1
|
Antenucci L, Virtanen S, Thapa C, Jartti M, Pitkänen I, Tossavainen H, Permi P. Reassessing the substrate specificities of the major Staphylococcus aureus peptidoglycan hydrolases lysostaphin and LytM. eLife 2024; 13:RP93673. [PMID: 39495121 PMCID: PMC11534333 DOI: 10.7554/elife.93673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Orchestrated action of peptidoglycan (PG) synthetases and hydrolases is vital for bacterial growth and viability. Although the function of several PG synthetases and hydrolases is well understood, the function, regulation, and mechanism of action of PG hydrolases characterised as lysostaphin-like endopeptidases have remained elusive. Many of these M23 family members can hydrolyse glycyl-glycine peptide bonds and show lytic activity against Staphylococcus aureus whose PG contains a pentaglycine bridge, but their exact substrate specificity and hydrolysed bonds are still vaguely determined. In this work, we have employed NMR spectroscopy to study both the substrate specificity and the bond cleavage of the bactericide lysostaphin and the S. aureus PG hydrolase LytM. Yet, we provide substrate-level evidence for the functional role of these enzymes. Indeed, our results show that the substrate specificities of these structurally highly homologous enzymes are similar, but unlike observed earlier both LytM and lysostaphin prefer the D-Ala-Gly cross-linked part of mature peptidoglycan. However, we show that while lysostaphin is genuinely a glycyl-glycine hydrolase, LytM can also act as a D-alanyl-glycine endopeptidase.
Collapse
Affiliation(s)
- Lina Antenucci
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Salla Virtanen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of HelsinkiHelsinkiFinland
| | - Chandan Thapa
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Minne Jartti
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Ilona Pitkänen
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Helena Tossavainen
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Perttu Permi
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of HelsinkiHelsinkiFinland
- Department of Chemistry, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| |
Collapse
|
2
|
Lu H, Ismail S, Ni SQ, Wang ZB. Surface immobilization and properties optimization of phage hydrolase against Gram-negative bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123029. [PMID: 39447362 DOI: 10.1016/j.jenvman.2024.123029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/07/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Immobilized hydrolase not only reduces the production of antibiotic-resistant bacteria, but also effectively improves the stability of hydrolase in external use. In this study, phage hydrolase LysSSE1 against Gram-negative bacteria were surface immobilized and optimized for their bactericidal activity. Different anti-pathogen surface materials were prepared, where LysSSE1 was immobilized on the glass surface with a silica-affinity peptide and into which different peptide linkers were introduced. Immobilized enzymes inserted into the natural amino acid peptide linker exhibited higher bactericidal activity, greater stability, and more consistent bactericidal performance compared to those without the peptide linker. Among these immobilized enzymes, LysSSE1-NL-SiAP1 exhibited the strongest bactericidal activity and the best repeatable bactericidal performance, which only reduced the original performance by about 5% after three bactericidal cycles. Modeling analysis suggested that the presence of peptide linker might increase the molecular flexibility of the proximal hydrolase domain to better interact with the bacterial substrate. Our surface immobilization strategy could be extended to other lytic proteins, providing support for the development of surface sterilization methods and materials.
Collapse
Affiliation(s)
- Han Lu
- School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China; Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China; Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, China
| | - Sherif Ismail
- Environmental Engineering Department, Zagazig University, Zagazig, 44519, Egypt
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Zhi-Bin Wang
- School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
3
|
Bisht V, Das B, Hussain A, Kumar V, Navani NK. Understanding of probiotic origin antimicrobial peptides: a sustainable approach ensuring food safety. NPJ Sci Food 2024; 8:67. [PMID: 39300165 DOI: 10.1038/s41538-024-00304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
The practice of preserving and adding value to food dates back to over 10,000 BCE, when unintentional microbial-driven chemical reactions imparted flavor and extended the shelf life of fermented foods. The process evolved, and with the urbanization of society, significant shifts in dietary habits emerged, accompanied by sporadic food poisoning incidents. The repercussions of the COVID-19 pandemic have intensified the search for antibiotic alternatives owing to the rise in antibiotic-resistant pathogens, emphasizing the exploration of probiotic-origin antimicrobial peptides to alleviate human microbiome collateral damage. Often termed 'molecular knives', these peptides outstand as potent antimicrobials due to their compatibility with innate microflora, amenability to bioengineering, target specificity, versatility and rapidity in molecular level mode of action. This review centres on bacteriocins sourced from lactic acid bacteria found in ethnic fermented foods, accentuating their desirable attributes, technological applications as nanobiotics and potential future applications in the modern context of ensuring food safety.
Collapse
Affiliation(s)
- Vishakha Bisht
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Biki Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Ajmal Hussain
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Vinod Kumar
- Visiting faculty, Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Naveen Kumar Navani
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India.
| |
Collapse
|
4
|
Phrutpoom N, Khaokhiew T, Linn AK, Sakdee S, Imtong C, Jongruja N, Angsuthanasombat C. Efficient Production and Purification of Bioactive E50-52-Class IIa Peptidic Bacteriocin Is Achieved through Fusion with the Catalytic Domain of Lysostaphin-Class III Bacteriocin. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1610-1618. [PMID: 39418519 DOI: 10.1134/s0006297924090074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024]
Abstract
E50-52, a class IIa-peptidic bacteriocin produced by a strain of Enterococcus faecium, has broad-spectrum antimicrobial activity against various foodborne pathogens. However, effective utilization of the E50-52 has been limited by low production yields and challenges associated with separation and purification of this 39-amino acid antimicrobial peptide. In this study, we have successfully produced a biologically active recombinant form of E50-52 by fusing it with the 16-kDa catalytic domain of lysostaphin-class III bacteriocin (LssCAT), which resulted in high-yield production. Initially, the LssCAT-E50-52 chimeric protein was insoluble upon over-expression in Escherichia coli, but it became soluble using phosphate buffer (pH 7.4) supplemented with 8 M urea. Purification using immobilized-Ni2+ affinity chromatography under urea denaturing conditions resulted in consistent production a homogenous products (LssCAT-E50-52) with >95% purity. The purified protein was refolded using an optimized stepwise dialysis process. The resulting refolded LssCAT-E50-52 protein exhibited dose-dependent inhibitory activity against Helicobacter pylori, a Gram-negative, flagellated, helical bacterium that is associated with gastric cancer. Overall, the optimized protocol described in this study effectively produced large quantities of high-purity recombinant LssCAT-E50-52 protein, yielding approximately 100 mg per liter of culture. To the best of our knowledge, this is the first report on the impact of LssCAT-E50-52 on H. pylori. This finding could pave the way for further research into bactericidal mechanism and potential applications of this bacteriocin in biomedical industry.
Collapse
Affiliation(s)
- Nichakarn Phrutpoom
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Nakornpathom, 73170, Thailand
| | - Tararat Khaokhiew
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Nakornpathom, 73170, Thailand.
| | - Aung Khine Linn
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Somsri Sakdee
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, 73170, Thailand
| | - Chompounoot Imtong
- Bacterial Toxin Research Innovation Cluster, Biophysics Institute for Research and Development (BIRD), Chiang Mai, 50230, Thailand
| | - Nujarin Jongruja
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10140, Thailand
| | - Chanan Angsuthanasombat
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, 73170, Thailand.
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| |
Collapse
|
5
|
Zhydzetski A, Głowacka-Grzyb Z, Bukowski M, Żądło T, Bonar E, Władyka B. Agents Targeting the Bacterial Cell Wall as Tools to Combat Gram-Positive Pathogens. Molecules 2024; 29:4065. [PMID: 39274911 PMCID: PMC11396672 DOI: 10.3390/molecules29174065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
The cell wall is an indispensable element of bacterial cells and a long-known target of many antibiotics. Penicillin, the first discovered beta-lactam antibiotic inhibiting the synthesis of cell walls, was successfully used to cure many bacterial infections. Unfortunately, pathogens eventually developed resistance to it. This started an arms race, and while novel beta-lactams, either natural or (semi)synthetic, were discovered, soon upon their application, bacteria were developing resistance. Currently, we are facing the threat of losing the race since more and more multidrug-resistant (MDR) pathogens are emerging. Therefore, there is an urgent need for developing novel approaches to combat MDR bacteria. The cell wall is a reasonable candidate for a target as it differentiates not only bacterial and human cells but also has a specific composition unique to various groups of bacteria. This ensures the safety and specificity of novel antibacterial agents that target this structure. Due to the shortage of low-molecular-weight candidates for novel antibiotics, attention was focused on peptides and proteins that possess antibacterial activity. Here, we describe proteinaceous agents of various origins that target bacterial cell wall, including bacteriocins and phage and bacterial lysins, as alternatives to classic antibiotic candidates for antimicrobial drugs. Moreover, advancements in protein chemistry and engineering currently allow for the production of stable, specific, and effective drugs. Finally, we introduce the concept of selective targeting of dangerous pathogens, exemplified by staphylococci, by agents specifically disrupting their cell walls.
Collapse
Affiliation(s)
- Aliaksandr Zhydzetski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Zuzanna Głowacka-Grzyb
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Tomasz Żądło
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Emilia Bonar
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Benedykt Władyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| |
Collapse
|
6
|
Bisht V, Das B, Navani NK. Bacteriocins sourced from traditional fermented foods for ensuring food safety: the microbial guards. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39092901 DOI: 10.1002/jsfa.13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/15/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
Concerns about food safety have consistently driven the exploration of potent antimicrobials with probiotic origins. Identification of probiotic-derived bacteriocins as robust alternatives to antibiotics has gained traction following the COVID-19 pandemic. Additionally, the global market is witnessing an increasing preference for minimally processed food products free from chemical additives. Another contributing factor to the search for potent antimicrobials is the escalating number of infections caused by antibiotic-resistant bacteria and the need to mitigate the significant damage inflicted on the commensal human microbiota by broad-spectrum antibiotics. As an alternative bio-preservation strategy, there is substantial enthusiasm for the use of bacteriocins or starter cultures producing bacteriocins in preserving a variety of food items. This review specifically focuses on bacteriocins originating from lactic acid bacteria associated with fermented foods and explores their technological applications as nanobiotics. The food-grade antibiotic alternatives, whether utilized independently or in combination with other antimicrobials and administered directly or encapsulated, are anticipated to possess qualities of safety, stability and non-toxicity suitable for application in the food sector. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vishakha Bisht
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Biki Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Naveen Kumar Navani
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| |
Collapse
|
7
|
Mitkowski P, Jagielska E, Sabała I. Engineering of chimeric enzymes with expanded tolerance to ionic strength. Microbiol Spectr 2024; 12:e0354623. [PMID: 38695664 PMCID: PMC11237380 DOI: 10.1128/spectrum.03546-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/26/2024] [Indexed: 06/06/2024] Open
Abstract
Antimicrobial resistance poses a significant global threat, reaching dangerously high levels as reported by the World Health Organization. The emergence and rapid spread of new resistance mechanisms, coupled with the absence of effective treatments in recent decades, have led to thousands of deaths annually from infections caused by drug-resistant microorganisms. Consequently, there is an urgent need for the development of new compounds capable of combating antibiotic-resistant bacteria. A promising class of molecules exhibiting potent bactericidal effects is peptidoglycan hydrolases. Previously, we cloned and characterized the biochemical properties of the M23 catalytic domain of the EnpA (EnpACD) protein from Enterococcus faecalis. Unlike other enzymes within the M23 family, EnpACD demonstrates broad specificity. However, its activity is constrained under low ionic strength conditions. In this study, we present the engineering of three chimeric enzymes comprising EnpACD fused with three distinct SH3b cell wall-binding domains. These chimeras exhibit enhanced tolerance to environmental conditions and sustained activity in bovine and human serum. Furthermore, our findings demonstrate that the addition of SH3b domains influences the activity of the chimeric enzymes, thereby expanding their potential applications in combating antimicrobial resistance.IMPORTANCEThese studies demonstrate that the addition of the SH3b-binding domain to the EnpACD results in generation of chimeras with a broader tolerance to ionic strength and pH values, enabling them to remain active over a wider range of conditions. Such approach offers a relatively straightforward method for obtaining antibacterial enzymes with tailored properties and emphasizes the potential for proteins' engineering with enhanced functionality, contributing to the ongoing efforts to address antimicrobial resistance effectively.
Collapse
Affiliation(s)
- Paweł Mitkowski
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - Elżbieta Jagielska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - Izabela Sabała
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
8
|
Kerdkumthong K, Chanket W, Runsaeng P, Nanarong S, Songsurin K, Tantimetta P, Angsuthanasombat C, Aroonkesorn A, Obchoei S. Two Recombinant Bacteriocins, Rhamnosin and Lysostaphin, Show Synergistic Anticancer Activity Against Gemcitabine-Resistant Cholangiocarcinoma Cell Lines. Probiotics Antimicrob Proteins 2024; 16:713-725. [PMID: 37294416 DOI: 10.1007/s12602-023-10096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Cholangiocarcinoma (CCA), a bile duct cancer with a high mortality rate, has a poor prognosis due to its highly invasive and drug-resistant phenotypes. More effective and selective therapies are urgently needed. Bacteriocins are broad-spectrum antimicrobial peptides/proteins produced by bacterial strains to compete with other bacteria. Recent studies have reported that bacteriocins exhibit anticancer properties against various cancer cell lines with minimal toxicity toward normal cells. In this study, two types of recombinant bacteriocins, rhamnosin from probiotic Lacticaseibacillus rhamnosus and lysostaphin from Staphylococcus simulans, were highly produced in Escherichia coli and subsequently purified via immobilized-Ni2+ affinity chromatography. When their anticancer activity was investigated against CCA cell lines, both rhamnosin and lysostaphin were found capable of inhibiting the growth of CCA cell lines in a dose-dependent fashion but were less toxic toward a normal cholangiocyte cell line. Rhamnosin and lysostaphin as single treatments could suppress the growth of gemcitabine-resistant cell lines to the same extent as or more than they suppressed the parental counterparts. A combination of both bacteriocins more strongly inhibited growth and enhanced cell apoptosis in both parental and gemcitabine-resistant cells partly through the increased expression of the proapoptotic genes BAX, and caspase-3, -8, and -9. In conclusion, this is the first report to demonstrate an anticancer property of rhamnosin and lysostaphin. Using these bacteriocins as single agents or in combination would be effective against drug-resistant CCA.
Collapse
Affiliation(s)
- Kankamol Kerdkumthong
- Division of Health and Applied Sciences, Biochemistry Graduate Program, Faculty of Science, Prince of Songkla University, Hatyai, 90110, Songkhla, Thailand
| | - Wannarat Chanket
- Division of Health and Applied Sciences, Biochemistry Graduate Program, Faculty of Science, Prince of Songkla University, Hatyai, 90110, Songkhla, Thailand
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Phanthipha Runsaeng
- Division of Health and Applied Sciences, Biochemistry Graduate Program, Faculty of Science, Prince of Songkla University, Hatyai, 90110, Songkhla, Thailand
| | - Sutthipong Nanarong
- Division of Health and Applied Sciences, Biochemistry Graduate Program, Faculty of Science, Prince of Songkla University, Hatyai, 90110, Songkhla, Thailand
| | - Kawinnath Songsurin
- Division of Health and Applied Sciences, Biochemistry Graduate Program, Faculty of Science, Prince of Songkla University, Hatyai, 90110, Songkhla, Thailand
| | - Phonprapavee Tantimetta
- Division of Health and Applied Sciences, Biochemistry Graduate Program, Faculty of Science, Prince of Songkla University, Hatyai, 90110, Songkhla, Thailand
| | - Chanan Angsuthanasombat
- Bacterial Toxin Research Innovation Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom, 73170, Thailand
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Aratee Aroonkesorn
- Division of Health and Applied Sciences, Biochemistry Graduate Program, Faculty of Science, Prince of Songkla University, Hatyai, 90110, Songkhla, Thailand
| | - Sumalee Obchoei
- Division of Health and Applied Sciences, Biochemistry Graduate Program, Faculty of Science, Prince of Songkla University, Hatyai, 90110, Songkhla, Thailand.
| |
Collapse
|
9
|
Jayakumar J, Vinod V, Arumugam T, Sathy BN, Biswas L, Kumar VA, Biswas R. Efficacy of Lysostaphin functionalized silicon catheter for the prevention of Staphylococcus aureus biofilm. Int J Biol Macromol 2024; 256:128547. [PMID: 38048926 DOI: 10.1016/j.ijbiomac.2023.128547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
Staphylococcus aureus readily forms biofilms on tissue and indwelling catheter surfaces. These biofilms are resistant to antibiotics. Consequently, effective prevention and treatment strategies against staphylococcal biofilms are actively being pursued over the past two decades. One of the proposed strategies involve the incorporation of antibiotics and antiseptics into catheters, however, a persistent concern regarding the possible emergence of antimicrobial resistance is associated with these medical devices. In this study, we developed two types of silicone catheters: one with Lysostaphin (Lst) adsorbed onto the surface, and the other with Lst functionalized on the surface. To confirm the presence of Lst protein on the catheter surface, we conducted FTIR-ATR and SEM-EDS analysis. Both catheters exhibited hemocompatibility, biocompatibility, and demonstrated antimicrobial and biofilm prevention activities against both methicillin-sensitive and resistant strains of S. aureus. Furthermore, the silicone catheters that were surface-functionalized with Lst showed substantially better and more persistent anti-biofilm effects when compared to the catheters where Lst was surface-adsorbed, both under in vitro static and flow conditions, as well as in vivo in BALB/c mice. These results indicate that surface-functionalized Lst catheters have the potential to serve as a promising new medical device for preventing S. aureus biofilm infections in humans.
Collapse
Affiliation(s)
- Jayalakshmi Jayakumar
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Vivek Vinod
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Thennavan Arumugam
- Central Lab Animal Facility, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Binulal Nelson Sathy
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Lalitha Biswas
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - V Anil Kumar
- Department of Microbiology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Raja Biswas
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India.
| |
Collapse
|
10
|
Scaffidi SJ, Yu W. Tracking Cell Wall-Anchored Proteins in Gram-Positive Bacteria. Methods Mol Biol 2024; 2727:193-204. [PMID: 37815718 DOI: 10.1007/978-1-0716-3491-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Cell wall-anchored surface proteins are integral components of Gram-positive bacterial cell envelope and vital for bacterial survival in different environmental niches. To fulfill their functions, surface protein precursors translocate from cytoplasm to bacterial cell surface in three sequential steps: secretion across the cytoplasmic membrane, covalently anchoring to the cell wall precursor lipid II by sortase A, and incorporation of the lipid II-linked precursors into mature cell wall peptidoglycan. Here, we describe a series of immunofluorescence microscopy methods to track the subcellular localization of cell wall-anchored proteins along the sorting pathway. While the protocols are tailored to Staphylococcus aureus, they can be readily adapted to localize cell wall-anchored proteins as well as membrane proteins in other Gram-positive bacteria.
Collapse
Affiliation(s)
- Salvatore J Scaffidi
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Wenqi Yu
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
11
|
Pitkänen I, Tossavainen H, Permi P. 1H, 13C, and 15N NMR chemical shift assignment of LytM N-terminal domain (residues 26-184). BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:257-263. [PMID: 37742292 PMCID: PMC10630248 DOI: 10.1007/s12104-023-10151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023]
Abstract
Antibiotic resistance is a growing problem and a global threat for modern healthcare. New approaches complementing the traditional antibiotic drugs are urgently needed to secure the ability to treat bacterial infections also in the future. Among the promising alternatives are bacteriolytic enzymes, such as the cell wall degrading peptidoglycan hydrolases. Staphylococcus aureus LytM, a Zn2+-dependent glycyl-glycine endopeptidase of the M23 family, is one of the peptidoglycan hydrolases. It has a specificity towards staphylococcal peptidoglycan, making it an interesting target for antimicrobial studies. LytM hydrolyses the cell wall of S. aureus, a common pathogen with multi-resistant strains that are difficult to treat, such as the methicillin-resistant S. aureus, MRSA. Here we report the 1H, 15N and 13C chemical shift assignments of S. aureus LytM N-terminal domain and linker region, residues 26-184. These resonance assignments can provide the basis for further studies such as elucidation of structure and interactions.
Collapse
Affiliation(s)
- Ilona Pitkänen
- Department of Biological and Environmental Science, University of Jyvaskyla, FI-40014, Jyvaskyla, Finland
| | - Helena Tossavainen
- Department of Biological and Environmental Science, University of Jyvaskyla, FI-40014, Jyvaskyla, Finland
| | - Perttu Permi
- Department of Biological and Environmental Science, University of Jyvaskyla, FI-40014, Jyvaskyla, Finland.
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla, FI-40014, Jyvaskyla, Finland.
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, FI-00014, Helsinki, Finland.
| |
Collapse
|
12
|
Gallardo-Becerra L, Cervantes-Echeverría M, Cornejo-Granados F, Vazquez-Morado LE, Ochoa-Leyva A. Perspectives in Searching Antimicrobial Peptides (AMPs) Produced by the Microbiota. MICROBIAL ECOLOGY 2023; 87:8. [PMID: 38036921 PMCID: PMC10689560 DOI: 10.1007/s00248-023-02313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Changes in the structure and function of the microbiota are associated with various human diseases. These microbial changes can be mediated by antimicrobial peptides (AMPs), small peptides produced by the host and their microbiota, which play a crucial role in host-bacteria co-evolution. Thus, by studying AMPs produced by the microbiota (microbial AMPs), we can better understand the interactions between host and bacteria in microbiome homeostasis. Additionally, microbial AMPs are a new source of compounds against pathogenic and multi-resistant bacteria. Further, the growing accessibility to metagenomic and metatranscriptomic datasets presents an opportunity to discover new microbial AMPs. This review examines the structural properties of microbiota-derived AMPs, their molecular action mechanisms, genomic organization, and strategies for their identification in any microbiome data as well as experimental testing. Overall, we provided a comprehensive overview of this important topic from the microbial perspective.
Collapse
Affiliation(s)
- Luigui Gallardo-Becerra
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Melany Cervantes-Echeverría
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Fernanda Cornejo-Granados
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Luis E Vazquez-Morado
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
13
|
Keller AP, Huemer M, Chang CC, Mairpady Shambat S, Bjurnemark C, Oberortner N, Santschi MV, Zinsli LV, Röhrig C, Sobieraj AM, Shen Y, Eichenseher F, Zinkernagel AS, Loessner MJ, Schmelcher M. Systemic application of bone-targeting peptidoglycan hydrolases as a novel treatment approach for staphylococcal bone infection. mBio 2023; 14:e0183023. [PMID: 37768041 PMCID: PMC10653945 DOI: 10.1128/mbio.01830-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE The rising prevalence of antimicrobial resistance in S. aureus has rendered treatment of staphylococcal infections increasingly difficult, making the discovery of alternative treatment options a high priority. Peptidoglycan hydrolases, a diverse group of bacteriolytic enzymes, show high promise as such alternatives due to their rapid and specific lysis of bacterial cells, independent of antibiotic resistance profiles. However, using these enzymes for the systemic treatment of local infections, such as osteomyelitis foci, needs improvement, as the therapeutic distributes throughout the whole host, resulting in low concentrations at the actual infection site. In addition, the occurrence of intracellularly persisting bacteria can lead to relapsing infections. Here, we describe an approach using tissue-targeting to increase the local concentration of therapeutic enzymes in the infected bone. The enzymes were modified with a short targeting moiety that mediated accumulation of the therapeutic in osteoblasts and additionally enables targeting of intracellularly surviving bacteria.
Collapse
Affiliation(s)
- Anja P. Keller
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Markus Huemer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Chun-Chi Chang
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Nicole Oberortner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | - Léa V. Zinsli
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christian Röhrig
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Anna M. Sobieraj
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Yang Shen
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Fritz Eichenseher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Annelies S. Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin J. Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Razew A, Laguri C, Vallet A, Bougault C, Kaus-Drobek M, Sabala I, Simorre JP. Staphylococcus aureus sacculus mediates activities of M23 hydrolases. Nat Commun 2023; 14:6706. [PMID: 37872144 PMCID: PMC10593780 DOI: 10.1038/s41467-023-42506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
Peptidoglycan, a gigadalton polymer, functions as the scaffold for bacterial cell walls and provides cell integrity. Peptidoglycan is remodelled by a large and diverse group of peptidoglycan hydrolases, which control bacterial cell growth and division. Over the years, many studies have focused on these enzymes, but knowledge on their action within peptidoglycan mesh from a molecular basis is scarce. Here, we provide structural insights into the interaction between short peptidoglycan fragments and the entire sacculus with two evolutionarily related peptidases of the M23 family, lysostaphin and LytM. Through nuclear magnetic resonance, mass spectrometry, information-driven modelling, site-directed mutagenesis and biochemical approaches, we propose a model in which peptidoglycan cross-linking affects the activity, selectivity and specificity of these two structurally related enzymes differently.
Collapse
Affiliation(s)
- Alicja Razew
- Universite Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 avenue des Martyrs-CS10090, Grenoble cedex 9, 38044, France
- International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland
- Laboratory of Protein Engineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Cedric Laguri
- Universite Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 avenue des Martyrs-CS10090, Grenoble cedex 9, 38044, France
| | - Alicia Vallet
- Universite Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 avenue des Martyrs-CS10090, Grenoble cedex 9, 38044, France
| | - Catherine Bougault
- Universite Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 avenue des Martyrs-CS10090, Grenoble cedex 9, 38044, France
| | - Magdalena Kaus-Drobek
- Laboratory of Protein Engineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Izabela Sabala
- International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland.
- Laboratory of Protein Engineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland.
| | - Jean-Pierre Simorre
- Universite Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 avenue des Martyrs-CS10090, Grenoble cedex 9, 38044, France.
| |
Collapse
|
15
|
Krishnappa G, Mandal M, Ganesan S, Babu S, Padavattan S, Haradara Bahubali VK, Padmanabhan B. Structural and biochemical insights into the bacteriophage PlyGRCS endolysin targeting methicillin-resistant Staphylococcus aureus (MRSA) and serendipitous discovery of its interaction with a cold shock protein C (CspC). Protein Sci 2023; 32:e4737. [PMID: 37497650 PMCID: PMC10443338 DOI: 10.1002/pro.4737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes life-threatening human infections. Bacteriophage-encoded endolysins degrade the cell walls of Gram-positive bacteria by selectively hydrolyzing the peptidoglycan layer and thus are promising candidates to combat bacterial infections. PlyGRCS, the S. aureus-specific bacteriophage endolysin, contains a catalytic CHAP domain and a cell-wall binding SH3_5 domain connected by a linker. Here, we show the crystal structure of full-length PlyGRCS refined to 2.1 Å resolution. In addition, a serendipitous finding revealed that PlyGRCS binds to cold-shock protein C (CspC) by interacting with its CHAP and SH3_5 domains. CspC is an RNA chaperone that plays regulatory roles by conferring bacterial adaptability to various stress conditions. PlyGRCS has substantial lytic activity against S. aureus and showed only minimal change in its lytic activity in the presence of CspC. Whereas the PlyGRCS-CspC complex greatly reduced CspC-nucleic acid binding, the aforesaid complex may downregulate the CspC function during bacterial infection. Overall, the crystal structure and biochemical results of PlyGRCS provide a molecular basis for the bacteriolytic activity of PlyGRCS against S. aureus.
Collapse
Affiliation(s)
- Gopinatha Krishnappa
- Department of BiophysicsNational Institute of Mental Health and Neuro Sciences (NIMHANS)BengaluruIndia
| | - Mitali Mandal
- Department of BiophysicsNational Institute of Mental Health and Neuro Sciences (NIMHANS)BengaluruIndia
| | - Saranya Ganesan
- Department of BiophysicsNational Institute of Mental Health and Neuro Sciences (NIMHANS)BengaluruIndia
| | - Sudhagar Babu
- Department of BiophysicsNational Institute of Mental Health and Neuro Sciences (NIMHANS)BengaluruIndia
| | - Sivaraman Padavattan
- Department of BiophysicsNational Institute of Mental Health and Neuro Sciences (NIMHANS)BengaluruIndia
| | | | - Balasundaram Padmanabhan
- Department of BiophysicsNational Institute of Mental Health and Neuro Sciences (NIMHANS)BengaluruIndia
| |
Collapse
|
16
|
Charoenjotivadhanakul S, Sakdee S, Imtong C, Li HC, Angsuthanasombat C. Conserved loop residues-Tyr 270 and Asn 372 near the catalytic site of the lysostaphin endopeptidase are essential for staphylolytic activity toward pentaglycine binding and catalysis. Biochem Biophys Res Commun 2023; 668:111-117. [PMID: 37245291 DOI: 10.1016/j.bbrc.2023.05.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Lysostaphin endopeptidase cleaves pentaglycine cross-bridges found in staphylococcal cell-wall peptidoglycans and proves very effective in combatting methicillin-resistant Staphylococcus aureus. Here, we revealed the functional importance of two loop residues, Tyr270 in loop 1 and Asn372 in loop 4, which are highly conserved among the M23 endopeptidase family and are found close to the Zn2+-coordinating active site. Detailed analyses of the binding groove architecture together with protein-ligand docking showed that these two loop residues potentially interact with the docked ligand-pentaglycine. Ala-substituted mutants (Y270A and N372A) were generated and over-expressed in Escherichia coli as a soluble form at levels comparable to the wild type. A drastic decrease in staphylolytic activity against S. aureus was observed for both mutants, suggesting an essential role of the two loop residues in lysostaphin function. Further substitutions with an uncharged polar Gln side-chain revealed that only the Y270Q mutation caused a dramatic reduction in bioactivity. In silico predicting the effect of binding site mutations revealed that all mutations displayed a large ΔΔGbind value, signifying requirements of the two loop residues for efficient binding to pentaglycine. Additionally, MD simulations revealed that Y270A and Y270Q mutations induced large flexibility of the loop 1 region, showing markedly increased RMSF values. Further structural analysis suggested that Tyr270 conceivably participated in the oxyanion stabilization of the enzyme catalysis. Altogether, our present study disclosed that two highly conserved loop residues, loop 1-Tyr270 and loop 4-Asn372, located near the lysostaphin active site are crucially involved in staphylolytic activity toward binding and catalysis of pentaglycine cross-links.
Collapse
Affiliation(s)
- Sathapat Charoenjotivadhanakul
- Bacterial Toxin Research Innovation Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom, 73170, Thailand
| | - Somsri Sakdee
- Bacterial Toxin Research Innovation Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom, 73170, Thailand
| | - Chompounoot Imtong
- Laboratory of Cell Chemical Biology, Biophysics Institute for Research and Development (BIRD), Chiang Mai, 50110, Thailand
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Chanan Angsuthanasombat
- Bacterial Toxin Research Innovation Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom, 73170, Thailand; Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan; Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
17
|
Shestak NV, Grishin AV, Lyashchuk AM, Lunin VG, Anna SK. The choice of chromatographic resin for the purification of recombinant lysostaphin affects its activity. Protein Expr Purif 2023; 207:106274. [PMID: 37084838 DOI: 10.1016/j.pep.2023.106274] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Lysostaphin is a zinc-dependent endopeptidase that is effective against both antibiotic-sensitive and antibiotic-resistant strains of Staphylococcus aureus. Lysostaphin is typically purified on cation-exchange or metal-chelate affinity resins, and there are data indicating potential influence of the chromatographic resin on the lysostaphin activity. In this study, we systematically investigated the impact of the resin used to purify the recombinant lysostaphin on its activity. To this end, recombinant lysostaphin with an additional histidine tag at the C-terminus was purified using a cation-exchange resin, three types of nickel-chelate resins with different strength of metal ion binding, or a zinc-chelate resin. Lysostaphin samples purified on the cation-exchange resin (WorkBeads 40S), the nickel-chelate resin with the strong nickel ion binding (WorkBeads NiMAC), and the zinc-chelate resin (WorkBeads NTA with immobilized zinc ions) had equal activity. On the contrary, the activity of lysostaphin preparations purified on nickel-chelate resins with medium (WorkBeads Ni-NTA) and relatively weak (WorkBeads Ni-IDA) nickel ion binding was significantly reduced. The decrease in activity can be explained by the interaction of lysostaphin with the nickel ions leached from the resin and is caused by either the exchange of the zinc ion in the lysostaphin active center with a nickel ion from the resin, or binding of an additional ion that inhibits the enzymatic activity. Removal of metal ions from the active site of lysostaphin and subsequent incorporation of the native zinc ions lead to complete restoration of the activity of the enzyme.
Collapse
Affiliation(s)
- Nikita V Shestak
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098, Moscow, Gamalei st., 18, Russian Federation; Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, 119991, Moscow, Leninskiye Gory, 1, Russian Federation.
| | - Alexander V Grishin
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098, Moscow, Gamalei st., 18, Russian Federation; All-Russian Research Institute of Agricultural Biotechnology, 127550, Moscow, Timiryazevskaya st., 42, Russian Federation.
| | - Alexander M Lyashchuk
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098, Moscow, Gamalei st., 18, Russian Federation
| | - Vladimir G Lunin
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098, Moscow, Gamalei st., 18, Russian Federation; All-Russian Research Institute of Agricultural Biotechnology, 127550, Moscow, Timiryazevskaya st., 42, Russian Federation
| | - S Karyagina Anna
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098, Moscow, Gamalei st., 18, Russian Federation; All-Russian Research Institute of Agricultural Biotechnology, 127550, Moscow, Timiryazevskaya st., 42, Russian Federation; A. N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Leninskiye Gory, 1, Russian Federation
| |
Collapse
|
18
|
Liu Z, Gong G, Li Y, Xu Q, Akimbekov N, Zha J, Wu X. Peptidoglycan-Targeting Staphylolytic Enzyme Lysostaphin as a Novel and Efficient Protease toward Glycine-Rich Flexible Peptide Linkers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5293-5301. [PMID: 36967580 DOI: 10.1021/acs.jafc.3c00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Glycine-rich flexible peptide linkers have been widely adopted in fusion protein engineering; however, they can hardly be cleaved for the separation of fusion partners unless specific protease recognition sites are introduced. Herein, we report the use of the peptidoglycan-targeting staphylolytic enzyme lysostaphin to directly digest the glycine-rich flexible linkers of various lengths including oligoglycine linkers and (G4S)x linkers, without the incorporation of extra amino acids. Using His-MBP-linker-LbCpf1 as a model substrate, we show that both types of linkers could be digested by lysostaphin, and the digestion efficiency improved with increasing linker length. The enzyme LbCpf1 retained full activity after tag removal. We further demonstrated that the proteolytic activity of lysostaphin could be well maintained under different environmental conditions and in the presence of a series of chemical reagents at various concentrations that are frequently used in protein purification and stabilization. In addition, such a digestion strategy could also be applied to remove the SUMO domain linked to LwCas13a via an octaglycine linker. This study extends the applications of lysostaphin beyond an antimicrobial reagent and demonstrates its potential as a novel, efficient, and robust protease for protein engineering.
Collapse
Affiliation(s)
- Zhiqiang Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guoli Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yanni Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Nuraly Akimbekov
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
19
|
Wang X, Zhang M, Zhu T, Wei Q, Liu G, Ding J. Flourishing Antibacterial Strategies for Osteomyelitis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206154. [PMID: 36717275 PMCID: PMC10104653 DOI: 10.1002/advs.202206154] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/05/2022] [Indexed: 06/18/2023]
Abstract
Osteomyelitis is a destructive disease of bone tissue caused by infection with pathogenic microorganisms. Because of the complex and long-term abnormal conditions, osteomyelitis is one of the refractory diseases in orthopedics. Currently, anti-infective therapy is the primary modality for osteomyelitis therapy in addition to thorough surgical debridement. However, bacterial resistance has gradually reduced the benefits of traditional antibiotics, and the development of advanced antibacterial agents has received growing attention. This review introduces the main targets of antibacterial agents for treating osteomyelitis, including bacterial cell wall, cell membrane, intracellular macromolecules, and bacterial energy metabolism, focuses on their mechanisms, and predicts prospects for clinical applications.
Collapse
Affiliation(s)
- Xukai Wang
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Mingran Zhang
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
| | - Tongtong Zhu
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
| | - Qiuhua Wei
- Department of Disinfection and Infection ControlChinese PLA Center for Disease Control and Prevention20 Dongda StreetBeijing100071P. R. China
| | - Guangyao Liu
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
20
|
Batugal T, Pendyala G, Tomasovic L, Varner C, Caplin JD, Page AM, Davis M, Satola SW, García AJ, Kane RS. Engineering active lysostaphin variants that incorporate noncanonical amino acids and characterizing the effects of site-specific PEGylation. Biotechnol Bioeng 2023; 120:1694-1701. [PMID: 36810983 DOI: 10.1002/bit.28360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/11/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
We describe a facile strategy to identify sites for the incorporation of noncanonical amino acids into lysostaphin-an enzyme that degrades the cell wall of Staphylococcus aureus-while retaining stapholytic activity. We used this strategy to generate active variants of lysostaphin incorporating para-azidophenylalanine. The incorporation of this "reactive handle" enabled the orthogonal site-specific modification of the enzyme variants with polyethylene glycol (PEG) using copper-free click cycloaddition. PEGylated lysostaphin variants could retain their stapholytic activity, with the extent of retention depending on the site of modification and the PEG molecular weight. The site-specific modification of lysostaphin could be useful not only for PEGylation to improve biocompatibility but also for the incorporation of the enzyme into hydrogels and other biomaterials and for studies of protein structure and dynamics. Moreover, the approach described herein could be readily applied to identify suitable sites for the incorporation of reactive handles into other proteins of interest.
Collapse
Affiliation(s)
- Troy Batugal
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Geetanjali Pendyala
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Luke Tomasovic
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chad Varner
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jeremy D Caplin
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA.,Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Alexander M Page
- Department of Medicine, Division of Infectious Diseases and Emory Investigational Clinical Microbiology Core, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michelle Davis
- Department of Medicine, Division of Infectious Diseases and Emory Investigational Clinical Microbiology Core, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sarah W Satola
- Department of Medicine, Division of Infectious Diseases and Emory Investigational Clinical Microbiology Core, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Andrés J García
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA.,Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ravi S Kane
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
21
|
Chen Y, Xue Y, Yuan DJ, Chen KJ. Hydrogel combined with antimicrobial protease dressing accompanied with emotional support to treat wounds of patients taking immunosuppressive agents: A longitudinal study. J Tissue Viability 2023; 32:63-68. [PMID: 36658004 DOI: 10.1016/j.jtv.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/12/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND This study aimed to evaluate the healing process of chronic wounds treated with hydrogel combined with antimicrobial protease dressing and emotional support intervention in patients taking immunosuppressive agents. CASES The case series involved 8 patients treated at a tertiary public hospital for 12 weeks. Data were analysed by SPSS version 27.0. The intention-to-treat principle was carried out, without the loss or exclusion of the participants. The subjects had wounds for 70 (98) days, and they consisted of 50% (4/8) males with a mean age of 42.63 years (±16.94). All (100%) subjects had taken immunosuppressive agents, and 62.5% (5/8) had systolic hypertension. The mean initial area of all wounds was 19.54 (5.89) cm2, and the mean final area was 3.0 cm2, with a reduction rate of 89% over the 12 weeks of treatment. In addition, we found that tissue types of these wounds changed by using hydrogel combined with antibacterial protease dressings, especially devitalised tissue (P = 0.011). The amount of exudate did not statistically change (P = 0.083). No participant had severe or local adverse events during the study period. Hence, giving emotional support along with wound care for 12 weeks could significantly reduce anxiety scores (P = 0.012). These results suggested that hydrogel combined with antimicrobial protease dressing and emotional support intervention is a promising method for the healing of wounds in patients who suffer from immunosuppressive diseases or are receiving current immunosuppressive treatment.
Collapse
Affiliation(s)
- Yi Chen
- Wound care clinic, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| | - Yuan Xue
- Cardiology Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - De-Jing Yuan
- Cardiology Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| | - Ke-Jian Chen
- Outpatient Department of Internal Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
22
|
Structural and Functional Characterization of β-lytic Protease from Lysobacter capsici VKM B-2533 T. Int J Mol Sci 2022; 23:ijms232416100. [PMID: 36555752 PMCID: PMC9783410 DOI: 10.3390/ijms232416100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The crystal structure of the Lysobacter capsici VKM B-2533T β-lytic protease (Blp), a medicinally promising antimicrobial enzyme, was first solved. Blp was established to possess a folding characteristic of the M23 protease family. The groove of the Blp active site, as compared with that of the LasA structural homologue from Pseudomonas aeruginosa, was found to have amino acid differences. Biochemical analysis revealed no differences in the optimal reaction conditions for manifesting Blp and LasA bacteriolytic activities. At the same time, Blp had a broader range of action against living and autoclaved target cells. The results suggest that the distinction in the geometry of the active site and the charge of amino acid residues that form the active site groove can be important for the hydrolysis of different peptidoglycan types in target cells.
Collapse
|
23
|
Cardoso MH, Meneguetti BT, Oliveira-Júnior NG, Macedo MLR, Franco OL. Antimicrobial peptide production in response to gut microbiota imbalance. Peptides 2022; 157:170865. [PMID: 36038014 DOI: 10.1016/j.peptides.2022.170865] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022]
Abstract
The gut microbiota presents essential functions in the immune response. The gut epithelium acts as a protective barrier and, therefore, can produce several antimicrobial peptides (AMPs) that can act against pathogenic microorganisms, including bacteria. Several factors cause a disturbance in gut microbiota, including the exacerbated and erroneous use of antibiotics. Antibiotic therapy has been closely related to bacterial resistance and is also correlated with undesired side-effects to the host, including the eradication of commensal bacteria. Consequently, this results in gut microbiota imbalance and inflammatory bowel diseases (IBD) development. In this context, AMPs in the gut epithelium play a restructuring role for gut microbiota. Some naturally occurring AMPs are selective for pathogenic bacteria, thus preserving the health microbiota. Therefore, AMPs produced by the host's epithelial cells represent effective molecules in treating gut bacterial infections. Bearing this in mind, this review focused on describing the importance of the host's AMPs in gut microbiota modulation and their role as anti-infective agents against pathogenic bacteria.
Collapse
Affiliation(s)
- Marlon H Cardoso
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF 70790160, Brazil; Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, 79070900 Campo Grande, Mato Grosso do Sul, Brazil.
| | - Beatriz T Meneguetti
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil
| | - Nelson G Oliveira-Júnior
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF 70790160, Brazil
| | - Maria L R Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, 79070900 Campo Grande, Mato Grosso do Sul, Brazil
| | - Octávio L Franco
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF 70790160, Brazil.
| |
Collapse
|
24
|
Razew A, Schwarz JN, Mitkowski P, Sabala I, Kaus-Drobek M. One fold, many functions-M23 family of peptidoglycan hydrolases. Front Microbiol 2022; 13:1036964. [PMID: 36386627 PMCID: PMC9662197 DOI: 10.3389/fmicb.2022.1036964] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2023] Open
Abstract
Bacterial cell walls are the guards of cell integrity. They are composed of peptidoglycan that provides rigidity to sustain internal turgor and ensures isolation from the external environment. In addition, they harbor the enzymatic machinery to secure cell wall modulations needed throughout the bacterial lifespan. The main players in this process are peptidoglycan hydrolases, a large group of enzymes with diverse specificities and different mechanisms of action. They are commonly, but not exclusively, found in prokaryotes. Although in most cases, these enzymes share the same molecular function, namely peptidoglycan hydrolysis, they are leveraged to perform a variety of physiological roles. A well-investigated family of peptidoglycan hydrolases is M23 peptidases, which display a very conserved fold, but their spectrum of lytic action is broad and includes both Gram- positive and Gram- negative bacteria. In this review, we summarize the structural, biochemical, and functional studies concerning the M23 family of peptidases based on literature and complement this knowledge by performing large-scale analyses of available protein sequences. This review has led us to gain new insight into the role of surface charge in the activity of this group of enzymes. We present relevant conclusions drawn from the analysis of available structures and indicate the main structural features that play a crucial role in specificity determination and mechanisms of latency. Our work systematizes the knowledge of the M23 family enzymes in the context of their unique antimicrobial potential against drug-resistant pathogens and presents possibilities to modulate and engineer their features to develop perfect antibacterial weapons.
Collapse
Affiliation(s)
| | | | | | - Izabela Sabala
- Laboratory of Protein Engineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Kaus-Drobek
- Laboratory of Protein Engineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
25
|
Banerji R, Karkee A, Saroj SD. Bacteriocins against Foodborne Pathogens (Review). APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822050052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Zha J, Li J, Su Z, Akimbekov N, Wu X. Lysostaphin: Engineering and Potentiation toward Better Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11441-11457. [PMID: 36082619 DOI: 10.1021/acs.jafc.2c03459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lysostaphin is a potent bacteriolytic enzyme with endopeptidase activity against the common pathogen Staphylococcus aureus. By digesting the pentaglycine crossbridge in the cell wall peptidoglycan of S. aureus including the methicillin-resistant strains, lysostaphin initiates rapid lysis of planktonic and sessile cells (biofilms) and has great potential for use in agriculture, food industries, and pharmaceutical industries. In the past few decades, there have been tremendous efforts in potentiating lysostaphin for better applications in these fields, including engineering of the enzyme for higher potency and lower immunogenicity with longer-lasting effects, formulation and immobilization of the enzyme for higher stability and better durability, and recombinant expression for low-cost industrial production and in situ biocontrol. These achievements are extensively reviewed in this article focusing on applications in disease control, food preservation, surface decontamination, and pathogen detection. In addition, some basic properties of lysostaphin that have been controversial and only elucidated recently are summarized, including the substrate-binding properties, the number of zinc-binding sites, the substrate range, and the cleavage site in the pentaglycine crossbridge. Resistance to lysostaphin is also highlighted with a focus on various mechanisms. This article is concluded with a discussion on the limitations and future perspectives for the actual applications of lysostaphin.
Collapse
Affiliation(s)
- Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jingyuan Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zheng Su
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Nuraly Akimbekov
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
27
|
Influence of NaCl and pH on lysostaphin catalytic activity, cell binding, and bacteriolytic activity. Appl Microbiol Biotechnol 2022; 106:6519-6534. [DOI: 10.1007/s00253-022-12173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
|
28
|
Wysocka A, Łężniak Ł, Jagielska E, Sabała I. Electrostatic Interaction with the Bacterial Cell Envelope Tunes the Lytic Activity of Two Novel Peptidoglycan Hydrolases. Microbiol Spectr 2022; 10:e0045522. [PMID: 35467396 PMCID: PMC9241647 DOI: 10.1128/spectrum.00455-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Peptidoglycan (PG) hydrolases, due to their crucial role in the metabolism of the bacterial cell wall (CW), are increasingly being considered suitable targets for therapies, and a potent alternative to conventional antibiotics. In the light of contradictory data reported, detailed mechanism of regulation of enzymes activity based on electrostatic interactions between hydrolase molecule and bacterial CW surface remains unknown. Here, we report a comprehensive study on this phenomenon using as a model two novel PG hydrolases, SpM23_A, and SpM23_B, which although share the same bacterial host, similarities in sequence conservation, domain architecture, and structure, display surprisingly distinct net charges (in 2D electrophoresis, pI 6.8, and pI 9.7, respectively). We demonstrate a strong correlation between hydrolases surface net charge and the enzymes activity by modulating the charge of both, enzyme molecule and bacterial cell surface. Teichoic acids, anionic polymers present in the bacterial CW, are shown to be involved in the mechanism of enzymes activity regulation by the electrostatics-based interplay between charged bacterial envelope and PG hydrolases. These data serve as a hint for the future development of chimeric PG hydrolases of desired antimicrobial specificity. IMPORTANCE This study shows direct relationship between the surface charge of two recently described enzymes, SpM23_A and SpM23_B, and bacterial cell walls. We demonstrate that by (i) surface charge probing of bacterial strains collection, (ii) reduction of the net charge of the positively charged enzyme, and (iii) altering the net charge of the bacterial surface by modifying the content and composition of teichoic acids. In all cases, we observed that lytic activity and binding strength of SpM23 enzymes, are regulated by electrostatic interactions with the bacterial cell envelope and that this interaction contributes to the determination of the spectrum of susceptible bacterial species. Moreover, we revealed the regulatory role of charged cell wall components, namely, teichoic and lipoteichoic acids, over the SpM23 enzymes. We believe that our findings make an important contribution to understand the means of hydrolases activity regulation in the complex environment of the bacterial cell wall.
Collapse
Affiliation(s)
- Alicja Wysocka
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Łukasz Łężniak
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Elżbieta Jagielska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - Izabela Sabała
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
29
|
Page JE, Skiba MA, Do T, Kruse AC, Walker S. Metal cofactor stabilization by a partner protein is a widespread strategy employed for amidase activation. Proc Natl Acad Sci U S A 2022; 119:e2201141119. [PMID: 35733252 PMCID: PMC9245657 DOI: 10.1073/pnas.2201141119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/13/2022] [Indexed: 12/24/2022] Open
Abstract
Construction and remodeling of the bacterial peptidoglycan (PG) cell wall must be carefully coordinated with cell growth and division. Central to cell wall construction are hydrolases that cleave bonds in peptidoglycan. These enzymes also represent potential new antibiotic targets. One such hydrolase, the amidase LytH in Staphylococcus aureus, acts to remove stem peptides from PG, controlling where substrates are available for insertion of new PG strands and consequently regulating cell size. When it is absent, cells grow excessively large and have division defects. For activity, LytH requires a protein partner, ActH, that consists of an intracellular domain, a large rhomboid protease domain, and three extracellular tetratricopeptide repeats (TPRs). Here, we demonstrate that the amidase-activating function of ActH is entirely contained in its extracellular TPRs. We show that ActH binding stabilizes metals in the LytH active site and that LytH metal binding in turn is needed for stable complexation with ActH. We further present a structure of a complex of the extracellular domains of LytH and ActH. Our findings suggest that metal cofactor stabilization is a general strategy used by amidase activators and that ActH houses multiple functions within a single protein.
Collapse
Affiliation(s)
- Julia E. Page
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Meredith A. Skiba
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Truc Do
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Andrew C. Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
30
|
Wysocka A, Jagielska E, Łężniak Ł, Sabała I. Two New M23 Peptidoglycan Hydrolases With Distinct Net Charge. Front Microbiol 2021; 12:719689. [PMID: 34630350 PMCID: PMC8498115 DOI: 10.3389/fmicb.2021.719689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial peptidoglycan hydrolases play an essential role in cell wall metabolism during bacterial growth, division, and elongation (autolysins) or in the elimination of closely related species from the same ecological niche (bacteriocins). Most studies concerning the peptidoglycan hydrolases present in Gram-positive bacteria have focused on clinically relevant Staphylococcus aureus or the model organism Bacillus subtilis, while knowledge relating to other species remains limited. Here, we report two new peptidoglycan hydrolases from the M23 family of metallopeptidases derived from the same staphylococcal species, Staphylococcus pettenkoferi. They share modular architecture, significant sequence identity (60%), catalytic and binding residue conservation, and similar modes of activation, but differ in gene distribution, putative biological role, and, strikingly, in their isoelectric points (pIs). One of the peptides has a high pI, similar to that reported for all M23 peptidases evaluated to date, whereas the other displays a low pI, a unique feature among M23 peptidases. Consequently, we named them SpM23_B (Staphylococcus pettenkoferi M23 "Basic") and SpM23_A (Staphylococcus pettenkoferi M23 "Acidic"). Using genetic and biochemical approaches, we have characterized these two novel lytic enzymes, both in vitro and in their physiological context. Our study presents a detailed characterization of two novel and clearly distinct peptidoglycan hydrolases to understand their role in bacterial physiology.
Collapse
Affiliation(s)
- Alicja Wysocka
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Elżbieta Jagielska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Łukasz Łężniak
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Izabela Sabała
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
31
|
Structural Characterization of EnpA D,L-Endopeptidase from Enterococcus faecalis Prophage Provides Insights into Substrate Specificity of M23 Peptidases. Int J Mol Sci 2021; 22:ijms22137136. [PMID: 34281200 PMCID: PMC8269130 DOI: 10.3390/ijms22137136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 01/28/2023] Open
Abstract
The best-characterized members of the M23 family are glycyl-glycine hydrolases, such as lysostaphin (Lss) from Staphylococcus simulans or LytM from Staphylococcus aureus. Recently, enzymes with broad specificities were reported, such as EnpACD from Enterococcus faecalis, that cleaves D,L peptide bond between the stem peptide and a cross-bridge. Previously, the activity of EnpACD was demonstrated only on isolated peptidoglycan fragments. Herein we report conditions in which EnpACD lyses bacterial cells live with very high efficiency demonstrating great bacteriolytic potential, though limited to a low ionic strength environment. We have solved the structure of the EnpACD H109A inactive variant and analyzed it in the context of related peptidoglycan hydrolases structures to reveal the bases for the specificity determination. All M23 structures share a very conserved β-sheet core which constitutes the rigid bottom of the substrate-binding groove and active site, while variable loops create the walls of the deep and narrow binding cleft. A detailed analysis of the binding groove architecture, specificity of M23 enzymes and D,L peptidases demonstrates that the substrate groove, which is particularly deep and narrow, is accessible preferably for peptides composed of amino acids with short side chains or subsequent L and D-isomers. As a result, the bottom of the groove is involved in interactions with the main chain of the substrate while the side chains are protruding in one plane towards the groove opening. We concluded that the selectivity of the substrates is based on their conformations allowed only for polyglycine chains and alternating chirality of the amino acids.
Collapse
|
32
|
Scaffidi SJ, Shebes MA, Yu W. Tracking the Subcellular Localization of Surface Proteins in Staphylococcus aureus by Immunofluorescence Microscopy. Bio Protoc 2021; 11:e4038. [PMID: 34150940 DOI: 10.21769/bioprotoc.4038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/03/2021] [Accepted: 04/27/2021] [Indexed: 11/02/2022] Open
Abstract
Surface proteins of Staphylococcus aureus and other Gram-positive bacteria play essential roles in bacterial colonization and host-microbe interactions. Surface protein precursors containing a YSIRK/GXXS signal peptide are translocated across the septal membrane at mid-cell, anchored to the cell wall peptidoglycan at the cross-wall compartment, and presented on the new hemispheres of the daughter cells following cell division. After several generations of cell division, these surface proteins will eventually cover the entire cell surface. To understand how these proteins travel from the bacterial cytoplasm to the cell surface, we describe a series of immunofluorescence microscopy protocols designed to detect the stepwise subcellular localization of the surface protein precursors: surface display (protocol A), cross-wall localization (protocol B), and cytoplasmic/septal membrane localization (protocol C). Staphylococcal protein A (SpA) is the model protein used in this work. The protocols described here are readily adapted to study the localization of other surface proteins as well as other cytoplasmic or membrane proteins in S. aureus in general. Furthermore, the protocols can be modified and adapted for use in other Gram-positive bacteria. Graphic abstract: Tracking the subcellular localization of surface proteins in S. aureus.
Collapse
Affiliation(s)
- Salvatore J Scaffidi
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Mac A Shebes
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Wenqi Yu
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
33
|
Chen K, Ojha SC, Imtong C, Linn AK, Li HC, Thonabulsombat C, Angsuthanasombat C. Molecular Insights into Zn 2+ Inhibition of the Antibacterial Endopeptidase Lysostaphin from Staphylococcus simulans. Protein Pept Lett 2021; 28:140-148. [PMID: 32533816 DOI: 10.2174/0929866527666200613221359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mature lysostaphin (~28-kDa Lss) from Staphylococcus simulans proves effective in killing methicillin-resistant Staphylococcus aureus (MRSA) which is endemic in hospitals worldwide. Lss is Zn2+-dependent endopeptidase, but its bacteriolytic activity could be affected by exogenously added Zn2+. OBJECTIVE To gain greater insights into structural and functional impacts of Zn2+and Ni2+on Lss-induced bioactivity. METHODS Lss purified via immobilized metal ion-affinity chromatography was assessed for bioactivity using turbidity reduction assays. Conformational change of metal ion-treated Lss was examined by circular dichroism and intrinsic fluorescence spectroscopy. Co-sedimentation assay was performed to study interactions between Zn2+-treated Lss and S. aureus peptidoglycans. Metal ionbinding prediction and intermolecular docking were used to locate an extraneous Zn2+-binding site. RESULTS A drastic decrease in Lss bioactivity against S. aureus and MRSA was revealed only when treated with Zn2+, but not Ni2+, albeit no negative effect of diethyldithiocarbamate-Zn2+-chelator on Lss-induced bioactivity. No severe conformational change was observed for Lss incubated with exogenous Zn2+ or Ni2+. Lss pre-treated with Zn2+ efficiently bound to S. aureus cell-wall peptidoglycans, suggesting non-interfering effect of exogenous metal ions on cell-wall targeting (CWT) activity. In silico analysis revealed that exogenous Zn2+, but not Ni2+, preferably interacted with a potential extraneous Zn2+-binding site (His253, Glu318 and His323) placed near the Zn2+-coordinating Lssactive site within the catalytic (CAT) domain. CONCLUSION Our present data signify the adverse influence of exogenous Zn2+ ions on Lss-induced staphylolytic activity through the exclusive presence within the CAT domain of an extraneous inhibitory Zn2+-binding site, without affecting the CWT activity.
Collapse
Affiliation(s)
- Ke Chen
- Department of Anatomy, Faculty of Science, Mahidol University, Payatai Campus, Bangkok, Thailand
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affliliated Hospital of Southwest Medical University, Luzhou, China
| | - Chompounoot Imtong
- Division of Biology, Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, Thailand
| | - Aung Khine Linn
- Laboratory of Synthetic Biophysics and Chemical Biology, Biophysics Institute for Research and Development (BIRD), Chiang Mai, Thailand
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | | | - Chanan Angsuthanasombat
- Laboratory of Synthetic Biophysics and Chemical Biology, Biophysics Institute for Research and Development (BIRD), Chiang Mai, Thailand
| |
Collapse
|
34
|
Shen W, Yang N, Teng D, Hao Y, Ma X, Mao R, Wang J. Design and High Expression of Non-glycosylated Lysostaphins in Pichia pastoris and Their Pharmacodynamic Study. Front Microbiol 2021; 12:637662. [PMID: 33815324 PMCID: PMC8012855 DOI: 10.3389/fmicb.2021.637662] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/26/2021] [Indexed: 01/21/2023] Open
Abstract
Lysostaphin is an effective antimicrobial agent to Staphylococcus, especially for the methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Staphylococcus aureus (MDRSA). In this study, the seven lysostaphin derived mutants (rLys) were designed to overcome the barrier of glycosylation during expression in Pichia pastoris. Among them, 127A and 127A232Q had highest antimicrobial activity (MIC values 0.07–0.3 μM) to S. aureus than others and the commercial lysostaphins (1–15.8 times). There was no glycosylation during the expression in 5-L fermenter level, with the high yield of 1315 mg/L (127A) and 1141 mg/L (127A232Q), respectively. Meanwhile, 127A and 127A232Q effectively killed 99.9% of S. aureus at low concentration (1 × MIC) within 30 min, without the regrowth of pathogen. They also showed low toxicity, high pH and temperature stability. The results of in vivo therapeutic effect of 127A and 127A232Q against high virulent S. aureus CVCC546 showed that 127A and 127A232Q increased the survival rate of infected mice up to 100% at the dose of 10 mg/kg than the untreated group, reduced the bacterial translocation by 5-7 log CFU (over 99%) in organs compared to the untreated group and alleviated multiple-organ injuries (liver, kidney and spleen). These data indicated that the non-glycosylated lysostaphin 127A and 127A232Q may be a promising therapeutic agent against MDR staphylococcal infections.
Collapse
Affiliation(s)
- Wenluan Shen
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xuanxuan Ma
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
35
|
Electrostatic-Mediated Affinity Tuning of Lysostaphin Accelerates Bacterial Lysis Kinetics and Enhances In Vivo Efficacy. Antimicrob Agents Chemother 2021; 65:AAC.02199-20. [PMID: 33468459 DOI: 10.1128/aac.02199-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
Drug-resistant bacterial pathogens are a serious threat to global health, and antibacterial lysins are at the forefront of innovative treatments for these life-threatening infections. While lysins' general mechanism of action is well understood, the design principles that might enable engineering of performance-enhanced variants are still being formulated. Here, we report a detailed analysis of molecular determinants underlying the in vivo efficacy of lysostaphin, a canonical anti-MRSA (methicillin-resistant Staphylococcus aureus) lysin. Systematic analysis of bacterial binding, growth inhibition, lysis kinetics, and in vivo therapeutic efficacy revealed that binding affinity, and not inherent catalytic firepower, is the dominant driver of lysostaphin efficacy. This insight enabled electrostatic affinity tuning of lysostaphin to produce a single point mutant that manifested dramatically enhanced processivity and lysis kinetics and trended toward improved in vivo efficacy. More generally, these studies provide important insights into the complex relationships between lysin electrostatics, bacterial targeting, cell lysis efficiency, and in vivo efficacy. The lessons learned may enable engineering of other high-performance antibacterial biocatalysts.
Collapse
|
36
|
Kuiper JWP, Hogervorst JMA, Herpers BL, Bakker AD, Klein-Nulend J, Nolte PA, Krom BP. The novel endolysin XZ.700 effectively treats MRSA biofilms in two biofilm models without showing toxicity on human bone cells in vitro. BIOFOULING 2021; 37:184-193. [PMID: 33615928 DOI: 10.1080/08927014.2021.1887151] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
In this in vitro study the effect of XZ.700, a new endolysin, on methicillin resistant Staphylococcus aureus (MRSA) biofilms grown on titanium was evaluated. Biofilms of S. aureus USA300 were grown statically and under flow, and treatment with XZ.700 was compared with povidone-iodine (PVP-I) and gentamicin. To evaluate the cytotoxic effects of XZ.700 and derived biofilm lysates, human osteocyte-like cells were exposed to biofilm supernatants, and metabolism and proliferation were quantified. XZ.700 showed a significant, concentration dependent reduction in biofilm viability, compared with carrier controls. Metabolism and proliferation of human osteocyte-like cells were not affected by XZ.700 or lysates, unlike PVP-I and gentamicin lysates which significantly inhibited proliferation. Using time-lapse microscopy, rapid biofilm killing and removal was observed for XZ.700. In comparison, PVP-I and gentamicin showed slower biofilm killing, with no apparent biofilm removal. In conclusion, XZ.700 reduced MRSA biofilms, especially under flow condition, without toxicity for surrounding bone cells.
Collapse
Affiliation(s)
- Jesse W P Kuiper
- Department of Orthopedic Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Jolanda M A Hogervorst
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Bjorn L Herpers
- Department of Medical Microbiology, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Peter A Nolte
- Department of Orthopedic Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Jayakumar J, Kumar VA, Biswas L, Biswas R. Therapeutic applications of lysostaphin against Staphylococcus aureus. J Appl Microbiol 2021; 131:1072-1082. [PMID: 33382154 DOI: 10.1111/jam.14985] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/11/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus, an opportunistic pathogen, causes diverse community and nosocomial-acquired human infections, including folliculitis, impetigo, sepsis, septic arthritis, endocarditis, osteomyelitis, implant-associated biofilm infections and contagious mastitis in cattle. In recent days, both methicillin-sensitive and methicillin-resistant S. aureus infections have increased. Highly effective anti-staphylococcal agents are urgently required. Lysostaphin is a 27 kDa zinc metallo antimicrobial lytic enzyme that is produced by Staphylococcus simulans biovar staphylolyticus and was first discovered in the 1960s. Lysostaphin is highly active against S. aureus strains irrespective of their drug-resistant patterns with a minimum inhibitory concentration of ranges between 0·001 and 0·064 μg ml-1 . Lysostaphin has activity against both dividing and non-dividing S. aureus cells; and can seep through the extracellular matrix to kill the biofilm embedded S. aureus. In spite of having excellent anti-staphylococcal activity, its clinical application is hindered because of its immunogenicity and reduced bio-availability. Extensive research with lysostaphin lead to the development of several engineered lysostaphin derivatives with reduced immunogenicity and increased serum half-life. Therapeutic efficacy of both native and engineered lysostaphin derivatives was studied by several research groups. This review provides an overview of the therapeutic applications of native and engineered lysostaphin derivatives developed to eradicate S. aureus infections.
Collapse
Affiliation(s)
- J Jayakumar
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - V A Kumar
- Department of Microbiology, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - L Biswas
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - R Biswas
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
38
|
de Freire Bastos MDC, Miceli de Farias F, Carlin Fagundes P, Varella Coelho ML. Staphylococcins: an update on antimicrobial peptides produced by staphylococci and their diverse potential applications. Appl Microbiol Biotechnol 2020; 104:10339-10368. [PMID: 33128614 DOI: 10.1007/s00253-020-10946-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022]
Abstract
Staphylococcins are antimicrobial peptides or proteins produced by staphylococci. They can be separated into different classes, depending on their amino acid composition, structural complexity, and steps involved in their production. In this review, an overview of the current knowledge on staphylococcins will be presented with emphasis on the information collected in the last decade, including a brief description of new peptides. Most staphylococcins characterized to date are either lantibiotics or linear class II bacteriocins. Recently, gene clusters coding for production of circular bacteriocins, sactipeptides, and thiopeptides have been mined from the genome of staphylococcal isolates. In contrast to class II bacteriocins, lantibiotics, sactipeptides, and thiopeptides undergo post-translational modifications that can be quite extensive, depending on the peptide. Few staphylococcins inhibit only some staphylococcal species, but most of them have proven to target pathogens belonging to different genera and involved in a variety of infectious diseases of clinical or agronomic importance. Therefore, these peptides exhibit potential application as anti-infective drugs in different areas. This review will also cover this diverse and remarkable potential. To be commercialized, however, staphylococcin production should be cost-effective and result in high bacteriocin yields, which are not generally achieved from the culture supernatant of their native producers. Such low yields make their production quite costly and not suitable at large industrial scale. Efforts already made to overcome this limitation, minimizing costs and time of production of some staphylococcins and employing either chemical synthesis or in vivo biosynthesis, will be addressed in this review as well. KEY POINTS: • Staphylococci produce a variety of antimicrobial peptides known as staphylococcins. • Most staphylococcins are post-translationally modified peptides. • Staphylococcins exhibit potential biotechnological applications. Graphical abstract.
Collapse
Affiliation(s)
- Maria do Carmo de Freire Bastos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| | - Felipe Miceli de Farias
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Patrícia Carlin Fagundes
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Marcus Lívio Varella Coelho
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.,Instituto Nacional da Propriedade Industrial, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
39
|
Grishin AV, Karyagina AS, Vasina DV, Vasina IV, Gushchin VA, Lunin VG. Resistance to peptidoglycan-degrading enzymes. Crit Rev Microbiol 2020; 46:703-726. [PMID: 32985279 DOI: 10.1080/1040841x.2020.1825333] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The spread of bacterial strains resistant to commonly used antibiotics urges the development of novel antibacterial compounds. Ideally, these novel antimicrobials should be less prone to the development of resistance. Peptidoglycan-degrading enzymes are a promising class of compounds with a fundamentally different mode of action compared to traditionally used antibiotics. The difference in the mechanism of action implies differences both in the mechanisms of resistance and the chances of its emergence. To critically assess the potential of resistance development to peptidoglycan-degrading enzymes, we review the available evidence for the development of resistance to these enzymes in vitro, along with the known mechanisms of resistance to lysozyme, bacteriocins, autolysins, and phage endolysins. We conclude that genetic determinants of resistance to peptidoglycan-degrading enzymes are unlikely to readily emerge de novo. However, resistance to these enzymes would probably spread by the horizontal transfer between intrinsically resistant and susceptible species. Finally, we speculate that the higher cost of the therapeutics based on peptidoglycan degrading enzymes compared to classical antibiotics might result in less misuse, which in turn would lead to lower selective pressure, making these antibacterials less prone to resistance development.
Collapse
Affiliation(s)
- Alexander V Grishin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Anna S Karyagina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical and Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Daria V Vasina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Irina V Vasina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir A Gushchin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir G Lunin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
40
|
Engineering of Long-Circulating Peptidoglycan Hydrolases Enables Efficient Treatment of Systemic Staphylococcus aureus Infection. mBio 2020; 11:mBio.01781-20. [PMID: 32963004 PMCID: PMC7512550 DOI: 10.1128/mbio.01781-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus is a human pathogen causing life-threatening diseases. The increasing prevalence of multidrug-resistant S. aureus infections is a global health concern, requiring development of novel therapeutic options. Peptidoglycan-degrading enzymes (peptidoglycan hydrolases, PGHs) have emerged as a highly effective class of antimicrobial proteins against S. aureus and other pathogens. When applied to Gram-positive bacteria, PGHs hydrolyze bonds within the peptidoglycan layer, leading to rapid bacterial death by lysis. This activity is highly specific and independent of the metabolic activity of the cell or its antibiotic resistance patterns. However, systemic application of PGHs is limited by their often low activity in vivo and by an insufficient serum circulation half-life. To address this problem, we aimed to extend the half-life of PGHs selected for high activity against S. aureus in human serum. Half-life extension and increased serum circulation were achieved through fusion of PGHs to an albumin-binding domain (ABD), resulting in high-affinity recruitment of human serum albumin and formation of large protein complexes. Importantly, the ABD-fused PGHs maintained high killing activity against multiple drug-resistant S. aureus strains, as determined by ex vivo testing in human blood. The top candidate, termed ABD_M23, was tested in vivo to treat S. aureus-induced murine bacteremia. Our findings demonstrate a significantly higher efficacy of ABD_M23 than of the parental M23 enzyme. We conclude that fusion with ABD represents a powerful approach for half-life extension of PGHs, expanding the therapeutic potential of these enzybiotics for treatment of multidrug-resistant bacterial infections.IMPORTANCE Life-threatening infections with Staphylococcus aureus are often difficult to treat due to the increasing prevalence of antibiotic-resistant bacteria and their ability to persist in protected niches in the body. Bacteriolytic enzymes are promising new antimicrobials because they rapidly kill bacteria, including drug-resistant and persisting cells, by destroying their cell wall. However, when injected into the bloodstream, these enzymes are not retained long enough to clear an infection. Here, we describe a modification to increase blood circulation time of the enzymes and enhance treatment efficacy against S. aureus-induced bloodstream infections. This was achieved by preselecting enzyme candidates for high activity in human blood and coupling them to serum albumin, thereby preventing their elimination by kidney filtration and blood vessel cells.
Collapse
|
41
|
Duman-Özdamar ZE, Ünlü A, Ünal H, Woodley JM, Bi Nay B. High-yield production of active recombinant S. simulans lysostaphin expressed in E. coli in a laboratory bioreactor. Protein Expr Purif 2020; 177:105753. [PMID: 32950627 DOI: 10.1016/j.pep.2020.105753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
Staphylococcus aureus (S. aureus), which has developed multidrug resistance, leads to many healthcare-associated infections resulting in significant medical and economic losses. Therefore, the development of new efficient strategies to deal with these bacteria has been gaining importance. Lysostaphin is a peptidoglycan hydrolase that has considerable potential as a bacteriocin. However, there have been few reported optimization and scale-up studies of the lysostaphin bioproduction process. Our preliminary results have revealed that the composition of auto-induction media at 30 °C increases the produced lysostaphin around 10-fold in shake flasks. In this study, achieving higher yields for recombinant lysostaphin in E. coli at a laboratory scale has been the aim, through the use of auto-induction media. Optimized medium composition and fermentation parameters were transferred to a laboratory-scale bioreactor. The tested conditions improved protein yields up to 184 mg/L in a 3 L stirred bioreactor and the productivity was improved 2-fold in comparison to previously published reports. Furthermore, this study also showed that lysostaphin is an effective bacteriocin on both commercially available and isolated S. aureus strains. These results will contribute to future larger-scale production of lysostaphin via the proposed fermentation conditions.
Collapse
Affiliation(s)
| | - Aişe Ünlü
- Department of Chemistry, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Hayriye Ünal
- Nanotechnology Research Center (SUNUM), Sabanci University, 34956, Tuzla, Istanbul, Turkey
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK 2800 Kgs Lyngby, Denmark
| | - Barış Bi Nay
- Department of Bioengineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
42
|
Enzybiotics LYSSTAPH-S and LYSDERM-S as Potential Therapeutic Agents for Chronic MRSA Wound Infections. Antibiotics (Basel) 2020; 9:antibiotics9080519. [PMID: 32824115 PMCID: PMC7459665 DOI: 10.3390/antibiotics9080519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/31/2022] Open
Abstract
Antibacterial antibiotic therapy has played an important role in the treatment of bacterial infections for almost a century. The increasing resistance of pathogenic bacteria to antibiotics leads to an attempt to use previously neglected antibacterial therapies. Here we provide information on the two recombinantly modified antistaphylococcal enzymes derived from lysostaphin (LYSSTAPH-S) and endolysin (LYSDERM-S) derived from kayvirus 812F1 whose target sites reside in the bacterial cell wall. LYSSTAPH-S showed a stable antimicrobial effect over 24-h testing, even in concentrations lower than 1 µg/mL across a wide variety of epidemiologically important sequence types (STs) of methicillin-resistant Staphylococcus aureus (MRSA), especially in the stationary phase of growth (status comparable to chronic infections). LYSDERM-S showed a less potent antimicrobial effect that lasted only a few hours at concentrations of 15 μg/mL and higher. Our data indicate that these antimicrobial enzymes could be of substantial help in the treatment of chronic MRSA wound infections.
Collapse
|
43
|
Chien CF, Liu CY, Lu YY, Sung YH, Chen KY, Lin NC. HSI-II Gene Cluster of Pseudomonas syringae pv. tomato DC3000 Encodes a Functional Type VI Secretion System Required for Interbacterial Competition. Front Microbiol 2020; 11:1118. [PMID: 32582082 PMCID: PMC7283901 DOI: 10.3389/fmicb.2020.01118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/05/2020] [Indexed: 11/13/2022] Open
Abstract
The type VI secretion system (T6SS) is a widespread bacterial nanoweapon used for delivery of toxic proteins into cell targets and contributes to virulence, anti-inflammatory processes, and interbacterial competition. In the model phytopathogenic bacterium Pseudomonas syringae pv. tomato (Pst) DC3000, two T6SS gene clusters, HSI-I and HSI-II, were identified, but their functions remain unclear. We previously reported that hcp2, located in HSI-II, is involved in competition with enterobacteria and yeast. Here, we demonstrated that interbacterial competition of Pst DC3000 against several Gram-negative plant-associated bacteria requires mainly HSI-II activity. By means of a systematic approach using in-frame deletion mutants for each gene in the HSI-II cluster, we identified genes indispensable for Hcp2 expression, Hcp2 secretion and interbacterial competition ability. Deletion of PSPTO_5413 only affected growth in interbacterial competition assays but not Hcp2 secretion, which suggests that PSPTO_5413 might be a putative effector. Moreover, PSPTO_5424, encoding a putative σ54-dependent transcriptional regulator, positively regulated the expression of all three operons in HSI-II. Our discovery that the HSI-II gene cluster gives Pst DC3000 the ability to compete with other plant-associated bacteria could help in understanding a possible mechanism of how phytopathogenic bacteria maintain their ecological niches.
Collapse
Affiliation(s)
- Ching-Fang Chien
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Cheng-Ying Liu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yew-Yee Lu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - You-Hsing Sung
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Kuo-Yau Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Nai-Chun Lin
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
44
|
Röhrig C, Huemer M, Lorgé D, Luterbacher S, Phothaworn P, Schefer C, Sobieraj AM, Zinsli LV, Mairpady Shambat S, Leimer N, Keller AP, Eichenseher F, Shen Y, Korbsrisate S, Zinkernagel AS, Loessner MJ, Schmelcher M. Targeting Hidden Pathogens: Cell-Penetrating Enzybiotics Eradicate Intracellular Drug-Resistant Staphylococcus aureus. mBio 2020; 11:e00209-20. [PMID: 32291298 PMCID: PMC7157818 DOI: 10.1128/mbio.00209-20] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/17/2020] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus is a major concern in human health care, mostly due to the increasing prevalence of antibiotic resistance. Intracellular localization of S. aureus plays a key role in recurrent infections by protecting the pathogens from antibiotics and immune responses. Peptidoglycan hydrolases (PGHs) are highly specific bactericidal enzymes active against both drug-sensitive and -resistant bacteria. However, PGHs able to effectively target intracellular S. aureus are not yet available. To overcome this limitation, we first screened 322 recombineered PGHs for staphylolytic activity under conditions found inside eukaryotic intracellular compartments. The most active constructs were modified by fusion to different cell-penetrating peptides (CPPs), resulting in increased uptake and enhanced intracellular killing (reduction by up to 4.5 log units) of various S. aureus strains (including methicillin-resistant S. aureus [MRSA]) in different tissue culture infection models. The combined application of synergistic PGH-CPP constructs further enhanced their intracellular efficacy. Finally, synergistically active PGH-CPP cocktails reduced the total S. aureus by more than 2.2 log units in a murine abscess model after peripheral injection. Significantly more intracellular bacteria were killed by the PGH-CPPs than by the PGHs alone. Collectively, our findings show that CPP-fused PGHs are effective novel protein therapeutics against both intracellular and drug-resistant S. aureusIMPORTANCE The increasing prevalence of antibiotic-resistant bacteria is one of the most urgent problems of our time. Staphylococcus aureus is an important human pathogen that has acquired several mechanisms to evade antibiotic treatment. In addition, S. aureus is able to invade and persist within human cells, hiding from the immune response and antibiotic therapies. For these reasons, novel antibacterial strategies against these pathogens are needed. Here, we developed lytic enzymes which are able to effectively target drug-resistant and intracellular S. aureus Fusion of these so-called enzybiotics to cell-penetrating peptides enhanced their uptake and intracellular bactericidal activity in cell culture and in an abscess mouse model. Our results suggest that cell-penetrating enzybiotics are a promising new class of therapeutics against staphylococcal infections.
Collapse
Affiliation(s)
- Christian Röhrig
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Markus Huemer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Dominique Lorgé
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Samuel Luterbacher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Preeda Phothaworn
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Anna M Sobieraj
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Léa V Zinsli
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nadja Leimer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anja P Keller
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Fritz Eichenseher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Yang Shen
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Tang BL, Yang J, Chen XL, Wang P, Zhao HL, Su HN, Li CY, Yu Y, Zhong S, Wang L, Lidbury I, Ding H, Wang M, McMinn A, Zhang XY, Chen Y, Zhang YZ. A predator-prey interaction between a marine Pseudoalteromonas sp. and Gram-positive bacteria. Nat Commun 2020; 11:285. [PMID: 31941905 PMCID: PMC6962226 DOI: 10.1038/s41467-019-14133-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/13/2019] [Indexed: 12/23/2022] Open
Abstract
Predator-prey interactions play important roles in the cycling of marine organic matter. Here we show that a Gram-negative bacterium isolated from marine sediments (Pseudoalteromonas sp. strain CF6-2) can kill Gram-positive bacteria of diverse peptidoglycan (PG) chemotypes by secreting the metalloprotease pseudoalterin. Secretion of the enzyme requires a Type II secretion system. Pseudoalterin binds to the glycan strands of Gram positive bacterial PG and degrades the PG peptide chains, leading to cell death. The released nutrients, including PG-derived D-amino acids, can then be utilized by strain CF6-2 for growth. Pseudoalterin synthesis is induced by PG degradation products such as glycine and glycine-rich oligopeptides. Genes encoding putative pseudoalterin-like proteins are found in many other marine bacteria. This study reveals a new microbial interaction in the ocean. Predator-prey interactions play important roles in the cycling of marine organic matter. Here the authors show that a Gram-negative bacterium isolated from marine sediments can kill and feed on Gram-positive bacteria by secreting a peptidoglycan-degrading enzyme.
Collapse
Affiliation(s)
- Bai-Lu Tang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Jie Yang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Peng Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China.,College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China
| | - Hui-Lin Zhao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Hai-Nan Su
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Chun-Yang Li
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266373, China
| | - Yang Yu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Shuai Zhong
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Lei Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Ian Lidbury
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Haitao Ding
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China
| | - Min Wang
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China
| | - Andrew McMinn
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China.,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Yin Chen
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China.,School of Life Sciences, University of Warwick, Coventry, UK
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China. .,College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266373, China.
| |
Collapse
|
46
|
Gonzalez-Delgado LS, Walters-Morgan H, Salamaga B, Robertson AJ, Hounslow AM, Jagielska E, Sabała I, Williamson MP, Lovering AL, Mesnage S. Two-site recognition of Staphylococcus aureus peptidoglycan by lysostaphin SH3b. Nat Chem Biol 2019; 16:24-30. [PMID: 31686030 PMCID: PMC6920042 DOI: 10.1038/s41589-019-0393-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/21/2019] [Indexed: 11/09/2022]
Abstract
Lysostaphin is a bacteriolytic enzyme targeting peptidoglycan, the essential component of the bacterial cell envelope. It displays a very potent and specific activity toward staphylococci, including methicillin-resistant Staphylococcus aureus. Lysostaphin causes rapid cell lysis and disrupts biofilms, and is therefore a therapeutic agent of choice to eradicate staphylococcal infections. The C-terminal SH3b domain of lysostaphin recognizes peptidoglycans containing a pentaglycine crossbridge and has been proposed to drive the preferential digestion of staphylococcal cell walls. Here we elucidate the molecular mechanism underpinning recognition of staphylococcal peptidoglycan by the lysostaphin SH3b domain. We show that the pentaglycine crossbridge and the peptide stem are recognized by two independent binding sites located on opposite sides of the SH3b domain, thereby inducing a clustering of SH3b domains. We propose that this unusual binding mechanism allows synergistic and structurally dynamic recognition of S. aureus peptidoglycan and underpins the potent bacteriolytic activity of this enzyme.
Collapse
Affiliation(s)
- Luz S Gonzalez-Delgado
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.,Krebs Institute, University of Sheffield, Sheffield, UK
| | - Hannah Walters-Morgan
- Institute of Microbiology and Infection, and School of Biosciences, University of Birmingham, Birmingham, UK
| | - Bartłomiej Salamaga
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.,Krebs Institute, University of Sheffield, Sheffield, UK
| | - Angus J Robertson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.,Krebs Institute, University of Sheffield, Sheffield, UK
| | - Andrea M Hounslow
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.,Krebs Institute, University of Sheffield, Sheffield, UK
| | | | - Izabela Sabała
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Mike P Williamson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK. .,Krebs Institute, University of Sheffield, Sheffield, UK.
| | - Andrew L Lovering
- Institute of Microbiology and Infection, and School of Biosciences, University of Birmingham, Birmingham, UK.
| | - Stéphane Mesnage
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK. .,Krebs Institute, University of Sheffield, Sheffield, UK.
| |
Collapse
|
47
|
Kim D, Kwon SJ, Sauve J, Fraser K, Kemp L, Lee I, Nam J, Kim J, Dordick JS. Modular Assembly of Unique Chimeric Lytic Enzymes on a Protein Scaffold Possessing Anti-Staphylococcal Activity. Biomacromolecules 2019; 20:4035-4043. [PMID: 31524374 DOI: 10.1021/acs.biomac.9b01134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lytic enzymes have been considered as potential alternatives to antibiotics. These enzymes, particularly those that target Gram-positive bacteria, consist of modular cell wall-binding and catalytic domains, which can be shuffled with those of other lytic enzymes to produce unnatural chimeric enzymes. In this work, we report the in vitro shuffling of two different modular domains using a protein self-assembly methodology. Catalytic domains (CD) and cell wall-binding domains (BD) from the bacteriocin lysostaphin (Lst) and a putative autolysin from Staphylococcus aureus (SA1), respectively, were genetically site-specifically biotinylated and assembled with streptavidin to generate 23 permuted chimeras. The specific assembly of a CD (3 equiv) and a BD (1 equiv) from Lst and SA1, respectively [CDL-BDS (3:1)], on a streptavidin scaffold yielded high lytic activity against S. aureus (at least 5.6 log reduction), which was higher than that obtained with either native Lst or SA1 alone. Moreover, at 37 °C, the initial rate of cell lysis was over 3-fold higher than that with free Lst, thereby revealing the unique catalytic properties of the chimeric proteins. In vitro self-assembly of functional domains from modular lytic enzymes on a protein scaffold likely expands the repertoire of bactericidal enzymes with improved activities.
Collapse
Affiliation(s)
- Domyoung Kim
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Jessica Sauve
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Keith Fraser
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Leighann Kemp
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Inseon Lee
- Department of Chemical and Biological Engineering , Korea University , 145 Anam-ro , Seongbuk-gu, Seoul 02841 , Republic of Korea
| | - Jahyun Nam
- Department of Chemical and Biological Engineering , Korea University , 145 Anam-ro , Seongbuk-gu, Seoul 02841 , Republic of Korea
| | - Jungbae Kim
- Department of Chemical and Biological Engineering , Korea University , 145 Anam-ro , Seongbuk-gu, Seoul 02841 , Republic of Korea
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| |
Collapse
|
48
|
Duman ZE, Ünlü A, Çakar MM, Ünal H, Binay B. Enhanced production of recombinant Staphylococcus simulans lysostaphin using medium engineering. Prep Biochem Biotechnol 2019; 49:521-528. [DOI: 10.1080/10826068.2019.1599393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Zeynep Efsun Duman
- Department of Biotechnology, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Aişe Ünlü
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Mehmet Mervan Çakar
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Hayriye Ünal
- Nanotechnology Research Center (SUNUM), Sabanci University, Tuzla, Istanbul, Turkey
| | - Barış Binay
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| |
Collapse
|
49
|
Mitkowski P, Jagielska E, Nowak E, Bujnicki JM, Stefaniak F, Niedziałek D, Bochtler M, Sabała I. Structural bases of peptidoglycan recognition by lysostaphin SH3b domain. Sci Rep 2019; 9:5965. [PMID: 30979923 PMCID: PMC6461655 DOI: 10.1038/s41598-019-42435-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/29/2019] [Indexed: 11/09/2022] Open
Abstract
Staphylococcus simulans lysostaphin cleaves pentaglycine cross-bridges between stem peptides in the peptidoglycan of susceptible staphylococci, including S. aureus. This enzyme consists of an N-terminal catalytic domain and a cell wall binding domain (SH3b), which anchors the protein to peptidoglycan. Although structures of SH3bs from lysostaphin are available, the binding modes of peptidoglycan to these domains are still unclear. We have solved the crystal structure of the lysostaphin SH3b domain in complex with a pentaglycine peptide representing the peptidoglycan cross-bridge. The structure identifies a groove between β1 and β2 strands as the pentaglycine binding site. The structure suggests that pentaglycine specificity of the SH3b arises partially directly by steric exclusion of Cβ atoms in the ligand and partially indirectly due to the selection of main chain conformations that are easily accessible for glycine, but not other amino acid residues. We have revealed further interactions of SH3b with the stem peptides with the support of bioinformatics tools. Based on the structural data we have attempted engineering of the domain specificity and have investigated the relevance of the introduced substitutions on the domain binding and specificity, also in the contexts of the mature lysostaphin and of its bacteriolytic activity.
Collapse
Affiliation(s)
- Paweł Mitkowski
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Elżbieta Jagielska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Elżbieta Nowak
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Janusz M Bujnicki
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.,Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Filip Stefaniak
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Dorota Niedziałek
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.,Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Izabela Sabała
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
50
|
Vermassen A, Leroy S, Talon R, Provot C, Popowska M, Desvaux M. Cell Wall Hydrolases in Bacteria: Insight on the Diversity of Cell Wall Amidases, Glycosidases and Peptidases Toward Peptidoglycan. Front Microbiol 2019; 10:331. [PMID: 30873139 PMCID: PMC6403190 DOI: 10.3389/fmicb.2019.00331] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
The cell wall (CW) of bacteria is an intricate arrangement of macromolecules, at least constituted of peptidoglycan (PG) but also of (lipo)teichoic acids, various polysaccharides, polyglutamate and/or proteins. During bacterial growth and division, there is a constant balance between CW degradation and biosynthesis. The CW is remodeled by bacterial hydrolases, whose activities are carefully regulated to maintain cell integrity or lead to bacterial death. Each cell wall hydrolase (CWH) has a specific role regarding the PG: (i) cell wall amidase (CWA) cleaves the amide bond between N-acetylmuramic acid and L-alanine residue at the N-terminal of the stem peptide, (ii) cell wall glycosidase (CWG) catalyses the hydrolysis of the glycosidic linkages, whereas (iii) cell wall peptidase (CWP) cleaves amide bonds between amino acids within the PG chain. After an exhaustive overview of all known conserved catalytic domains responsible for CWA, CWG, and CWP activities, this review stresses that the CWHs frequently display a modular architecture combining multiple and/or different catalytic domains, including some lytic transglycosylases as well as CW binding domains. From there, direct physiological and collateral roles of CWHs in bacterial cells are further discussed.
Collapse
Affiliation(s)
- Aurore Vermassen
- Université Clermont Auvergne, INRA, MEDiS, Clermont-Ferrand, France
| | - Sabine Leroy
- Université Clermont Auvergne, INRA, MEDiS, Clermont-Ferrand, France
| | - Régine Talon
- Université Clermont Auvergne, INRA, MEDiS, Clermont-Ferrand, France
| | | | - Magdalena Popowska
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRA, MEDiS, Clermont-Ferrand, France
| |
Collapse
|