1
|
Roy U, Desai SS, Kumari S, Bushra T, Choudhary B, Raghavan SC. Understanding the Role of miR-29a in the Regulation of RAG1, a Gene Associated with the Development of the Immune System. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1125-1138. [PMID: 39269689 DOI: 10.4049/jimmunol.2300344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/16/2024] [Indexed: 09/15/2024]
Abstract
The process of Ag receptor diversity is initiated by RAGs consisting of RAG1 and RAG2 in developing lymphocytes. Besides its role as a sequence-specific nuclease during V(D)J recombination, RAGs can also act as a structure-specific nuclease leading to genome instability. Thus, regulation of RAG expression is essential to maintaining genome stability. Previously, the role of miR29c in the regulation of RAG1 was identified. In this article, we report the regulation of RAG1 by miR-29a in the lymphocytes of both mice (Mus musculus) and humans (Homo sapiens). The level of RAG1 could be modulated by overexpression of miR-29a and inhibition using anti-miRs. Argonaute2-immunoprecipitation and high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation studies established the association of miR-29a and RAG1 with Argonaute proteins. We observed a negative correlation between miR-29a and RAG1 levels in mouse B and T cells and leukemia patients. Overexpression of pre-miR-29a in the bone marrow cells of mice led to the generation of mature miR-29a transcripts and reduced RAG1 expression, which led to a significant reduction in V(D)J recombination in pro-B cells. Importantly, our studies are consistent with the phenotype reported in miR-29a knockout mice, which showed impaired immunity and survival defects. Finally, we show that although both miR-29c and miR-29a can regulate RAG1 at mRNA and protein levels, miR-29a substantially impacts immunity and survival. Our results reveal that the repression of RAG1 activity by miR-29a in B cells of mice and humans is essential to maintain Ig diversity and prevent hematological malignancies resulting from aberrant RAG1 expression in lymphocytes.
Collapse
Affiliation(s)
- Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sagar Sanjiv Desai
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
| | - Susmita Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Tanzeem Bushra
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
2
|
Paranjape AM, Desai SS, Nishana M, Roy U, Nilavar NM, Mondal A, Kumari R, Radha G, Katapadi VK, Choudhary B, Raghavan SC. Nonamer dependent RAG cleavage at CpGs can explain mechanism of chromosomal translocations associated to lymphoid cancers. PLoS Genet 2022; 18:e1010421. [PMID: 36228010 PMCID: PMC9595545 DOI: 10.1371/journal.pgen.1010421] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/25/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Chromosomal translocations are considered as one of the major causes of lymphoid cancers. RAG complex, which is responsible for V(D)J recombination, can also cleave non-B DNA structures and cryptic RSSs in the genome leading to chromosomal translocations. The mechanism and factors regulating the illegitimate function of RAGs resulting in oncogenesis are largely unknown. Upon in silico analysis of 3760 chromosomal translocations from lymphoid cancer patients, we find that 93% of the translocation breakpoints possess adjacent cryptic nonamers (RAG binding sequences), of which 77% had CpGs in proximity. As a proof of principle, we show that RAGs can efficiently bind to cryptic nonamers present at multiple fragile regions and cleave at adjacent mismatches generated to mimic the deamination of CpGs. ChIP studies reveal that RAGs can indeed recognize these fragile sites on a chromatin context inside the cell. Finally, we show that AID, the cytidine deaminase, plays a significant role during the generation of mismatches at CpGs and reconstitute the process of RAG-dependent generation of DNA breaks both in vitro and inside the cells. Thus, we propose a novel mechanism for generation of chromosomal translocation, where RAGs bind to the cryptic nonamer sequences and direct cleavage at adjacent mismatch generated due to deamination of meCpGs or cytosines.
Collapse
Affiliation(s)
- Amita M. Paranjape
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sagar S. Desai
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mayilaadumveettil Nishana
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Namrata M. Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Amrita Mondal
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Rupa Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Gudapureddy Radha
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
- * E-mail: (BC); (SCR)
| | - Sathees C. Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- * E-mail: (BC); (SCR)
| |
Collapse
|
3
|
Ray U, Sharma S, Kapoor I, Kumari S, Gopalakrishnan V, Vartak SV, Kumari N, Varshney U, Raghavan SC. G4 DNA present at human telomeric DNA contributes toward reduced sensitivity to γ-radiation induced oxidative damage, but not bulky adduct formation. Int J Radiat Biol 2021; 97:1166-1180. [PMID: 34259614 DOI: 10.1080/09553002.2021.1955997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/11/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE DNA, the hereditary material of a human cell generally exists as Watson-Crick base paired double-stranded B-DNA. Studies suggest that DNA can also exist in non-B forms, such as four stranded G-quadruplexes (G4 DNA). Recently, our studies revealed that the regions of DNA that can fold into G-quadruplex structures are less sensitive to ionizing radiation (IR) compared to B-DNA. Importantly, we reported that the planar G-quartet of a G4 structure is shielded from radiation induced DNA breaks, while the single- and double-stranded DNA regions remained susceptible. Thus, in the present study, we investigate whether telomeric repeat DNA present at the end of telomere, known to fold into G4 DNA can protect from radiation induced damages including strand breaks, oxidation of purines and bulky adduct formation on DNA. MATERIALS AND METHODS For plasmid irradiation assay, plasmids containing human telomeric repeat DNA sequence TTAGGG (0.8 kb or 1.8 kb) were irradiated with increasing doses of IR along with appropriate control plasmids and products were resolved on 1% agarose gel. Radioprotection was evaluated based on extent of conversion of supercoiled to nicked or linear forms of the DNA following irradiation. Formation of G-quadruplex structure on supercoiled DNA was evaluated based on circular dichroism (CD) spectroscopy studies. Cleavage of radiation induced oxidative damage and extent of formation of nicks was further evaluated using base and nucleotide excision repair proteins. RESULTS Results from CD studies showed that the plasmid DNA harboring human telomeric repeats (TTAGGG) can fold into G-quadruplex DNA structures. Further, results showed that human telomeric repeat sequence when present on a plasmid can protect the plasmid DNA against IR induced DNA strand breaks, unlike control plasmids bearing random DNA sequence. CONCLUSIONS Human telomeric repeat sequence when present on plasmids can fold into G-quadruplex DNA structures, and can protect the DNA against IR induced DNA strand breaks and oxidative damage. These results in conjunction with our previous studies suggest that telomeric repeat sequence imparts less sensitivity to IR and thus telomeres of chromosomes are protected from radiation.
Collapse
Affiliation(s)
- Ujjayinee Ray
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Indu Kapoor
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Susmita Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
- Department of Zoology, St. Joseph's College, Irinjalakuda, India
| | - Supriya V Vartak
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
4
|
Znc2 module of RAG1 contributes towards structure-specific nuclease activity of RAGs. Biochem J 2020; 477:3567-3582. [PMID: 32886094 DOI: 10.1042/bcj20200361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Recombination activating genes (RAGs), consisting of RAG1 and RAG2 have ability to perform spatially and temporally regulated DNA recombination in a sequence specific manner. Besides, RAGs also cleave at non-B DNA structures and are thought to contribute towards genomic rearrangements and cancer. The nonamer binding domain of RAG1 binds to the nonamer sequence of the signal sequence during V(D)J recombination. However, deletion of NBD did not affect RAG cleavage on non-B DNA structures. In the present study, we investigated the involvement of other RAG domains when RAGs act as a structure-specific nuclease. Studies using purified central domain (CD) and C-terminal domain (CTD) of the RAG1 showed that CD of RAG1 exhibited high affinity and specific binding to heteroduplex DNA, which was irrespective of the sequence of single-stranded DNA, unlike CTD which showed minimal binding. Furthermore, we show that ZnC2 of RAG1 is crucial for its binding to DNA structures as deletion and point mutations abrogated the binding of CD to heteroduplex DNA. Our results also provide evidence that unlike RAG cleavage on RSS, central domain of RAG1 is sufficient to cleave heteroduplex DNA harbouring pyrimidines, but not purines. Finally, we show that a point mutation in the DDE catalytic motif is sufficient to block the cleavage of CD on heteroduplex DNA. Therefore, in the present study we demonstrate that the while ZnC2 module in central domain of RAG1 is required for binding to non-B DNA structures, active site amino acids are important for RAGs to function as a structure-specific nuclease.
Collapse
|
5
|
Ray U, Raul SK, Gopinatha VK, Ghosh D, Rangappa KS, Mantelingu K, Raghavan SC. Identification and characterization of novel SCR7-based small-molecule inhibitor of DNA end-joining, SCR130 and its relevance in cancer therapeutics. Mol Carcinog 2020; 59:618-628. [PMID: 32189406 DOI: 10.1002/mc.23186] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022]
Abstract
Targeting DNA repair with small-molecule inhibitors is an attractive strategy for cancer therapy. Majority of DNA double-strand breaks in mammalian cells are repaired through nonhomologous end-joining (NHEJ). It has been shown that small-molecule inhibitors of NHEJ can block efficient repair inside cancer cells, leading to cell death. Previously, we have reported that SCR7, an inhibitor of NHEJ can induce tumor regression in mice. Later studies have shown that different forms of SCR7 can inhibit DNA end-joining in Ligase IV-dependent manner. Recently, we have derivatized SCR7 by introducing spiro ring into core structure. Here, we report the identification of a novel inhibitor of NHEJ, named SCR130 with 20-fold higher efficacy in inducing cytotoxicity in cancer cell lines. SCR130 inhibited DNA end-joining catalyzed by rat tissue extract. Specificity analysis revealed that while SCR130 was specific to Ligase IV, it showed minimal or no effect on Ligase III and Ligase I mediated joining. Importantly, SCR130 exhibited the least cytotoxicity in Ligase IV-null cell line as compared with wild type, confirming Ligase IV-specificity. Furthermore, we demonstrate that SCR130 can potentiate the effect of radiation in cancer cells when used in combination with γ-radiation. Various cellular assays in conjunction with Western blot analysis revealed that treatment with SCR130 led to loss of mitochondrial membrane potential leading to cell death by activating both intrinsic and extrinsic pathways of apoptosis. Thus, we describe a novel inhibitor of NHEJ with higher efficacy and may have the potential to be developed as cancer therapeutic.
Collapse
Affiliation(s)
- Ujjayinee Ray
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sanjay Kumar Raul
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Vindya K Gopinatha
- Department of Studies in Chemistry, ManasaganFindo-frgotri, University of Mysore, Mysuru, India
| | - Dipayan Ghosh
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Kempegowda Mantelingu
- Department of Studies in Chemistry, ManasaganFindo-frgotri, University of Mysore, Mysuru, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
6
|
Javadekar SM, Yadav R, Raghavan SC. DNA structural basis for fragility at peak III of BCL2 major breakpoint region associated with t(14;18) translocation. Biochim Biophys Acta Gen Subj 2017; 1862:649-659. [PMID: 29246583 DOI: 10.1016/j.bbagen.2017.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/23/2017] [Accepted: 12/07/2017] [Indexed: 12/23/2022]
Abstract
Maintaining genome integrity is crucial for normal cellular functions. DNA double-strand breaks (DSBs), when unrepaired, can potentiate chromosomal translocations. t(14;18) translocation involving BCL2 gene on chromosome 18 and IgH loci at chromosome 14, could lead to follicular lymphoma. Molecular basis for fragility of translocation breakpoint regions is an active area of investigation. Previously, formation of non-B DNA structures like G-quadruplex, triplex, B/A transition were investigated at peak I of BCL2 major breakpoint region (MBR); however, it is less understood at peak III. In vitro gel shift assays show faster mobility for MBR peak III sequences, unlike controls. CD studies of peak III sequences reveal a spectral pattern different from B-DNA. Although complementary C-rich stretches exhibit single-strandedness, corresponding guanine-rich sequences do not show DMS protection, ruling out G-quadruplex and triplex DNA. Extrachromosomal assay indicates that peak III halts transcription, unlike its mutated version. Taken together, multiple lines of evidence suggest formation of potential cruciform DNA structure at MBR peak III, which was also supported by in silico studies. Thus, our study reveals formation of non-B DNA structure which could be a basis for fragility at BCL2 breakpoint regions, eventually leading to chromosomal translocations.
Collapse
Affiliation(s)
- Saniya M Javadekar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Rakhee Yadav
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India.
| |
Collapse
|
7
|
Nishana M, Nilavar NM, Kumari R, Pandey M, Raghavan SC. HIV integrase inhibitor, Elvitegravir, impairs RAG functions and inhibits V(D)J recombination. Cell Death Dis 2017; 8:e2852. [PMID: 28569776 PMCID: PMC5520896 DOI: 10.1038/cddis.2017.237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/24/2017] [Accepted: 04/05/2017] [Indexed: 12/13/2022]
Abstract
Integrase inhibitors are a class of antiretroviral drugs used for the treatment of AIDS that target HIV integrase, an enzyme responsible for integration of viral cDNA into host genome. RAG1, a critical enzyme involved in V(D)J recombination exhibits structural similarity to HIV integrase. We find that two integrase inhibitors, Raltegravir and Elvitegravir, interfered with the physiological functions of RAGs such as binding, cleavage and hairpin formation at the recombination signal sequence (RSS), though the effect of Raltegravir was limited. Circular dichroism studies demonstrated a distinct change in the secondary structure of RAG1 central domain (RAG1 shares DDE motif amino acids with integrases), and when incubated with Elvitegravir, an equilibrium dissociation constant (Kd) of 32.53±2.9 μM was determined by Biolayer interferometry, leading to inhibition of its binding to DNA. Besides, using extrachromosomal assays, we show that Elvitegravir inhibited both coding and signal joint formation in pre-B cells. Importantly, treatment with Elvitegravir resulted in significant reduction of mature B lymphocytes in 70% of mice studied. Thus, our study suggests a potential risk associated with the use of Elvitegravir as an antiretroviral drug, considering the evolutionary and structural similarities between HIV integrase and RAGs.
Collapse
Affiliation(s)
| | - Namrata M Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Rupa Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Monica Pandey
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
8
|
Raveendran D, Raghavan SC. Biochemical Characterization of Nonamer Binding Domain of RAG1 Reveals its Thymine Preference with Respect to Length and Position. Sci Rep 2016; 6:19091. [PMID: 26742581 PMCID: PMC4705477 DOI: 10.1038/srep19091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/20/2015] [Indexed: 12/15/2022] Open
Abstract
RAG complex consisting of RAG1 and RAG2 is a site-specific endonuclease responsible for the generation of antigen receptor diversity. It cleaves recombination signal sequence (RSS), comprising of conserved heptamer and nonamer. Nonamer binding domain (NBD) of RAG1 plays a central role in the recognition of RSS. To investigate the DNA binding properties of the domain, NBD of murine RAG1 was cloned, expressed and purified. Electrophoretic mobility shift assays showed that NBD binds with high affinity to nonamer in the context of 12/23 RSS or heteroduplex DNA. NBD binding was specific to thymines when single stranded DNA containing poly A, C, G or T were used. Biolayer interferometry studies showed that poly T binding to NBD was robust and comparable to that of 12RSS. More than 23 nt was essential for NBD binding at homothymidine stretches. On a double-stranded DNA, NBD could bind to A:T stretches, but not G:C or random sequences. Although NBD is indispensable for sequence specific activity of RAGs, external supplementation of purified nonamer binding domain to NBD deleted cRAG1/cRAG2 did not restore its activity, suggesting that the overall domain architecture of RAG1 is important. Therefore, we define the sequence requirements of NBD binding to DNA.
Collapse
Affiliation(s)
- Deepthi Raveendran
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Sathees C. Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
9
|
Hegde M, Mantelingu K, Swarup HA, Pavankumar CS, Qamar I, Raghavan SC, Rangappa KS. Novel PARP inhibitors sensitize human leukemic cells in an endogenous PARP activity dependent manner. RSC Adv 2016. [DOI: 10.1039/c5ra19150e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) is a critical nuclear enzyme which helps in DNA repair. In this study we report, synthesis and biological studies of novel pyridazine derivatives as PARP inhibitors.
Collapse
Affiliation(s)
- Mahesh Hegde
- Department of Studies in Chemistry
- Manasagangotri
- University of Mysore
- Mysuru-570006
- India
| | - Kempegowda Mantelingu
- Department of Studies in Chemistry
- Manasagangotri
- University of Mysore
- Mysuru-570006
- India
| | - Hassan A. Swarup
- Department of Studies in Chemistry
- Manasagangotri
- University of Mysore
- Mysuru-570006
- India
| | | | - Imteyaz Qamar
- Department of Biochemistry
- Indian Institute of Science
- Bangalore-560012
- India
| | | | | |
Collapse
|
10
|
Tadi SK, Sebastian R, Dahal S, Babu RK, Choudhary B, Raghavan SC. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Mol Biol Cell 2015; 27:223-35. [PMID: 26609070 PMCID: PMC4713127 DOI: 10.1091/mbc.e15-05-0260] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 11/18/2015] [Indexed: 12/13/2022] Open
Abstract
Repair of double-strand breaks in mammalian mitochondria depends on microhomology-mediated end joining (MMEJ). Classical NHEJ is not detectable in mitochondria. DNA ligase III, but not ligase IV or ligase I, is involved in mitochondrial MMEJ. The protein machinery involved in miitochondrial MMEJ includes CtIP, FEN1, ligase III, MRE11, and PARP1. Mitochondrial DNA (mtDNA) deletions are associated with various mitochondrial disorders. The deletions identified in humans are flanked by short, directly repeated mitochondrial DNA sequences; however, the mechanism of such DNA rearrangements has yet to be elucidated. In contrast to nuclear DNA (nDNA), mtDNA is more exposed to oxidative damage, which may result in double-strand breaks (DSBs). Although DSB repair in nDNA is well studied, repair mechanisms in mitochondria are not characterized. In the present study, we investigate the mechanisms of DSB repair in mitochondria using in vitro and ex vivo assays. Whereas classical NHEJ (C-NHEJ) is undetectable, microhomology-mediated alternative NHEJ efficiently repairs DSBs in mitochondria. Of interest, robust microhomology-mediated end joining (MMEJ) was observed with DNA substrates bearing 5-, 8-, 10-, 13-, 16-, 19-, and 22-nt microhomology. Furthermore, MMEJ efficiency was enhanced with an increase in the length of homology. Western blotting, immunoprecipitation, and protein inhibition assays suggest the involvement of CtIP, FEN1, MRE11, and PARP1 in mitochondrial MMEJ. Knockdown studies, in conjunction with other experiments, demonstrated that DNA ligase III, but not ligase IV or ligase I, is primarily responsible for the final sealing of DSBs during mitochondrial MMEJ. These observations highlight the central role of MMEJ in maintenance of mammalian mitochondrial genome integrity and is likely relevant for deletions observed in many human mitochondrial disorders.
Collapse
Affiliation(s)
- Satish Kumar Tadi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Robin Sebastian
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Ravi K Babu
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bangalore 560 100, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
11
|
Javadekar SM, Raghavan SC. Snaps and mends: DNA breaks and chromosomal translocations. FEBS J 2015; 282:2627-45. [PMID: 25913527 DOI: 10.1111/febs.13311] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/29/2015] [Accepted: 04/23/2015] [Indexed: 01/11/2023]
Abstract
Integrity in entirety is the preferred state of any organism. The temporal and spatial integrity of the genome ensures continued survival of a cell. DNA breakage is the first step towards creation of chromosomal translocations. In this review, we highlight the factors contributing towards the breakage of chromosomal DNA. It has been well-established that the structure and sequence of DNA play a critical role in selective fragility of the genome. Several non-B-DNA structures such as Z-DNA, cruciform DNA, G-quadruplexes, R loops and triplexes have been implicated in generation of genomic fragility leading to translocations. Similarly, specific sequences targeted by proteins such as Recombination Activating Genes and Activation Induced Cytidine Deaminase are involved in translocations. Processes that ensure the integrity of the genome through repair may lead to persistence of breakage and eventually translocations if their actions are anomalous. An insufficient supply of nucleotides and chromatin architecture may also play a critical role. This review focuses on a range of events with the potential to threaten the genomic integrity of a cell, leading to cancer.
Collapse
Affiliation(s)
- Saniya M Javadekar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|