32604796 PMCID: PMC7355984 DOI: 10.3390/jcm9062006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 01/03/2023] Open
Abstract
Granulosa cells (GCs) have many functions and are fundamental for both folliculogenesis and oogenesis, releasing hormones and communicating directly with the oocyte. Long-term in vitro cultures of GCs show significant stem-like characteristics. In the current study, RNA of human ovarian granulosa cells was collected at 1, 7, 15 and 30 days of long-term in vitro culture. Understanding the process of differentiation of GCs towards different cell lineages, as well as the molecular pathways underlying these mechanisms, is fundamental to revealing other possible stemness markers of this type of cell. Identifying new markers of GC plasticity may help to understand the aetiology and recurrence of a wide variety of diseases and health conditions and reveal possible clinical applications of the ovarian tissue cells, affecting not only the reproductive ability but also sex hormone production. Granulosa cells were the subject of this study, as they are readily available as remnant material leftover after in vitro fertilisation procedures and exhibit significant stem-like characteristics in culture. The change in gene expression was investigated through a range of molecular and bioinformatic analyses. Expression microarrays were used, allowing the identification of groups of genes typical of specific cellular pathways. This candidate gene study focused on ontological groups associated with muscle cell morphogenesis, structure, development and differentiation, namely, “muscle cell development”, “muscle cell differentiation”, “muscle contraction”, “muscle organ development”, “muscle organ morphogenesis”, “muscle structure development”, “muscle system process” and “muscle tissue development”. The results showed that the 10 most upregulated genes were keratin 19, oxytocin receptor, connective tissue growth factor, nexilin, myosin light chain kinase, cysteine and glycine-rich protein 3, caveolin 1, actin, activating transcription factor 3 and tropomyosin, while the 10 most downregulated consisted of epiregulin, prostaglandin-endoperoxide synthase 2, transforming growth factor, interleukin, collagen, 5-hydroxytryptmine, interleukin 4, phosphodiesterase, wingless-type MMTV integration site family and SRY-box 9. Moreover, ultrastructural observations showing heterogeneity of granulosa cell population are presented in the study. At least two morphologically different subpopulations were identified: large, light coloured and small, darker cells. The expression of genes belonging to the mentioned ontological groups suggest the potential ability of GCs to differentiate and proliferate toward muscle lineage, showing possible application in muscle regeneration and the treatment of different diseases.
Collapse
Affiliation(s)
- Claudia Dompe
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.); (G.H.); (K.J.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (K.J.); (K.K.); (S.C.); (M.N.)
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (W.K.); (A.B.); (M.J.); (J.P.); (M.B.)
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (K.J.); (K.K.); (S.C.); (M.N.)
| | - Katarzyna Kowalska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (K.J.); (K.K.); (S.C.); (M.N.)
| | - Sylwia Ciesiółka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (K.J.); (K.K.); (S.C.); (M.N.)
| | - Błażej Chermuła
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland; (B.C.); (L.P.); (R.Z.S.)
| | - Artur Bryja
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (W.K.); (A.B.); (M.J.); (J.P.); (M.B.)
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (W.K.); (A.B.); (M.J.); (J.P.); (M.B.)
| | - Joanna Perek
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (W.K.); (A.B.); (M.J.); (J.P.); (M.B.)
| | - Małgorzata Józkowiak
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd St., 60-631 Poznan, Poland; (M.J.); (H.P.-K.)
| | - Lisa Moncrieff
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.); (G.H.); (K.J.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (K.J.); (K.K.); (S.C.); (M.N.)
| | - Greg Hutchings
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.); (G.H.); (K.J.)
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (W.K.); (A.B.); (M.J.); (J.P.); (M.B.)
| | - Krzysztof Janowicz
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.); (G.H.); (K.J.)
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (W.K.); (A.B.); (M.J.); (J.P.); (M.B.)
| | - Leszek Pawelczyk
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland; (B.C.); (L.P.); (R.Z.S.)
| | - Małgorzata Bruska
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (W.K.); (A.B.); (M.J.); (J.P.); (M.B.)
| | - James Petitte
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 1 Lwowska St., 87-100 Toruń, Poland;
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd St., 60-631 Poznan, Poland; (M.J.); (H.P.-K.)
| | - Robert Z. Spaczyński
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland; (B.C.); (L.P.); (R.Z.S.)
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (K.J.); (K.K.); (S.C.); (M.N.)
| | - Bartosz Kempisty
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (K.J.); (K.K.); (S.C.); (M.N.)
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (W.K.); (A.B.); (M.J.); (J.P.); (M.B.)
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 1 Lwowska St., 87-100 Toruń, Poland;
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 20 Jihlavská St., 62500 Brno, Czech Republic
- Correspondence: ; Tel.: +48-61-854-6567; Fax: +48-61-854-6568
| |
Collapse
|
14
|
Cheung WW, Hao S, Wang Z, Ding W, Zheng R, Gonzalez A, Zhan J, Zhou P, Li S, Esparza MC, Hoffman HM, Lieber RL, Mak RH. Vitamin D repletion ameliorates adipose tissue browning and muscle wasting in infantile nephropathic cystinosis-associated cachexia. J Cachexia Sarcopenia Muscle 2020; 11:120-134. [PMID: 31721480 PMCID: PMC7015252 DOI: 10.1002/jcsm.12497] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/30/2019] [Accepted: 08/25/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ctns-/- mice, a mouse model of infantile nephropathic cystinosis, exhibit hypermetabolism with adipose tissue browning and profound muscle wasting. Ctns-/- mice are 25(OH)D3 and 1,25(OH)2 D3 insufficient. We investigated whether vitamin D repletion could ameliorate adipose tissue browning and muscle wasting in Ctns-/- mice. METHODS Twelve-month-old Ctns-/- mice and wild-type controls were treated with 25(OH)D3 and 1,25(OH)2 D3 (75 μg/kg/day and 60 ng/kg/day, respectively) or an ethylene glycol vehicle for 6 weeks. Serum chemistry and parameters of energy homeostasis were measured. We quantitated total fat mass and studied expression of molecules regulating adipose tissue browning, energy metabolism, and inflammation. We measured lean mass content, skeletal muscle fibre size, in vivo muscle function (grip strength and rotarod activity), and expression of molecules regulating muscle metabolism. We also analysed the transcriptome of skeletal muscle in Ctns-/- mice using RNAseq. RESULTS Supplementation of 25(OH)D3 and 1,25(OH)2 D3 normalized serum concentration of 25(OH)D3 and 1,25(OH)2 D3 in Ctns-/- mice, respectively. Repletion of vitamin D partially or fully normalized food intake, weight gain, gain of fat, and lean mass, improved energy homeostasis, and attenuated perturbations of uncoupling proteins and adenosine triphosphate content in adipose tissue and muscle in Ctns-/- mice. Vitamin D repletion attenuated elevated expression of beige adipose cell biomarkers (UCP-1, CD137, Tmem26, and Tbx1) as well as aberrant expression of molecules implicated in adipose tissue browning (Cox2, Pgf2α, and NF-κB pathway) in inguinal white adipose tissue in Ctns-/- mice. Vitamin D repletion normalized skeletal muscle fibre size and improved in vivo muscle function in Ctns-/- mice. This was accompanied by correcting the increased muscle catabolic signalling (increased protein contents of IL-1β, IL-6, and TNF-α as well as an increased gene expression of Murf-2, atrogin-1, and myostatin) and promoting the decreased muscle regeneration and myogenesis process (decreased gene expression of Igf1, Pax7, and MyoD) in skeletal muscles of Ctns-/- mice. Muscle RNAseq analysis revealed aberrant gene expression profiles associated with reduced muscle and neuron regeneration, increased energy metabolism, and fibrosis in Ctns-/- mice. Importantly, repletion of 25(OH)D3 and 1,25(OH)2 D3 normalized the top 20 differentially expressed genes in Ctns-/- mice. CONCLUSIONS We report the novel findings that correction of 25(OH)D3 and 1,25(OH)2 D3 insufficiency reverses cachexia and may improve quality of life by restoring muscle function in an animal model of infantile nephropathic cystinosis. Mechanistically, vitamin D repletion attenuates adipose tissue browning and muscle wasting in Ctns-/- mice via multiple cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Wai W. Cheung
- Pediatric NephrologyRady Children's Hospital—San Diego, University of California, San DiegoSan DiegoCAUSA
| | - Sheng Hao
- Department of Nephrology and RheumatologyShanghai Children's Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Zhen Wang
- Department of PediatricsShanghai General Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Wei Ding
- Division of NephrologyShanghai 9th People's Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Ronghao Zheng
- Department of Pediatric Nephrology, Rheumatology, and ImmunologyMaternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Alex Gonzalez
- Pediatric NephrologyRady Children's Hospital—San Diego, University of California, San DiegoSan DiegoCAUSA
| | | | - Ping Zhou
- Department of PediatricsThe 2 Hospital of Harbin Medical UniversityHarbinChina
| | - Shiping Li
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouChina
| | - Mary C. Esparza
- Department of Orthopedic SurgeryUniversity of California, San DiegoSan DiegoCAUSA
| | - Hal M. Hoffman
- Department of PediatricsUniversity of California, San DiegoSan DiegoCAUSA
| | - Richard L. Lieber
- Department of Orthopedic SurgeryUniversity of California, San DiegoSan DiegoCAUSA
- Rehabilitation Institute of ChicagoChicagoILUSA
| | - Robert H. Mak
- Pediatric NephrologyRady Children's Hospital—San Diego, University of California, San DiegoSan DiegoCAUSA
| |
Collapse
|
15
|
Han S, Cui C, Wang Y, He H, Liu Z, Shen X, Chen Y, Li D, Zhu Q, Yin H. Knockdown of CSRP3 inhibits differentiation of chicken satellite cells by promoting TGF-β/Smad3 signaling. Gene 2019; 707:36-43. [PMID: 30930226 DOI: 10.1016/j.gene.2019.03.064] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/14/2019] [Accepted: 03/27/2019] [Indexed: 12/19/2022]
Abstract
Muscle LIM protein (MLP/CSRP3/CRP3) is a microtubule-associated protein preferentially expressed in cardiac and skeletal muscle and has a central role during muscle development and for architectural maintenance of muscle cells. LIM-domain proteins act as both modulators and downstream targets of TGF-β signaling, which is well documented to negatively regulate differentiation of myogenic precursor cells or myoblasts. Herein, we determined whether CSRP3 regulates chicken satellite cell proliferation and differentiation in vitro, and examined its mechanism of action by focusing on the TGF-β signaling pathway. Interference of CSRP3 mRNA expression had no effect on the proliferation of satellite cells, but significantly inhibited satellite cell differentiation into myotubes at 24, 48, and 72 h after initiation of differentiation. However, CSRP3 overexpression did not affect the proliferation or differentiation of satellite cells. Moreover, knockdown of CSRP3 caused up-regulation of TGF-β and Smad3 mRNA and protein levels. The phosphorylation of Smad3 in CSRP3-knockdown cells was greater than that in wild-type cells at 24, 48, and 72 h after initiation of differentiation. Collectively, knockdown of CSRP3 suppressed chicken satellite cell differentiation by regulating Smad3 phosphorylation in the TGF-β signaling pathway. Our results indicate that CSRP3 might play an important role in promoting satellite cell differentiation in chicken.
Collapse
Affiliation(s)
- Shunshun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Can Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Haorong He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zihao Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xiaoxu Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yuqi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
16
|
Kazmierczak K, Liang J, Yuan CC, Yadav S, Sitbon YH, Walz K, Ma W, Irving TC, Cheah JX, Gomes AV, Szczesna-Cordary D. Slow-twitch skeletal muscle defects accompany cardiac dysfunction in transgenic mice with a mutation in the myosin regulatory light chain. FASEB J 2019; 33:3152-3166. [PMID: 30365366 PMCID: PMC6404564 DOI: 10.1096/fj.201801402r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/01/2018] [Indexed: 01/06/2023]
Abstract
Myosin light chain 2 ( MYL2) gene encodes the myosin regulatory light chain (RLC) simultaneously in heart ventricles and in slow-twitch skeletal muscle. Using transgenic mice with cardiac-specific expression of the human R58Q-RLC mutant, we sought to determine whether the hypertrophic cardiomyopathy phenotype observed in papillary muscles (PMs) of R58Q mice is also manifested in slow-twitch soleus (SOL) muscles. Skinned SOL muscles and ventricular PMs of R58Q animals exhibited lower contractile force that was not observed in the fast-twitch extensor digitorum longus muscles of R58Q vs. wild-type-RLC mice, but mutant animals did not display gross muscle weakness in vivo. Consistent with SOL muscle abnormalities in R58Q vs. wild-type mice, myosin ATPase staining revealed a decreased proportion of fiber type I/type II only in SOL muscles but not in the extensor digitorum longus muscles. The similarities between SOL muscles and PMs of R58Q mice were further supported by quantitative proteomics. Differential regulation of proteins involved in energy metabolism, cell-cell interactions, and protein-protein signaling was concurrently observed in the hearts and SOL muscles of R58Q mice. In summary, even though R58Q expression was restricted to the heart of mice, functional similarities were clearly observed between the hearts and slow-twitch skeletal muscle, suggesting that MYL2 mutated models of hypertrophic cardiomyopathy may be useful research tools to study the molecular, structural, and energetic mechanisms of cardioskeletal myopathy associated with myosin RLC.-Kazmierczak, K., Liang, J., Yuan, C.-C., Yadav, S., Sitbon, Y. H., Walz, K., Ma, W., Irving, T. C., Cheah, J. X., Gomes, A. V., Szczesna-Cordary, D. Slow-twitch skeletal muscle defects accompany cardiac dysfunction in transgenic mice with a mutation in the myosin regulatory light chain.
Collapse
Affiliation(s)
- Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Chen-Ching Yuan
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yoel H. Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Katherina Walz
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Weikang Ma
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Thomas C. Irving
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Jenice X. Cheah
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, California, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, California, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
17
|
Muscle Lim Protein and myosin binding protein C form a complex regulating muscle differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2308-2321. [DOI: 10.1016/j.bbamcr.2017.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 08/09/2017] [Accepted: 08/30/2017] [Indexed: 01/10/2023]
|
18
|
Zhang P, Zhang L, Li Y, Zhu S, Zhao M, Ding S, Li J. Quantitative Proteomic Analysis To Identify Differentially Expressed Proteins in Myocardium of Epilepsy Using iTRAQ Coupled with Nano-LC-MS/MS. J Proteome Res 2017; 17:305-314. [PMID: 29090925 DOI: 10.1021/acs.jproteome.7b00579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epilepsy is a difficult-to-manage neurological disease that can result in organ damage, such as cardiac injury, that contributes to sudden unexpected death in epilepsy (SUDEP). Although recurrent seizure-induced cardiac dysregulation has been reported, the underlying molecular mechanisms are unclear. We established an epileptic model with Sprague-Dawley rats by applying isobaric tags for a relative and absolute quantification (iTRAQ)-based proteomics approach to identify differentially expressed proteins in myocardial tissue. A total of seven proteins in the acute epilepsy group and 60 proteins in the chronic epilepsy group were identified as differentially expressed. Bioinformatics analysis suggested that the pathogenesis of cardiac injury in acute and chronic epilepsy may be due to different molecular mechanisms. Three proteins, a receptor for activated protein kinase C1 (RACK1), aldehyde dehydrogenase 6 family member A1 (ALDH6A1), and glycerol uptake/transporter 1 (Hhatl), were identified as playing crucial roles in cardiac injury during epilepsy and were successfully confirmed by Western blot and immunohistochemistry analysis. Our study not only provides a deeper understanding of the pathophysiological mechanisms of myocardial damage in epilepsy, but also suggests some potential novel therapeutic targets for preventing cardiac injury and reducing the incidence of sudden death due to heart failure.
Collapse
Affiliation(s)
| | | | - Yongguo Li
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China
| | - Shisheng Zhu
- Faculty of Medical Technology, Chongqing Medical and Pharmaceutical College , Chongqing 401331, China
| | - Minzhu Zhao
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China
| | - Shijia Ding
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China
| | - Jianbo Li
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China
| |
Collapse
|
19
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
20
|
Liu R, Kenney JW, Manousopoulou A, Johnston HE, Kamei M, Woelk CH, Xie J, Schwarzer M, Garbis SD, Proud CG. Quantitative Non-canonical Amino Acid Tagging (QuaNCAT) Proteomics Identifies Distinct Patterns of Protein Synthesis Rapidly Induced by Hypertrophic Agents in Cardiomyocytes, Revealing New Aspects of Metabolic Remodeling. Mol Cell Proteomics 2016; 15:3170-3189. [PMID: 27512079 PMCID: PMC5054342 DOI: 10.1074/mcp.m115.054312] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Indexed: 01/16/2023] Open
Abstract
Cardiomyocytes undergo growth and remodeling in response to specific pathological or physiological conditions. In the former, myocardial growth is a risk factor for cardiac failure and faster protein synthesis is a major factor driving cardiomyocyte growth. Our goal was to quantify the rapid effects of different pro-hypertrophic stimuli on the synthesis of specific proteins in ARVC and to determine whether such effects are caused by alterations on mRNA abundance or the translation of specific mRNAs. Cardiomyocytes have very low rates of protein synthesis, posing a challenging problem in terms of studying changes in the synthesis of specific proteins, which also applies to other nondividing primary cells. To study the rates of accumulation of specific proteins in these cells, we developed an optimized version of the Quantitative Noncanonical Amino acid Tagging LC/MS proteomic method to label and selectively enrich newly synthesized proteins in these primary cells while eliminating the suppressive effects of pre-existing and highly abundant nonisotope-tagged polypeptides. Our data revealed that a classical pathologic (phenylephrine; PE) and the recently identified insulin stimulus that also contributes to the development of pathological cardiac hypertrophy (insulin), both increased the synthesis of proteins involved in, e.g. glycolysis, the Krebs cycle and beta-oxidation, and sarcomeric components. However, insulin increased synthesis of many metabolic enzymes to a greater extent than PE. Using a novel validation method, we confirmed that synthesis of selected candidates is indeed up-regulated by PE and insulin. Synthesis of all proteins studied was up-regulated by signaling through mammalian target of rapamycin complex 1 without changes in their mRNA levels, showing the key importance of translational control in the rapid effects of hypertrophic stimuli. Expression of PKM2 was up-regulated in rat hearts following TAC. This isoform possesses specific regulatory properties, so this finding indicates it may be involved in metabolic remodeling and also serve as a novel candidate biomarker. Levels of translation factor eEF1 also increased during TAC, likely contributing to faster cell mass accumulation. Interestingly those two candidates were not up-regulated in pregnancy or exercise induced CH, indicating PKM2 and eEF1 were pathological CH specific markers. We anticipate that the methodologies described here will be valuable for other researchers studying protein synthesis in primary cells.
Collapse
Affiliation(s)
- Rui Liu
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom; §South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Justin W Kenney
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Antigoni Manousopoulou
- From the ‡Center for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom; ¶Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Harvey E Johnston
- From the ‡Center for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom; ‖Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Makoto Kamei
- §South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Christopher H Woelk
- ¶Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Jianling Xie
- §South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Michael Schwarzer
- **Department of Cardiovascular Surgery, Jena University Hospital-Friedrich Schiller University of Jena, Erlanger Allee 101, 07747 Jena, Germany
| | - Spiros D Garbis
- From the ‡Center for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom; ¶Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK; ‖Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK;
| | - Christopher G Proud
- From the ‡Center for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom; §South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA5005, Australia
| |
Collapse
|
21
|
Bang ML. Animal Models of Congenital Cardiomyopathies Associated With Mutations in Z-Line Proteins. J Cell Physiol 2016; 232:38-52. [PMID: 27171814 DOI: 10.1002/jcp.25424] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/10/2016] [Indexed: 01/15/2023]
Abstract
The cardiac Z-line at the boundary between sarcomeres is a multiprotein complex connecting the contractile apparatus with the cytoskeleton and the extracellular matrix. The Z-line is important for efficient force generation and transmission as well as the maintenance of structural stability and integrity. Furthermore, it is a nodal point for intracellular signaling, in particular mechanosensing and mechanotransduction. Mutations in various genes encoding Z-line proteins have been associated with different cardiomyopathies, including dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, restrictive cardiomyopathy, and left ventricular noncompaction, and mutations even within the same gene can cause widely different pathologies. Animal models have contributed to a great advancement in the understanding of the physiological function of Z-line proteins and the pathways leading from mutations in Z-line proteins to cardiomyopathy, although genotype-phenotype prediction remains a great challenge. This review presents an overview of the currently available animal models for Z-line and Z-line associated proteins involved in human cardiomyopathies with special emphasis on knock-in and transgenic mouse models recapitulating the clinical phenotypes of human cardiomyopathy patients carrying mutations in Z-line proteins. Pros and cons of mouse models will be discussed and a future outlook will be given. J. Cell. Physiol. 232: 38-52, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research, UOS Milan, National Research Council and Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| |
Collapse
|
22
|
Molecular cloning, characterization and tissue specificity of the expression of the ovine CSRP2 and CSRP3 genes from Small-tail Han sheep (Ovis aries). Gene 2016; 580:47-57. [DOI: 10.1016/j.gene.2016.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 12/22/2015] [Accepted: 01/04/2016] [Indexed: 11/19/2022]
|
23
|
Vafiadaki E, Arvanitis DA, Sanoudou D. Muscle LIM Protein: Master regulator of cardiac and skeletal muscle functions. Gene 2015; 566:1-7. [PMID: 25936993 PMCID: PMC6660132 DOI: 10.1016/j.gene.2015.04.077] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 12/17/2022]
Abstract
Muscle LIM Protein (MLP) has emerged as a key regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, are causative of human cardiomyopathies, whereas altered expression patterns are observed in human failing heart and skeletal myopathies. In vitro and in vivo evidences reveal a complex and diverse functional role of MLP in striated muscle, which is determined by its multiple interacting partners and subcellular distribution. Experimental evidence suggests that MLP is implicated in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles still unfolds.
Collapse
Affiliation(s)
- Elizabeth Vafiadaki
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Demetrios A Arvanitis
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Despina Sanoudou
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece; 4th Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|