1
|
Hoya M, Matsunaga R, Nagatoishi S, Ide T, Kuroda D, Tsumoto K. Impact of single-residue mutations on protein thermal stability: The case of threonine 83 of BC2L-CN lectin. Int J Biol Macromol 2024; 272:132682. [PMID: 38815947 DOI: 10.1016/j.ijbiomac.2024.132682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
The thermal stability of trimeric lectin BC2L-CN was investigated and found to be considerably altered when mutating residue 83, originally a threonine, located at the fucose-binding loop. Mutants were analyzed using differential scanning calorimetry and isothermal microcalorimetry. Although most mutations decreased the affinity of the protein for oligosaccharide H type 1, six mutations increased the melting temperature (Tm) by >5 °C; one mutation, T83P, increased the Tm value by 18.2 °C(T83P, Tm = 96.3 °C). In molecular dynamic simulations, the investigated thermostable mutants, T83P, T83A, and T83S, had decreased fluctuations in the loop containing residue 83. In the T83S mutation, the side-chain hydroxyl group of serine formed a hydrogen bond with a nearby residue, suggesting that the restricted movement of the side-chain resulted in fewer fluctuations and enhanced thermal stability. Residue 83 is located at the interface and near the upstream end of the equivalent loop in a different protomer; therefore, fluctuations by this residue likely propagate throughout the loop. Our study of the dramatic change in thermal stability by a single amino acid mutation provides useful insights into the rational design of protein structures, especially the structures of oligomeric proteins.
Collapse
Affiliation(s)
- Megumi Hoya
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Sagami Chemical Research Institute, 2743-1 Hayakawa, Ayase, Kanagawa 252-1193, Japan
| | - Ryo Matsunaga
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoru Nagatoishi
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Project Division of Advanced Biopharmaceutical Science, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Teruhiko Ide
- Tosoh Corporation, Hayakawa, 2743-1 Ayase, Kanagawa 252-1123, Japan
| | - Daisuke Kuroda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Project Division of Advanced Biopharmaceutical Science, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
2
|
Schollmeyer J, Waldburger S, Njo K, Yehia H, Kurreck A, Neubauer P, Riedel SL. Bioprocess development to produce a hyperthermostable S-methyl-5'-thioadenosine phosphorylase in Escherichia coli. Biotechnol Bioeng 2023; 120:3322-3334. [PMID: 37574915 DOI: 10.1002/bit.28526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
Nucleoside phosphorylases are important biocatalysts for the chemo-enzymatic synthesis of nucleosides and their analogs which are, among others, used for the treatment of viral infections or cancer. S-methyl-5'-thioadenosine phosphorylases (MTAP) are a group of nucleoside phosphorylases and the thermostable MTAP of Aeropyrum pernix (ApMTAP) was described to accept a wide range of modified nucleosides as substrates. Therefore, it is an interesting biocatalyst for the synthesis of nucleoside analogs for industrial and therapeutic applications. To date, thermostable nucleoside phosphorylases were produced in shake flask cultivations using complex media. The drawback of this approach is low volumetric protein yields which hamper the wide-spread application of the thermostable nucleoside phosphorylases in large scale. High cell density (HCD) cultivations allow the production of recombinant proteins with high volumetric yields, as final optical densities >100 can be achieved. Therefore, in this study, we developed a suitable protocol for HCD cultivations of ApMTAP. Initially, optimum expression conditions were determined in 24-well plates using a fed-batch medium. Subsequently, HCD cultivations were performed using E. coli BL21-Gold cells, by employing a glucose-limited fed-batch strategy. Comparing different growth rates in stirred-tank bioreactors, cultivations revealed that growth at maximum growth rates until induction resulted in the highest yields of ApMTAP. On a 500-mL scale, final cell dry weights of 87.1-90.1 g L-1 were observed together with an overproduction of ApMTAP in a 1.9%-3.8% ratio of total protein. Compared to initially applied shake flask cultivations with terrific broth (TB) medium the volumetric yield increased by a factor of 136. After the purification of ApMTAP via heat treatment and affinity chromatography, a purity of more than 90% was determined. Activity testing revealed specific activities in the range of 0.21 ± 0.11 (low growth rate) to 3.99 ± 1.02 U mg-1 (growth at maximum growth rate). Hence, growth at maximum growth rate led to both an increased expression of the target protein and an increased specific enzyme activity. This study paves the way towards the application of thermostable nucleoside phosphorylases in industrial applications due to an improved heterologous expression in Escherichia coli.
Collapse
Affiliation(s)
- Julia Schollmeyer
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
- BioNukleo GmbH, Berlin, Germany
| | - Saskia Waldburger
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
| | - Kendra Njo
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
- BioNukleo GmbH, Berlin, Germany
| | - Heba Yehia
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Anke Kurreck
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
- BioNukleo GmbH, Berlin, Germany
| | - Peter Neubauer
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
| | - Sebastian L Riedel
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
- Berliner Hochschule für Technik, Department VIII - Mechanical Engineering, Event Technology and Process Engineering, Environmental and Bioprocess Engineering Laboratory, Berlin, Germany
| |
Collapse
|
3
|
Xi X, Hu L, Huang H, Wang Y, Xu R, Du G, Chen J, Kang Z. Improvement of the stability and catalytic efficiency of heparan sulfate N-sulfotransferase for preparing N-sulfated heparosan. J Ind Microbiol Biotechnol 2023; 50:kuad012. [PMID: 37327079 PMCID: PMC10291996 DOI: 10.1093/jimb/kuad012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/15/2023] [Indexed: 06/18/2023]
Abstract
The chemo-enzymatic and enzymatic synthesis of heparan sulfate and heparin are considered as an attractive alternative to the extraction of heparin from animal tissues. Sulfation of the hydroxyl group at position 2 of the deacetylated glucosamine is a prerequisite for subsequent enzymatic modifications. In this study, multiple strategies, including truncation mutagenesis based on B-factor values, site-directed mutagenesis guided by multiple sequence alignment, and structural analysis were performed to improve the stability and activity of human N-sulfotransferase. Eventually, a combined variant Mut02 (MBP-hNST-NΔ599-602/S637P/S741P/E839P/L842P/K779N/R782V) was successfully constructed, whose half-life at 37°C and catalytic activity were increased by 105-fold and 1.35-fold, respectively. After efficient overexpression using the Escherichia coli expression system, the variant Mut02 was applied to N-sulfation of the chemically deacetylated heparosan. The N-sulfation content reached around 82.87% which was nearly 1.88-fold higher than that of the wild-type. The variant Mut02 with high stability and catalytic efficiency has great potential for heparin biomanufacturing.
Collapse
Affiliation(s)
- Xintong Xi
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Litao Hu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Hao Huang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Kumar S, Duggineni VK, Singhania V, Misra SP, Deshpande PA. Unravelling and Quantifying the Biophysical– Biochemical Descriptors Governing Protein Thermostability by Machine Learning. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shashi Kumar
- Quantum and Molecular Engineering Laboratory Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Vinay Kumar Duggineni
- Quantum and Molecular Engineering Laboratory Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Vibhuti Singhania
- Quantum and Molecular Engineering Laboratory Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Swayam Prabha Misra
- Quantum and Molecular Engineering Laboratory Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Parag A. Deshpande
- Quantum and Molecular Engineering Laboratory Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India
| |
Collapse
|
5
|
Manzer HS, Villarreal RI, Doran KS. Targeting the BspC-vimentin interaction to develop anti-virulence therapies during Group B streptococcal meningitis. PLoS Pathog 2022; 18:e1010397. [PMID: 35316308 PMCID: PMC8939794 DOI: 10.1371/journal.ppat.1010397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/25/2022] [Indexed: 12/21/2022] Open
Abstract
Bacterial infections are a major cause of morbidity and mortality worldwide and the rise of antibiotic resistance necessitates development of alternative treatments. Pathogen adhesins that bind to host cells initiate disease pathogenesis and represent potential therapeutic targets. We have shown previously that the BspC adhesin in Group B Streptococcus (GBS), the leading cause of bacterial neonatal meningitis, interacts with host vimentin to promote attachment to brain endothelium and disease development. Here we determined that the BspC variable (V-) domain contains the vimentin binding site and promotes GBS adherence to brain endothelium. Site directed mutagenesis identified a binding pocket necessary for GBS host cell interaction and development of meningitis. Using a virtual structure-based drug screen we identified compounds that targeted the V-domain binding pocket, which blocked GBS adherence and entry into the brain in vivo. These data indicate the utility of targeting the pathogen-host interface to develop anti-virulence therapeutics.
Collapse
Affiliation(s)
- Haider S. Manzer
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| | - Ricardo I. Villarreal
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| | - Kelly S. Doran
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| |
Collapse
|
6
|
Godoy R, Mutis A, Carabajal Paladino L, Venthur H. Genome-Wide Identification of Aldehyde Oxidase Genes in Moths and Butterflies Suggests New Insights Into Their Function as Odorant-Degrading Enzymes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.823119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aldehyde oxidases (AOXs) are common detoxifying enzymes in several organisms. In insects, AOXs act in xenobiotic metabolism and as odorant-degrading enzymes (ODEs). These last appear as crucial enzymes in the life cycle of insects, helping to reset their olfactory system, particularly in lepidopterans, which fulfill important ecological roles (e.g., pollination or destructive life cycles). A comprehensive understanding of their olfactory system has provided opportunities to study key chemosensory proteins. However, no significant advance has been made around lepidopteran AOXs research, and even less around butterflies, a recently evolved lineage. In this study we have identified novel AOX gene families in moths and butterflies in order to understand their role as ODEs. Eighteen genomes from both moths and butterflies were used for phylogenetics, molecular evolution and sequence analyses. We identified 164 AOXs, from which 91 are new. Their phylogeny showed two main clades that are potentially related to odorant-degrading function, where both moths and butterflies have AOXs. A first ODE-related clade seems to have a non-ditrysian origin, likely related to plant volatiles. A second ODE-related clade could be more pheromone-biased. Molecular evolution analysis suggests a slight purifying selection process, though a number of sites appeared under positive selection. ODE-related AOXs have changed a phenylalanine residue by proline in the active site. Finally, this study could serve as a reference for further evolutionary and functional studies around Lepidopteran AOXs.
Collapse
|
7
|
Merchel Piovesan Pereira B, Adil Salim M, Rai N, Tagkopoulos I. Tolerance to Glutaraldehyde in Escherichia coli Mediated by Overexpression of the Aldehyde Reductase YqhD by YqhC. Front Microbiol 2021; 12:680553. [PMID: 34248896 PMCID: PMC8262776 DOI: 10.3389/fmicb.2021.680553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Glutaraldehyde is a widely used biocide on the market for about 50 years. Despite its broad application, several reports on the emergence of bacterial resistance, and occasional outbreaks caused by poorly disinfection, there is a gap of knowledge on the bacterial adaptation, tolerance, and resistance mechanisms to glutaraldehyde. Here, we analyze the effects of the independent selection of mutations in the transcriptional regulator yqhC for biological replicates of Escherichia coli cells subjected to adaptive laboratory evolution (ALE) in the presence of glutaraldehyde. The evolved strains showed improved survival in the biocide (11-26% increase in fitness) as a result of mutations in the activator yqhC, which led to the overexpression of the yqhD aldehyde reductase gene by 8 to over 30-fold (3.1-5.2 log2FC range). The protective effect was exclusive to yqhD as other aldehyde reductase genes of E. coli, such as yahK, ybbO, yghA, and ahr did not offer protection against the biocide. We describe a novel mechanism of tolerance to glutaraldehyde based on the activation of the aldehyde reductase YqhD by YqhC and bring attention to the potential for the selection of such tolerance mechanism outside the laboratory, given the existence of YqhD homologs in various pathogenic and opportunistic bacterial species.
Collapse
Affiliation(s)
- Beatriz Merchel Piovesan Pereira
- Microbiology Graduate Group, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| | - Muhammad Adil Salim
- Microbiology Graduate Group, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| | - Navneet Rai
- Genome Center, University of California, Davis, Davis, CA, United States
- Department of Computer Science, University of California, Davis, Davis, CA, United States
| | - Ilias Tagkopoulos
- Genome Center, University of California, Davis, Davis, CA, United States
- Department of Computer Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Mesbahuddin MS, Ganesan A, Kalyaanamoorthy S. Engineering stable carbonic anhydrases for CO2 capture: a critical review. Protein Eng Des Sel 2021; 34:6356912. [PMID: 34427656 DOI: 10.1093/protein/gzab021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/16/2021] [Indexed: 11/14/2022] Open
Abstract
Targeted inhibition of misregulated protein-protein interactions (PPIs) has been a promising area of investigation in drug discovery and development for human diseases. However, many constraints remain, including shallow binding surfaces and dynamic conformation changes upon interaction. A particularly challenging aspect is the undesirable off-target effects caused by inherent structural similarity among the protein families. To tackle this problem, phage display has been used to engineer PPIs for high-specificity binders with improved binding affinity and greatly reduced undesirable interactions with closely related proteins. Although general steps of phage display are standardized, library design is highly variable depending on experimental contexts. Here in this review, we examined recent advances in the structure-based combinatorial library design and the advantages and limitations of different approaches. The strategies described here can be explored for other protein-protein interactions and aid in designing new libraries or improving on previous libraries.
Collapse
Affiliation(s)
| | - Aravindhan Ganesan
- School of Pharmacy, University of Waterloo, Waterloo, Ontario N2G 1C5, Canada
| | | |
Collapse
|
9
|
Design of carbonic anhydrase with improved thermostability for CO2 capture via molecular simulations. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Engineering of Thermovibrio ammonificans carbonic anhydrase mutants with increased thermostability. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Catalytic and structural effects of flexible loop deletion in organophosphorus hydrolase enzyme: A thermostability improvement mechanism. J Biosci 2020. [DOI: 10.1007/s12038-020-00026-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Yao X, Lv Y, Yu H, Cao H, Wang L, Wen B, Gu T, Wang F, Sun L, Xin F. Site-directed mutagenesis of coenzyme-independent carotenoid oxygenase CSO2 to enhance the enzymatic synthesis of vanillin. Appl Microbiol Biotechnol 2020; 104:3897-3907. [DOI: 10.1007/s00253-020-10433-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 10/24/2022]
|
13
|
Liu H, Cao M, Wang Y, Lv B, Li C. Bioengineering oligomerization and monomerization of enzymes: learning from natural evolution to matching the demands for industrial applications. Crit Rev Biotechnol 2020; 40:231-246. [PMID: 31914816 DOI: 10.1080/07388551.2019.1711014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
It is generally accepted that oligomeric enzymes evolve from their monomeric ancestors, and the evolution process generates superior structural benefits for functional advantages. Furthermore, adjusting the transition between different oligomeric states is an important mechanism for natural enzymes to regulate their catalytic functions for adapting environmental fluctuations in nature, which inspires researchers to mimic such a strategy to develop artificially oligomerized enzymes through protein engineering for improved performance under specific conditions. On the other hand, transforming oligomeric enzymes into their monomers is needed in fundamental research for deciphering catalytic mechanisms as well as exploring their catalytic capacities for better industrial applications. In this article, strategies for developing artificially oligomerized and monomerized enzymes are reviewed and highlighted by their applications. Furthermore, advances in the computational prediction of oligomeric structures are introduced, which would accelerate the systematic design of oligomeric and monomeric enzymes. Finally, the current challenges and future directions in this field are discussed.
Collapse
Affiliation(s)
- Hu Liu
- Institute for Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Mingming Cao
- Institute for Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Ying Wang
- Institute for Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Bo Lv
- Institute for Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Institute for Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
14
|
Shen W, Chen Y, Qiu S, Wang DN, Wang YJ, Zheng YG. Semi-rational engineering of a Kluyveromyces lactis aldo-keto reductase KlAKR for improved catalytic efficiency towards t-butyl 6-cyano-(3R, 5R)-dihydroxyhexanoate. Enzyme Microb Technol 2020; 132:109413. [DOI: 10.1016/j.enzmictec.2019.109413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022]
|
15
|
Farnoosh G, Khajeh K, Mohammadi M, Hassanpour K, Latifi AM, Aghamollaei H. Catalytic and structural effects of flexible loop deletion in organophosphorus hydrolase enzyme: A thermostability improvement mechanism. J Biosci 2020; 45:54. [PMID: 32345780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thermostability improvement of enzymes used industrially or commercially would develop their capacity and commercial potential due to increased enzymatic competence and cost-effectiveness. Several stabilizing factors have been suggested to be the base of thermal stability, like proline replacements, disulfide bonds, surface loop truncation and ionic pair networks creation. This research evaluated the mechanism of increasing the rigidity of organophosphorus hydrolase enzyme by flexible loop truncation. Bioinformatics analysis revealed that the mutated protein retains its stability after loop truncation (five amino acids deleted). The thermostability of the wild-type (OPH-wt) and mutated (OPH-D5) enzymes were investigated by half-life, Delta Gi, and fluorescence and far-UV CD analysis. Results demonstrated an increase half-life and Delta Gi in OPH-D5 compared to OPH-wt. These results were confirmed by extrinsic fluorescence and circular dichroism (CD) spectrometry experiments, therefore, as rigidity increased in OPHD5 after loop truncation, half-life and Delta Gi also increased. Based on these findings, a strong case is presented for thermostability improvement of OPH enzyme by flexible loop truncation after bioinformatics analysis.
Collapse
Affiliation(s)
- Gholamreza Farnoosh
- Applied Biotechnology Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
16
|
Hait S, Mallik S, Basu S, Kundu S. Finding the generalized molecular principles of protein thermal stability. Proteins 2019; 88:788-808. [PMID: 31872464 DOI: 10.1002/prot.25866] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/05/2019] [Accepted: 12/14/2019] [Indexed: 11/09/2022]
Abstract
Are there any generalized molecular principles of thermal adaptation? Here, integrating the concepts of structural bioinformatics, sequence analysis, and classical knot theory, we develop a robust computational framework that seeks for mechanisms of thermal adaptation by comparing orthologous mesophilic-thermophilic and mesophilic-hyperthermophilic proteins of remarkable structural and topological similarities, and still leads us to context-independent results. A comprehensive analysis of 4741 high-resolution, non-redundant X-ray crystallographic structures collected from 11 hyperthermophilic, 32 thermophilic and 53 mesophilic prokaryotes unravels at least five "nearly universal" signatures of thermal adaptation, irrespective of the enormous sequence, structure, and functional diversity of the proteins compared. A careful investigation further extracts a set of amino acid changes that can potentially enhance protein thermal stability, and remarkably, these mutations are overrepresented in protein crystallization experiments, in disorder-to-order transitions and in engineered thermostable variants of existing mesophilic proteins. These results could be helpful to find a precise, global picture of thermal adaptation.
Collapse
Affiliation(s)
- Suman Hait
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Saurav Mallik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sudipto Basu
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.,Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-III), University of Calcutta, Kolkata, India
| | - Sudip Kundu
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.,Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-III), University of Calcutta, Kolkata, India
| |
Collapse
|
17
|
Tang H, Shi K, Shi C, Aihara H, Zhang J, Du G. Enhancing subtilisin thermostability through a modified normalized B-factor analysis and loop-grafting strategy. J Biol Chem 2019; 294:18398-18407. [PMID: 31615894 PMCID: PMC6885650 DOI: 10.1074/jbc.ra119.010658] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/09/2019] [Indexed: 01/07/2023] Open
Abstract
Rational design-guided improvement of protein thermostability typically requires identification of residues or regions contributing to instability and introduction of mutations into these residues or regions. One popular method, B-FIT, utilizes B-factors to identify unstable residues or regions and combines them with other strategies, such as directed evolution. Here, we performed structure-based engineering to improve the thermostability of the subtilisin E-S7 (SES7) peptidase. The B-value of each residue was redefined in a normalized B-factor calculation, which was implemented with a refined bioinformatics analysis strategy to identify the critical area (loop 158-162) related to flexibility and to screen for suitable thermostable motif sequences in the Protein Data Bank that can act as transplant loops. In total, we analyzed 445 structures and identified 29 thermostable motifs as candidates. Using these motifs as a starting point, we performed iterative homologous modeling to obtain a desirable chimera loop and introduced five different mutations into this loop to construct thermostable SES7 proteins. Differential scanning fluorimetry revealed increases of 7.3 °C in the melting temperature of an SES7 variant designated M5 compared with the WT. The X-ray crystallographic structure of this variant was resolved at 1.96 Å resolution. The crystal structure disclosed that M5 forms more hydrogen bonds than the WT protein, consistent with design and molecular dynamics simulation results. In summary, the modified B-FIT strategy reported here has yielded a subtilisin variant with improved thermostability and promising industrial applications, supporting the notion that this modified method is a powerful tool for protein engineering.
Collapse
Affiliation(s)
- Heng Tang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455
| | - Cheng Shi
- School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455.
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| | - Guocheng Du
- School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
18
|
Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design. Q Rev Biophys 2019; 51:e10. [PMID: 30912486 DOI: 10.1017/s0033583518000082] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of rational drug design is to develop small molecules using a quantitative approach to optimize affinity. This should enhance the development of chemical compounds that would specifically, selectively, reversibly, and with high affinity interact with a target protein. It is not yet possible to develop such compounds using computational (i.e., in silico) approach and instead the lead molecules are discovered in high-throughput screening searches of large compound libraries. The main reason why in silico methods are not capable to deliver is our poor understanding of the compound structure-thermodynamics and structure-kinetics correlations. There is a need for databases of intrinsic binding parameters (e.g., the change upon binding in standard Gibbs energy (ΔGint), enthalpy (ΔHint), entropy (ΔSint), volume (ΔVintr), heat capacity (ΔCp,int), association rate (ka,int), and dissociation rate (kd,int)) between a series of closely related proteins and a chemically diverse, but pharmacophoric group-guided library of compounds together with the co-crystal structures that could help explain the structure-energetics correlations and rationally design novel compounds. Assembly of these data will facilitate attempts to provide correlations and train data for modeling of compound binding. Here, we report large datasets of the intrinsic thermodynamic and kinetic data including over 400 primary sulfonamide compound binding to a family of 12 catalytically active human carbonic anhydrases (CA). Thermodynamic parameters have been determined by the fluorescent thermal shift assay, isothermal titration calorimetry, and by the stopped-flow assay of the inhibition of enzymatic activity. Kinetic measurements were performed using surface plasmon resonance. Intrinsic thermodynamic and kinetic parameters of binding were determined by dissecting the binding-linked protonation reactions of the protein and sulfonamide. The compound structure-thermodynamics and kinetics correlations reported here helped to discover compounds that exhibited picomolar affinities, hour-long residence times, and million-fold selectivities over non-target CA isoforms. Drug-lead compounds are suggested for anticancer target CA IX and CA XII, antiglaucoma CA IV, antiobesity CA VA and CA VB, and other isoforms. Together with 85 X-ray crystallographic structures of 60 compounds bound to six CA isoforms, the database should be of help to continue developing the principles of rational target-based drug design.
Collapse
|
19
|
Enhancing the thermostability of β-glucuronidase from T. pinophilus enables the biotransformation of glycyrrhizin at elevated temperature. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Han B, Hou Y, Jiang T, Lv B, Zhao L, Feng X, Li C. Computation-Aided Rational Deletion of C-Terminal Region Improved the Stability, Activity, and Expression Level of GH2 β-Glucuronidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11380-11389. [PMID: 30296070 DOI: 10.1021/acs.jafc.8b03449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, computation-aided design on the basis of structural analysis was employed to rationally identify a highly dynamic C-terminal region that regulates the stability, expression level, and activity of a GH2 fungal glucuronidase from Aspergillus oryzae Li-3 (PGUS). Then, four mutants with a precisely truncated C-terminal region in different lengths were constructed; among them, mutant D591-604 with a 3.8-fold increase in half-life at 65 °C and a 6.8 kJ/mol increase in Gibbs free energy showed obviously improved kinetic and thermodynamic stability in comparison to PGUS. Mutants D590-604 and D591-604 both showed approximately 2.4-fold increases in the catalytic efficiency kcat/ Km and 1.8-fold increases in the expression level. Additionally, the expression level of PGUS was doubled through a C-terminal region swap with bacterial GUS from E. coli (EGUS). Finally, the robust PGUS mutants D590-604 and D591-604 were applied in the preparation of glycyrrhetinic acid with 4.0- and 4.4-fold increases in concentration through glycyrrhizin hydrolysis by a fed-batch process.
Collapse
Affiliation(s)
- Beijia Han
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Yuhui Hou
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Tian Jiang
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Bo Lv
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Lina Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Xudong Feng
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Chun Li
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| |
Collapse
|
21
|
Liu L, Yu H, Du K, Wang Z, Gan Y, Huang H. Enhanced trypsin thermostability in Pichia pastoris through truncating the flexible region. Microb Cell Fact 2018; 17:165. [PMID: 30359279 PMCID: PMC6201580 DOI: 10.1186/s12934-018-1012-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/19/2018] [Indexed: 12/03/2022] Open
Abstract
Background High thermostability is required for trypsin to have wider industrial applications. Target mutagenesis at flexible regions has been proved to be an efficient protein engineering method to enhance the protein thermostability. Results The flexible regions in porcine trypsin were predicted using the methods including molecular dynamic simulation, FlexPred, and FoldUnfold. The amino acids 78–90 was predicted to be the highly flexible region simultaneously by the three methods and hence selected to be the mutation target. We constructed five variants (D3, D5, D7, D9, and D11) by truncating the region. And the variant D9 showed higher thermostability, with a 5 °C increase in Topt, 5.8 °C rise in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T_{50}^{10}$$\end{document}T5010, and a 4.5 °C rise in Tm, compared to the wild-type. Moreover, the half-life value of the variant D9 was also found to be dramatically improved by 46 min. Circular dichroism and intrinsic fluorescence indicated that the structures had no significant change between the variant D9 and the wild-type. The surface hydrophobicity of D9 was measured to be lower than that of wild-type, indicating the increased hydrophobic interaction, which could have contributed to the improved thermostability of D9. Conclusions These results showed that the thermostability of variant D9 was increased. The variant D9 could be expected to be a promising tool enzyme for its wider industrial applications. The method of truncating the flexible region used in our study has the potential to be used for enhancing the thermostability of other proteins. Electronic supplementary material The online version of this article (10.1186/s12934-018-1012-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lin Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.,Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300350, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - Haoran Yu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.,Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300350, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China.,Department of Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, UK
| | - Kun Du
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.,Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300350, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - Zhiyan Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.,Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300350, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - Yiru Gan
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.,Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300350, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China. .,Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300350, China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China.
| |
Collapse
|
22
|
Physical and molecular bases of protein thermal stability and cold adaptation. Curr Opin Struct Biol 2016; 42:117-128. [PMID: 28040640 DOI: 10.1016/j.sbi.2016.12.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/15/2016] [Accepted: 12/11/2016] [Indexed: 11/20/2022]
Abstract
The molecular bases of thermal and cold stability and adaptation, which allow proteins to remain folded and functional in the temperature ranges in which their host organisms live and grow, are still only partially elucidated. Indeed, both experimental and computational studies fail to yield a fully precise and global physical picture, essentially because all effects are context-dependent and thus quite intricate to unravel. We present a snapshot of the current state of knowledge of this highly complex and challenging issue, whose resolution would enable large-scale rational protein design.
Collapse
|
23
|
Engineering de novo disulfide bond in bacterial α-type carbonic anhydrase for thermostable carbon sequestration. Sci Rep 2016; 6:29322. [PMID: 27385052 PMCID: PMC4935852 DOI: 10.1038/srep29322] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/16/2016] [Indexed: 11/29/2022] Open
Abstract
Exploiting carbonic anhydrase (CA), an enzyme that rapidly catalyzes carbon dioxide hydration, is an attractive biomimetic route for carbon sequestration due to its environmental compatibility and potential economic viability. However, the industrial applications of CA are strongly hampered by the unstable nature of enzymes. In this work, we introduced in silico designed, de novo disulfide bond in a bacterial α-type CA to enhance thermostability. Three variants were selected and expressed in Escherichia coli with an additional disulfide bridge. One of the variants showed great enhancement in terms of both kinetic and thermodynamic stabilities. This improvement could be attributed to the loss of conformational entropy of the unfolded state, showing increased rigidity. The variant showed an upward-shifted optimal temperature and appeared to be thermoactivated, which compensated for the lowered activity at 25 °C. Collectively, the variant constructed by the rapid and effective de novo disulfide engineering can be used as an efficient biocatalyst for carbon sequestration under high temperature conditions.
Collapse
|
24
|
Engineering the thermostability of β-glucuronidase from Penicillium purpurogenum Li-3 by loop transplant. Appl Microbiol Biotechnol 2016; 100:9955-9966. [DOI: 10.1007/s00253-016-7630-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/18/2016] [Accepted: 05/11/2016] [Indexed: 12/21/2022]
|
25
|
Feng X, Tang H, Han B, Lv B, Li C. Enhancing the Thermostability of β-Glucuronidase by Rationally Redesigning the Catalytic Domain Based on Sequence Alignment Strategy. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00535] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Xudong Feng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Heng Tang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Beijia Han
- School of Life Science, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Bo Lv
- School of Life Science, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Chun Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| |
Collapse
|
26
|
Mahon BP, Díaz-Torres NA, Pinard MA, Tu C, Silverman DN, Scott KM, McKenna R. Activity and anion inhibition studies of the α-carbonic anhydrase from Thiomicrospira crunogena XCL-2 Gammaproteobacterium. Bioorg Med Chem Lett 2015; 25:4937-4940. [PMID: 25998503 PMCID: PMC5358508 DOI: 10.1016/j.bmcl.2015.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/28/2015] [Accepted: 05/01/2015] [Indexed: 11/29/2022]
Abstract
Thiomicrospira crunogena XCL-2 expresses an α-carbonic anhydrase (TcruCA). Sequence alignments reveal that TcruCA displays a high sequence identity (>30%) relative to other α-CAs. This includes three conserved histidines that coordinate the active site zinc, a histidine proton shuttling residue, and opposing hydrophilic and hydrophobic sides that line the active site. The catalytic efficiency of TcruCA is considered moderate relative to other α-CAs (k(cat)/K(M)=1.1×10(7) M(-1) s(-1)), being a factor of ten less efficient than the most active α-CAs. TcruCA is also inhibited by anions with Cl(-), Br(-), and I(-), all showing Ki values in the millimolar range (53-361 mM). Hydrogen sulfide (HS(-)) revealed the highest affinity for TcruCA with a Ki of 1.1 μM. It is predicted that inhibition of TcruCA by HS(-) (an anion commonly found in the environment where Thiomicrospira crunogena is located) is a way for Thiomicrospira crunogena to regulate its carbon-concentrating mechanism (CCM) and thus the organism's metabolic functions. Results from this study provide preliminary insights into the role of TcruCA in the general metabolism of Thiomicrospira crunogena.
Collapse
Affiliation(s)
- Brian P Mahon
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, 100 Newell Dr LG-171, Gainesville, FL 32610, United States
| | - Natalia A Díaz-Torres
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, 100 Newell Dr LG-171, Gainesville, FL 32610, United States
| | - Melissa A Pinard
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, 100 Newell Dr LG-171, Gainesville, FL 32610, United States
| | - Chingkuang Tu
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, 100 Newell Dr LG-171, Gainesville, FL 32610, United States
| | - David N Silverman
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, United States
| | - Kathleen M Scott
- Department of Integrated Biology, University of South Florida, Tampa, FL 33620, United States
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, 100 Newell Dr LG-171, Gainesville, FL 32610, United States.
| |
Collapse
|
27
|
Díaz-Torres NA, Mahon BP, Boone CD, Pinard MA, Tu C, Ng R, Agbandje-McKenna M, Silverman D, Scott K, McKenna R. Structural and biophysical characterization of the α-carbonic anhydrase from the gammaproteobacterium Thiomicrospira crunogena XCL-2: insights into engineering thermostable enzymes for CO2 sequestration. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1745-56. [PMID: 26249355 PMCID: PMC4528804 DOI: 10.1107/s1399004715012183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/24/2015] [Indexed: 11/10/2022]
Abstract
Biocatalytic CO2 sequestration to reduce greenhouse-gas emissions from industrial processes is an active area of research. Carbonic anhydrases (CAs) are attractive enzymes for this process. However, the most active CAs display limited thermal and pH stability, making them less than ideal. As a result, there is an ongoing effort to engineer and/or find a thermostable CA to fulfill these needs. Here, the kinetic and thermal characterization is presented of an α-CA recently discovered in the mesophilic hydrothermal vent-isolate extremophile Thiomicrospira crunogena XCL-2 (TcruCA), which has a significantly higher thermostability compared with human CA II (melting temperature of 71.9°C versus 59.5°C, respectively) but with a tenfold decrease in the catalytic efficiency. The X-ray crystallographic structure of the dimeric TcruCA shows that it has a highly conserved yet compact structure compared with other α-CAs. In addition, TcruCA contains an intramolecular disulfide bond that stabilizes the enzyme. These features are thought to contribute significantly to the thermostability and pH stability of the enzyme and may be exploited to engineer α-CAs for applications in industrial CO2 sequestration.
Collapse
Affiliation(s)
- Natalia A. Díaz-Torres
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Brian P. Mahon
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Christopher D. Boone
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Melissa A. Pinard
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Chingkuang Tu
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Robert Ng
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - David Silverman
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Kathleen Scott
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
28
|
Thermostable Carbonic Anhydrases in Biotechnological Applications. Int J Mol Sci 2015; 16:15456-80. [PMID: 26184158 PMCID: PMC4519908 DOI: 10.3390/ijms160715456] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 01/10/2023] Open
Abstract
Carbonic anhydrases are ubiquitous metallo-enzymes which catalyze the reversible hydration of carbon dioxide in bicarbonate ions and protons. Recent years have seen an increasing interest in the utilization of these enzymes in CO2 capture and storage processes. However, since this use is greatly limited by the harsh conditions required in these processes, the employment of thermostable enzymes, both those isolated by thermophilic organisms and those obtained by protein engineering techniques, represents an interesting possibility. In this review we will provide an extensive description of the thermostable carbonic anhydrases so far reported and the main processes in which these enzymes have found an application.
Collapse
|