1
|
Cristian RE, Balta C, Herman H, Ciceu A, Trica B, Sbarcea BG, Miutescu E, Hermenean A, Dinischiotu A, Stan MS. Exploring In Vivo Pulmonary and Splenic Toxicity Profiles of Silicon Quantum Dots in Mice. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2778. [PMID: 38894040 PMCID: PMC11173407 DOI: 10.3390/ma17112778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Silicon-based quantum dots (SiQDs) represent a special class of nanoparticles due to their low toxicity and easily modifiable surface properties. For this reason, they are used in applications such as bioimaging, fluorescent labeling, drug delivery, protein detection techniques, and tissue engineering despite a serious lack of information on possible in vivo effects. The present study aimed to characterize and evaluate the in vivo toxicity of SiQDs obtained by laser ablation in the lung and spleen of mice. The particles were administered in three different doses (1, 10, and 100 mg QDs/kg of body weight) by intravenous injection into the caudal vein of Swiss mice. After 1, 6, 24, and 72 h, the animals were euthanized, and the lung and spleen tissues were harvested for the evaluation of antioxidant enzyme activity, lipid peroxidation, protein expression, and epigenetic and morphological changes. The obtained results highlighted a low toxicity in pulmonary and splenic tissues for concentrations up to 10 mg SiQDs/kg body, demonstrated by biochemical and histopathological analysis. Therefore, our study brings new experimental evidence on the biocompatibility of this type of QD, suggesting the possibility of expanding research on the biomedical applications of SiQDs.
Collapse
Affiliation(s)
- Roxana-Elena Cristian
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (R.-E.C.); (A.H.); (M.S.S.)
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Splaiul Independentei 296, 060031 Bucharest, Romania
| | - Cornel Balta
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (C.B.); (H.H.); (A.C.)
| | - Hildegard Herman
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (C.B.); (H.H.); (A.C.)
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (C.B.); (H.H.); (A.C.)
| | - Bogdan Trica
- National Institute for Research & Development in Chemistry and Petrochemistry (INCDCP-ICECHIM), 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Beatrice G. Sbarcea
- Materials Characterization Department, National Institute for Research & Development in Electrical Engineering (ICPE-CA), 313 Splaiul Unirii, 030138 Bucharest, Romania;
| | - Eftimie Miutescu
- Faculty of Medicine, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania;
| | - Anca Hermenean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (R.-E.C.); (A.H.); (M.S.S.)
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (C.B.); (H.H.); (A.C.)
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (R.-E.C.); (A.H.); (M.S.S.)
| | - Miruna S. Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (R.-E.C.); (A.H.); (M.S.S.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| |
Collapse
|
2
|
Zhou Z, Zhang Y, Zeng Y, Yang D, Mo J, Zheng Z, Zhang Y, Xiao P, Zhong X, Yan W. Effects of Nanomaterials on Synthesis and Degradation of the Extracellular Matrix. ACS NANO 2024; 18:7688-7710. [PMID: 38436232 DOI: 10.1021/acsnano.3c09954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Extracellular matrix (ECM) remodeling is accompanied by the continuous synthesis and degradation of the ECM components. This dynamic process plays an important role in guiding cell adhesion, migration, proliferation, and differentiation, as well as in tissue development, body repair, and maintenance of homeostasis. Nanomaterials, due to their photoelectric and catalytic properties and special structure, have garnered much attention in biomedical fields for use in processes such as tissue engineering and disease treatment. Nanomaterials can reshape the cell microenvironment by changing the synthesis and degradation of ECM-related proteins, thereby indirectly changing the behavior of the surrounding cells. This review focuses on the regulatory role of nanomaterials in the process of cell synthesis of different ECM-related proteins and extracellular protease. We discuss influencing factors and possible related mechanisms of nanomaterials in ECM remodeling, which may provide different insights into the design and development of nanomaterials for the treatment of ECM disorder-related diseases.
Collapse
Affiliation(s)
- Zhiyan Zhou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanli Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510260, China
| | - Yuting Zeng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dehong Yang
- Department of Orthopedics - Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiayao Mo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ziting Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuxin Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ping Xiao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xincen Zhong
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenjuan Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
3
|
Cristian RE, Balta C, Herman H, Trica B, Sbarcea BG, Hermenean A, Dinischiotu A, Stan MS. In Vivo Assessment of Hepatic and Kidney Toxicity Induced by Silicon Quantum Dots in Mice. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:457. [PMID: 38470787 DOI: 10.3390/nano14050457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
In the last decade, silicon-based quantum dots (SiQDs) have attracted the attention of researchers due to their unique properties for which they are used in medical applications and in vivo imaging. Detection of cytotoxic effects in vivo is essential for understanding the mechanisms of toxicity, a mandatory step before their administration to human subjects. In this context, we aimed to evaluate the in vivo hepatic and renal acute toxicity of SiQDs obtained by laser ablation. The nanoparticles were administrated at different doses (0, 1, 10, and 100 mg of QDs/kg of body weight) by intravenous injection into the caudal vein of Swiss mice. After 1, 6, 24, and 72 h, the animals were euthanatized, and liver and kidney tissues were used in further toxicity tests. The time- and dose-dependent effects of SiQDs on the antioxidant defense system of mice liver and kidney were investigated by quantifying the activity of antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase) in correlation with the morphological changes and inflammatory status in the liver and kidneys. The results showed a decrease in the activities of antioxidant enzymes and histopathological changes, except for superoxide dismutase, in which no significant changes were registered compared with the control. Furthermore, the immunohistochemical expression of TNF-α was significant at doses over 10 mg of QDs/kg of body weight and were still evident at 72 h after administration. Our results showed that doses under 10 mg of SiQDs/kg of b.w. did not induce hepatic and renal toxicity, providing useful information for further clinical trials.
Collapse
Affiliation(s)
- Roxana-Elena Cristian
- Departament of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Splaiul Independentei 296, 060031 Bucharest, Romania
| | - Cornel Balta
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Hildegard Herman
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Bogdan Trica
- National Institute for Research & Development in Chemistry and Petrochemistry (INCDCP-ICECHIM), 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Beatrice G Sbarcea
- Materials Characterization Department, National Institute for Research & Development in Electrical Engineering (ICPE-CA), 313 Splaiul Unirii, 030138 Bucharest, Romania
| | - Anca Hermenean
- Departament of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Anca Dinischiotu
- Departament of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Miruna S Stan
- Departament of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| |
Collapse
|
4
|
Lin X, Chen T. A Review of in vivo Toxicity of Quantum Dots in Animal Models. Int J Nanomedicine 2023; 18:8143-8168. [PMID: 38170122 PMCID: PMC10759915 DOI: 10.2147/ijn.s434842] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Tremendous research efforts have been devoted to nanoparticles for applications in optoelectronics and biomedicine. Over the past decade, quantum dots (QDs) have become one of the fastest growing areas of research in nanotechnology because of outstanding photophysical properties, including narrow and symmetrical emission spectrum, broad fluorescence excitation spectrum, the tenability of the emission wavelength with the particle size and composition, anti-photobleaching ability and stable fluorescence. These characteristics are suitable for optical imaging, drug delivery and other biomedical applications. Research on QDs toxicology has demonstrated QDs affect or damage the biological system to some extent, and this situation is generally caused by the metal ions and some special properties in QDs, which hinders the further application of QDs in the biomedical field. The toxicological mechanism mainly stems from the release of heavy metal ions and generation of reactive oxygen species (ROS). At the same time, the contact reaction with QDs also cause disorders in organelles and changes in gene expression profiles. In this review, we try to present an overview of the toxicity and related toxicity mechanisms of QDs in different target organs. It is believed that the evaluation of toxicity and the synthesis of environmentally friendly QDs are the primary issues to be addressed for future widespread applications. However, considering the many different types and potential modifications, this review on the potential toxicity of QDs is still not clearly elucidated, and further research is needed on this meaningful topic.
Collapse
Affiliation(s)
- Xiaotan Lin
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
- Department of Family Planning, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, People’s Republic of China
| | - Tingting Chen
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
| |
Collapse
|
5
|
Stanca L, Geicu OI, Serban AI, Dinischiotu A. Interplay of Oxidative Stress, Inflammation, and Autophagy in RAW 264.7 Murine Macrophage Cell Line Challenged with Si/SiO 2 Quantum Dots. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5083. [PMID: 37512357 PMCID: PMC10385521 DOI: 10.3390/ma16145083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Quantum dots (QDs) with photostable fluorescence are recommended for imaging applications; however, their effect on living cells is incompletely understood. We aimed to elucidate the RAW 264.7 murine macrophage cell line's response to the Si/SiO2 QDs challenge. Cells were exposed to 5 and 15 μg/mL Si/SiO2 QDs for 6 h, 12 h, and 24 h. Cell metabolic activity and viability were assessed by MTT, live/dead, and dye-exclusion assays. Oxidative stress and membrane integrity were assessed by anion superoxide, malondialdehyde, and lactate dehydrogenase activity evaluations. Antioxidative enzyme activities were analyzed by kinetic spectrophotometric methods. Cytokines were analyzed with an antibody-based magnetic bead assay, PGE2 was assessed by ELISA, and Nrf-2, Bcl-2, Beclin 1, and the HSPs were analyzed by western blot. Autophagy levels were highlighted by fluorescence microscopy. The average IC50 dose for 6, 12, and 24 h was 16.1 ± 0.7 μg/mL. Although glutathione S-transferase and catalase were still upregulated after 24 h, superoxide dismutase was inhibited, which together allowed the gradual increase of malondialdehyde, anion superoxide, nitric oxide, and the loss of membrane integrity. G-CSF, IL-6, TNF-α, MIP-1β, MCP-1, Nrf-2, PGE2, and RANTES levels, as well as autophagy processes, were increased at all time intervals, as opposed to caspase 1 activity, COX-2, HSP60, and HSP70, which were only upregulated at the 6-h exposure interval. These results underscore that Si/SiO2 QDs possess significant immunotoxic effects on the RAW 264.7 macrophage cell line and stress the importance of developing effective strategies to mitigate their adverse impact.
Collapse
Affiliation(s)
- Loredana Stanca
- Preclinical Sciences Department, Faculty of Veterinary Medicine, University of Agronomical Sciences and Veterinary Medicine Bucharest, 105 Splaiul Independentei, 050097 Bucharest, Romania
| | - Ovidiu Ionut Geicu
- Preclinical Sciences Department, Faculty of Veterinary Medicine, University of Agronomical Sciences and Veterinary Medicine Bucharest, 105 Splaiul Independentei, 050097 Bucharest, Romania
| | - Andreea Iren Serban
- Preclinical Sciences Department, Faculty of Veterinary Medicine, University of Agronomical Sciences and Veterinary Medicine Bucharest, 105 Splaiul Independentei, 050097 Bucharest, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|
6
|
Gimondi S, Vieira de Castro J, Reis RL, Ferreira H, Neves NM. On the size-dependent internalization of sub-hundred polymeric nanoparticles. Colloids Surf B Biointerfaces 2023; 225:113245. [PMID: 36905835 DOI: 10.1016/j.colsurfb.2023.113245] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
The understanding of the interaction between nanoparticles (NPs) and cells is crucial to design nanocarriers with high therapeutic relevance. In this study, we exploited a microfluidics device to synthesize homogeneous suspensions of NPs with ≈ 30, 50, and 70 nm of size. Afterward, we investigated their level and mechanism of internalization when exposed to different types of cells (endothelial cells, macrophages, and fibroblasts). Our results show that all NPs were cytocompatible and internalized by the different cell types. However, NPs uptake was size-dependent, being the maximum uptake efficiency observed for the 30 nm NPs. Moreover, we demonstrate that size can lead to distinct interactions with different cells. For instance, 30 nm NPs were internalized with an increasing trend over time by endothelial cells, while a steady and a decreasing trend were observed when incubated with LPS-stimulated macrophages and fibroblasts, respectively. Finally, the use of different chemical inhibitors (chlorpromazine, cytochalasin-D, and nystatin), and low temperature (4 °C) indicated that phagocytosis/micropinocytosis are the main internalization mechanism for all NPs sizes. However, different endocytic pathways were initiated in the presence of particular NP sizes. In endothelial cells, for example, caveolin-mediated endocytosis occurs primarily in the presence of 50 nm NPs, whereas clathrin-mediated endocytosis substantially promotes the internalization of 70 nm NPs. This evidence demonstrates the importance of size in the NPs design for mediating interaction with specific cell types.
Collapse
Affiliation(s)
- Sara Gimondi
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Joana Vieira de Castro
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Helena Ferreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
7
|
Wang X, He K, Hu Y, Tang M. A review of pulmonary toxicity of different types of quantum dots in environmental and biological systems. Chem Biol Interact 2022; 368:110247. [DOI: 10.1016/j.cbi.2022.110247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
8
|
Ren L, Wang L, Rehberg M, Stoeger T, Zhang J, Chen S. Applications and Immunological Effects of Quantum Dots on Respiratory System. Front Immunol 2022; 12:795232. [PMID: 35069577 PMCID: PMC8770806 DOI: 10.3389/fimmu.2021.795232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022] Open
Abstract
Quantum dots (QDs), are one kind of nanoscale semiconductor crystals with specific electronic and optical properties, offering near-infrared mission and chemically active surfaces. Increasing interest for QDs exists in developing theranostics platforms for bioapplications such as imaging, drug delivery and therapy. Here we summarized QDs' biomedical applications, toxicity, and immunological effects on the respiratory system. Bioapplications of QDs in lung include biomedical imaging, drug delivery, bio-sensing or diagnosis and therapy. Generically, toxic effects of nanoparticles are related to the generation of oxidative stresses with subsequent DNA damage and decreased lung cells viability in vitro and in vivo because of release of toxic metal ions or the features of QDs like its surface charge. Lastly, pulmonary immunological effects of QDs mainly include proinflammatory cytokines release and recruiting innate leukocytes or adaptive T cells.
Collapse
Affiliation(s)
- Laibin Ren
- Institute of Respiratory Diseases, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Lingwei Wang
- Institute of Respiratory Diseases, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Markus Rehberg
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg and Member of the German Center for Lung Research, Munich, Germany
| | - Tobias Stoeger
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg and Member of the German Center for Lung Research, Munich, Germany
| | - Jianglin Zhang
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Department of Dermatology, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Shanze Chen
- Institute of Respiratory Diseases, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
9
|
Stan MS, Badea S, Hermenean A, Herman H, Trica B, Sbarcea BG, Dinischiotu A. New Insights into the Cell Death Signaling Pathways Triggered by Long-Term Exposure to Silicon-Based Quantum Dots in Human Lung Fibroblasts. NANOMATERIALS 2021; 11:nano11020323. [PMID: 33513804 PMCID: PMC7911990 DOI: 10.3390/nano11020323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
This report is the first research study that aims to explore the molecular mechanisms involved in the in vitro pulmonary cytotoxicity triggered by long-term exposure to silicon-based quantum dots (QDs). Human lung fibroblasts (MRC-5 cell line) were exposed to 5 µg/mL silicon-based QDs for 5 weeks and the concentration was increased up to 40 µg/mL QDs during the next 4 weeks. Cell viability and population doubling level were calculated based on Trypan blue staining. The expression levels of proteins were established by Western blotting and the telomeres’ length was determined through Southern blotting. Prolonged exposure of lung fibroblasts to QDs reduced the cell viability by 10% compared to untreated cells. The level of p53 and apoptosis-inducing factor (AIF) expression increased during the exposure, the peak intensity being registered after the seventh week. The expressions of autophagy-related proteins, Beclin-1 and LC-3, were higher compared to untreated cells. Regarding the protein expression of Nrf-2, a progressive decrease was noticed, suggesting the downregulation of a cytoprotective response to oxidative stress. In contrast, the heat shock proteins’ (HSPs) expression was increased or maintained near the control level during QDs exposure in order to promote cell survival. Furthermore, the telomeres’ length was not reduced during this exposure, indicating that QDs did not induce cellular senescence. In conclusion, our study shows that silicon-based QDs triggered the activation of apoptotic and autophagy pathways and downregulation of survival signaling molecules as an adaptive response to cellular stress which was not associated with telomeres shortening.
Collapse
Affiliation(s)
- Miruna S. Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; (M.S.S.); (S.B.); (A.H.)
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Str., 011061 Bucharest, Romania
| | - Smaranda Badea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; (M.S.S.); (S.B.); (A.H.)
| | - Anca Hermenean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; (M.S.S.); (S.B.); (A.H.)
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania;
| | - Hildegard Herman
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania;
| | - Bogdan Trica
- National Institute for Research & Development in Chemistry and Petrochemistry (INCDCP-ICECHIM), 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Beatrice G. Sbarcea
- Materials Characterization Department, National Institute for Research & Development in Electrical Engineering (ICPE-CA), 313 Splaiul Unirii, 030138 Bucharest, Romania
- Correspondence: (B.G.S.); (A.D.)
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; (M.S.S.); (S.B.); (A.H.)
- Correspondence: (B.G.S.); (A.D.)
| |
Collapse
|
10
|
Li N, Wu K, Feng F, Wang L, Zhou X, Wang W. Astragaloside IV alleviates silica‑induced pulmonary fibrosis via inactivation of the TGF‑β1/Smad2/3 signaling pathway. Int J Mol Med 2021; 47:16. [PMID: 33448318 PMCID: PMC7834968 DOI: 10.3892/ijmm.2021.4849] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to investigate the anti-fibrotic effects of astragaloside IV (ASV) in silicosis rats, and to further explore the potential underlying molecular mechanisms. A silica-induced rat model of pulmonary fibrosis was successfully constructed. Hematoxylin and eosin and Masson's trichrome staining were performed to observe the pathological changes in lung tissues. Immunohistochemical analysis was used to assess the expression levels of Collagen I, fibronectin and α-smooth muscle actin (α-SMA). A hemocytometer and Giemsa staining were used to evaluate the cytological characteristics of the bronchoalveolar lavage fluid. ELISA was used to detect the levels of the inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-1β and IL-6. Reverse transcription-quantitative PCR and western blotting were performed to detect the mRNA and protein expression levels of genes associated with the transforming growth factor (TGF)-β1/Smad signaling pathway. ASV alleviated silica-induced pulmonary fibrosis, and reduced the expression of collagen I, fibronectin and α-SMA. In addition, the results of the present study suggested that the ASV-mediated anti-pulmonary fibrosis response may involve reduction of inflammation and oxidative stress. More importantly, ASV suppressed silica-induced lung fibroblast fibrosis via the TGF-β1/Smad signaling pathway, thereby inhibiting the progression of silicosis. In conclusion, the present study indicated that ASV may prevent silicosis-induced fibrosis by reducing the expression of Collagen I, fibronectin and α-SMA, and reducing the inflammatory response and oxidative stress, and these effects may be mediated by inhibiting the activation of the TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Nannan Li
- Department of Respiratory Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ke Wu
- Department of Cardiology, Central Hospital of Tai'an of Shandong Province, Tai'an, Shandong 271000, P.R. China
| | - Feifei Feng
- Department of Respiratory Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Lin Wang
- Department of Special Examination, Central Hospital of Tai'an of Shandong Province, Tai'an, Shandong 271000, P.R. China
| | - Xiang Zhou
- Department of Anesthesiology, Central Hospital of Tai'an of Shandong Province, Tai'an, Shandong 271000, P.R. China
| | - Wei Wang
- Department of Respiratory Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
11
|
Liu N, Tang M. Toxicity of different types of quantum dots to mammalian cells in vitro: An update review. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122606. [PMID: 32516645 DOI: 10.1016/j.jhazmat.2020.122606] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 05/18/2023]
Abstract
Currently, there are a great quantity type of quantum dots (QDs) that has been developed by researchers. Depending on the core material, they can be roughly divided into cadmium, silver, indium, carbon and silicon QDs. And studies on the toxicity of QDs are also increasing rapidly, but in vivo tests in model animals fail to reach a consistent conclusion. Therefore, we review the literatures dealing with the cytotoxicity of QDs in mammalian cells in vitro. After a short summary of the application characteristics of five types of QDs, the fate of QDs in cells will be discussed, ranging from the uptake, transportation, sublocation and excretion. A substantial part of the review will be focused on in vitro toxicity, in which the type of QDs is combined with their adverse effect and toxic mechanism. Because of their different luminescent properties, different subcellular fate, and different degree of cytotoxicity, we provide an overview on the balance of optical stability and biocompatibility of QDs and give a short outlook on future direction of cytotoxicology of QDs.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Ding Jia Qiao, Nanjing 210009, PR China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Ding Jia Qiao, Nanjing 210009, PR China.
| |
Collapse
|
12
|
Huang X, Tang M. Research advance on cell imaging and cytotoxicity of different types of quantum Dots. J Appl Toxicol 2020; 41:342-361. [DOI: 10.1002/jat.4083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/30/2020] [Accepted: 09/10/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Xiaoquan Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health Southeast University Nanjing P.R. China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health Southeast University Nanjing P.R. China
| |
Collapse
|
13
|
Voicu SN, Balas M, Stan MS, Trică B, Serban AI, Stanca L, Hermenean A, Dinischiotu A. Amorphous Silica Nanoparticles Obtained by Laser Ablation Induce Inflammatory Response in Human Lung Fibroblasts. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1026. [PMID: 30925685 PMCID: PMC6479987 DOI: 10.3390/ma12071026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 11/19/2022]
Abstract
Silica nanoparticles (SiO₂ NPs) represent environmentally born nanomaterials that are used in multiple biomedical applications. Our aim was to study the amorphous SiO₂ NP-induced inflammatory response in MRC-5 human lung fibroblasts up to 72 hours of exposure. The intracellular distribution of SiO₂ NPs was measured by transmission electron microscopy (TEM). The lactate dehydrogenase (LDH) test was used for cellular viability evaluation. We have also investigated the lysosomes formation, protein expression of interleukins (IL-1β, IL-2, IL-6, IL-8, and IL-18), COX-2, Nrf2, TNF-α, and nitric oxide (NO) production. Our results showed that the level of lysosomes increased in time after exposure to the SiO₂ NPs. The expressions of interleukins and COX-2 were upregulated, whereas the expressions and activities of MMP-2 and MMP-9 decreased in a time-dependent manner. Our findings demonstrated that the exposure of MRC-5 cells to 62.5 µg/mL of SiO₂ NPs induced an inflammatory response.
Collapse
Affiliation(s)
- Sorina Nicoleta Voicu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
- Department of Pharmacy, Faculty of Pharmacy, Titu Maiorescu University, 004051 Bucharest, Romania.
| | - Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| | - Miruna Silvia Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| | - Bogdan Trică
- The National Institute for Research & Development in Chemistry and Petrochemistry (INCDCP-ICECHIM), 202 Splaiul Independentei, 060021 Bucharest, Romania.
| | - Andreea Iren Serban
- Department of Preclinical Sciences, University of Agronomical Sciences and Veterinary Medicine, 105 Splaiul Independentei, 050097 Bucharest, Romania.
| | - Loredana Stanca
- Department of Preclinical Sciences, University of Agronomical Sciences and Veterinary Medicine, 105 Splaiul Independentei, 050097 Bucharest, Romania.
| | - Anca Hermenean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania.
- Department of Histology, Faculty of Medicine, Vasile Goldis Western, University of Arad, 1 Feleacului, 310396 Arad, Romania.
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| |
Collapse
|
14
|
Designing cotton fibers impregnated with photocatalytic graphene oxide/Fe, N-doped TiO2 particles as prospective industrial self-cleaning and biocompatible textiles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:318-332. [DOI: 10.1016/j.msec.2018.09.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 08/03/2018] [Accepted: 09/17/2018] [Indexed: 01/03/2023]
|
15
|
Strugari AFG, Stan MS, Gharbia S, Hermenean A, Dinischiotu A. Characterization of Nanoparticle Intestinal Transport Using an In Vitro Co-Culture Model. NANOMATERIALS 2018; 9:nano9010005. [PMID: 30577573 PMCID: PMC6358835 DOI: 10.3390/nano9010005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 12/29/2022]
Abstract
We aimed to obtain a tunable intestinal model and study the transport of different types of nanoparticles. Caco-2/HT29-MTX co-cultures of different seeding ratios (7:3 and 5:5), cultured on Transwell® systems, were exposed to non-cytotoxic concentration levels (20 μg/mL) of silicon quantum dots and iron oxide (α-Fe₂O₃) nanoparticles. Transepithelial electric resistance was measured before and after exposure, and permeability was assessed via the paracellular marker Lucifer Yellow. At regular intervals during the 3 h transport study, samples were collected from the basolateral compartments for the detection and quantitative testing of nanoparticles. Cell morphology characterization was done using phalloidin-FITC/DAPI labeling, and Alcian Blue/eosin staining was performed on insert cross-sections in order to compare the intestinal models and evaluate the production of mucins. Morphological alterations of the Caco-2/HT29-MTX (7:3 ratio) co-cultures were observed at the end of the transport study compared with the controls. The nanoparticle suspensions tested did not diffuse across the intestinal model and were not detected in the receiving compartments, probably due to their tendency to precipitate at the monolayer surface level and form visible aggregates. These preliminary results indicate the need for further nanoparticle functionalization in order to appropriately assess intestinal absorption in vitro.
Collapse
Affiliation(s)
- Alina F G Strugari
- University of Bucharest, Faculty of Biology, Department of Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| | - Miruna S Stan
- University of Bucharest, Faculty of Biology, Department of Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| | - Sami Gharbia
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania.
| | - Anca Hermenean
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania.
- Department of Histology, Faculty of Medicine, Pharmacy and Dentistry, Vasile Goldis Western University of Arad, 1 Feleacului, 310396 Arad, Romania.
| | - Anca Dinischiotu
- University of Bucharest, Faculty of Biology, Department of Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| |
Collapse
|
16
|
Gharbia S, Balta C, Herman H, Rosu M, Váradi J, Bácskay I, Vecsernyés M, Gyöngyösi S, Fenyvesi F, Voicu SN, Stan MS, Cristian RE, Dinischiotu A, Hermenean A. Enhancement of Silymarin Anti-fibrotic Effects by Complexation With Hydroxypropyl (HPBCD) and Randomly Methylated (RAMEB) β-Cyclodextrins in a Mouse Model of Liver Fibrosis. Front Pharmacol 2018; 9:883. [PMID: 30150935 PMCID: PMC6099081 DOI: 10.3389/fphar.2018.00883] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022] Open
Abstract
Silymarin (Sy) shows limited water solubility and poor oral bioavailability. Water-soluble hydroxypropyl (HPBCD) and randomly methylated (RAMEB) β-cyclodextrins were designed to enhance anti-fibrotic efficiency of silymarin in CCl4-induced liver fibrosis in mice. Experimental fibrosis was induced by intraperitoneal injection with 2 ml/kg CCl4 (20% v/v) twice a week, for 7 weeks. Mice were orally treated with 50 mg/kg of Sy-HPBCD, Sy-RAMEB and free silymarin. For assessment of the spontaneous reversion of fibrosis, CCl4 treated animals were investigated after 2 weeks of recovery time. The CCl4 administration increased hepatic oxidative stress, augmented the expression of transforming growth factor-β1 (TGF-β1) and Smad 2/3, and decreased Smad 7 expression. Furthermore, increased α-smooth muscle actin (α-SMA) expression indicated activation of hepatic stellate cells (HSCs), while up-regulation of collagen I (Col I) and matrix metalloproteinases (MMPs) expression led to an altered extracellular matrix enriched in collagen, confirmed as well by trichrome staining and electron microscopy analysis. Treatment with Sy-HPBCD and Sy-RAMEB significantly reduced liver injury, attenuating oxidative stress, restoring antioxidant balance in the hepatic tissue, and significantly decreasing collagen deposits in the liver. The levels of pro-fibrogenic markers' expression were also significantly down-regulated, whereas in the group for spontaneous regression of fibrosis, they remained significantly higher, even at 2 weeks after CCl4 administration was discontinued. The recovery was significantly lower for free silymarin group compared to silymarin/β cyclodextrins co-treatments. Sy-HPBCD was found to be the most potent anti-fibrotic complex. We demonstrated that Sy-HPBCD and Sy-RAMEB complexes decreased extracellular matrix accumulation by inhibiting HSC activation and diminished the oxidative damage. This might occur via the inhibition of TGF-β1/Smad signal transduction and MMP/tissue inhibitor of MMPs (TIMP) rebalance, by blocking the synthesis of Col I and decreasing collagen deposition. These results suggest that complexation of silymarin with HPBCD or RAMEB represent viable options for the its oral delivery, of the flavonoid as a potential therapeutic entity candidate, with applications in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Sami Gharbia
- The Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Cornel Balta
- The Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Hildegard Herman
- The Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Marcel Rosu
- The Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Szilvia Gyöngyösi
- Department of Solid State Physics, University of Debrecen, Debrecen, Hungary
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Sorina N Voicu
- Department of Biochemistry and Molecular Biology, The Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Miruna S Stan
- Department of Biochemistry and Molecular Biology, The Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Roxana E Cristian
- Department of Biochemistry and Molecular Biology, The Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, The Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Anca Hermenean
- The Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania.,Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Arad, Romania
| |
Collapse
|
17
|
Wang Y, Tang M. Review of in vitro toxicological research of quantum dot and potentially involved mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:940-962. [PMID: 29996464 DOI: 10.1016/j.scitotenv.2017.12.334] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 06/08/2023]
Abstract
Quantum dots (QDs) are one of emerging engineering nanomaterials (NMs) with advantageous properties which can act as candidates for clinical imaging and diagnosis. Nevertheless, toxicological studies have proved that QDs for better or worse pose threats to diverse systems which are attributed to the release of metal ion and specific characteristics of nanoparticles (NPs), hampering the wide use of QDs to biomedical area. It has been postulated that mechanisms of toxicity evoked by QDs have implications in oxidative stress, reactive oxygen species (ROS), inflammation and release of metal ion. Meanwhile, DNA damage and disturbance of subcellular structures would occur during QDs treatment. This review is intended to conclude the cytotoxicity of QDs in multiple systems, as well as the potential mechanisms on the basis of recent literatures. Finally, toxicity-related factors are clarified, among which chirality seems to be a newly proposed influence factor that determines the destiny of cells in response to QDs. However, details of interaction between QDs and cells have not been well elucidated. Given that molecular mechanisms of QDs-induced toxicity are still not clearly elucidated, further research should be required for this meaningful topic.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
18
|
Dynamic analysis of the interactions between Si/SiO 2 quantum dots and biomolecules for improving applications based on nano-bio interfaces. Sci Rep 2018; 8:5289. [PMID: 29588488 PMCID: PMC5869727 DOI: 10.1038/s41598-018-23621-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/16/2018] [Indexed: 01/10/2023] Open
Abstract
Due to their outstanding properties, quantum dots (QDs) received a growing interest in the biomedical field, but it is of major importance to investigate and to understand their interaction with the biomolecules. We examined the stability of silicon QDs and the time evolution of QDs – protein corona formation in various biological media (bovine serum albumin, cell culture medium without or supplemented with 10% fetal bovine serum-FBS). Changes in the secondary structure of BSA were also investigated over time. Hydrodynamic size and zeta potential measurements showed an evolution in time indicating the nanoparticle-protein interaction. The protein corona formation was also dependent on time, albumin adsorption reaching the peak level after 1 hour. The silicon QDs adsorbed an important amount of FBS proteins from the first 5 minutes of incubation that was maintained for the next 8 hours, and diminished afterwards. Under protein-free conditions the QDs induced cell membrane damage in a time-dependent manner, however the presence of serum proteins attenuated their hemolytic activity and maintained the integrity of phosphatidylcholine layer. This study provides useful insights regarding the dynamics of BSA adsorption and interaction of silicon QDs with proteins and lipids, in order to understand the role of QDs biocorona.
Collapse
|
19
|
Chen X, Tong R, Shi Z, Yang B, Liu H, Ding S, Wang X, Lei Q, Wu J, Fang W. MOF Nanoparticles with Encapsulated Autophagy Inhibitor in Controlled Drug Delivery System for Antitumor. ACS APPLIED MATERIALS & INTERFACES 2018; 10:2328-2337. [PMID: 29286625 DOI: 10.1021/acsami.7b16522] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xuerui Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | | | - Zheqi Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | | | | | - Shiping Ding
- The National Education Base for Basic Medical Sciences, School of
Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xu Wang
- Hangzhou Medical College, No. 481 Binwen Road, Hangzhou 310053, China
| | - Qunfang Lei
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | | | - Wenjun Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
20
|
Wang D, Lou XQ, Jiang XM, Yang C, Liu XL, Zhang N. Oxymatrine protects against the effects of cardiopulmonary resuscitation via modulation of the TGF-β1/Smad3 signaling pathway. Mol Med Rep 2018; 17:4747-4752. [PMID: 29328383 DOI: 10.3892/mmr.2018.8373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/20/2017] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that oxymatrine may inhibit ventricular remodeling and serves an important role in the treatment of cardiovascular disease. The present study investigated whether oxymatrine treatment protects against the effects of cardiopulmonary resuscitation (CPR) via regulation of the transforming growth factor‑β1 (TGF‑β1)/mothers against decapentaplegic (Smad) signaling pathway. A CPR model was established in Sprague‑Dawley (SD) rats by asphyxiation, and rats were subsequently anaesthetized by intraperitoneal injection of chloral hydrate. SD rats were then administered 25 or 50 mg/kg oxymatrine once a day for 4 weeks. Oxymatrine treatment significantly improved troponin I levels, the ejection fraction, hydroxyproline content and the myocardial performance index in model rats. However, treatment with oxymatrine significantly reduced arterial oxygen tension, arterial lactate levels and oxygen extraction. Treatment with oxymatrine following CPR significantly inhibited the protein expression levels of TGF‑β1, TGF‑β1 receptor type 1 and Smad homolog 3 (Smad3) in model rats. The results of this research indicated that oxymatrine treatment may protect against the effects of CPR via regulation of the TGF‑β1/Smad3 signaling pathway and may be a novel drug for CPR in a clinical setting.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Emergency, The First Hospital of Jilin University, Chaoyang, Changchun, Jilin 130000, P.R. China
| | - Xiao Qian Lou
- Department of Endocrinology, Second Department, The First Hospital of Jilin University, Chaoyang, Changchun, Jilin 130000, P.R. China
| | - Xiao-Ming Jiang
- Department of Emergency, The First Hospital of Jilin University, Chaoyang, Changchun, Jilin 130000, P.R. China
| | - Chenxi Yang
- Centre for Heart and Lung Innovation University of British Columbia, Vancouver, BC V6P 2G9, Canada
| | - Xiao-Liang Liu
- Department of Emergency, The First Hospital of Jilin University, Chaoyang, Changchun, Jilin 130000, P.R. China
| | - Nan Zhang
- Department of Emergency, The First Hospital of Jilin University, Chaoyang, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
21
|
Dwivedi AM, Upadhyay S, Johanson G, Ernstgård L, Palmberg L. Inflammatory effects of acrolein, crotonaldehyde and hexanal vapors on human primary bronchial epithelial cells cultured at air-liquid interface. Toxicol In Vitro 2017; 46:219-228. [PMID: 28947239 DOI: 10.1016/j.tiv.2017.09.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/28/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
The cytotoxicity of aldehydes was studied using human primary bronchial epithelial cells (PBEC) cultured at the air-liquid interface (ALI) or under submerged conditions. PBEC were exposed for 30min via the air phase to acrolein (0.1-1mg/m3), crotonaldehyde (1.5-15mg/m3) or hexanal (22-221mg/m3) or under submerged conditions to acrolein (0.1 and 0.2mg/L), crotonaldehyde (1 and 2mg/L) or hexanal (10 and 20mg/L). Cell culture medium was collected 8h and 24h post-exposure and analyzed for interleukin-8 (IL-8) and matrix metalloprotein-9 (MMP-9). The gene expression of inflammatory and oxidative stress markers were measured 6h post-exposure. In the ALI setup, all three aldehydes caused increased secretion of IL-8, acrolein and crotonaldehyde also increased the gene expression of inflammatory and oxidative stress markers. In contrast, exposure under submerged conditions resulted in significantly reduced IL-8 secretion. The inflammatory response seen in the air phase exposures correspond well with previous in vivo studies. This indicates that lung models cultured at ALI are more suitable than submerged cell cultures in toxicity assessment studies of inhaled agents.
Collapse
Affiliation(s)
- Aishwarya M Dwivedi
- Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, Stockholm, SE-171 77, Sweden.
| | - Swapna Upadhyay
- Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Box 210, Stockholm SE-171 77, Sweden
| | - Gunnar Johanson
- Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, Stockholm, SE-171 77, Sweden
| | - Lena Ernstgård
- Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, Stockholm, SE-171 77, Sweden
| | - Lena Palmberg
- Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Box 210, Stockholm SE-171 77, Sweden
| |
Collapse
|
22
|
Nica IC, Stan MS, Popa M, Chifiriuc MC, Pircalabioru GG, Lazar V, Dumitrescu I, Diamandescu L, Feder M, Baibarac M, Cernea M, Maraloiu VA, Popescu T, Dinischiotu A. Development and Biocompatibility Evaluation of Photocatalytic TiO₂/Reduced Graphene Oxide-Based Nanoparticles Designed for Self-Cleaning Purposes. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E279. [PMID: 28925946 PMCID: PMC5618390 DOI: 10.3390/nano7090279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 11/16/2022]
Abstract
Graphene is widely used in nanotechnologies to amplify the photocatalytic activity of TiO₂, but the development of TiO₂/graphene composites imposes the assessment of their risk to human and environmental health. Therefore, reduced graphene oxide was decorated with two types of TiO₂ particles co-doped with 1% iron and nitrogen, one of them being obtained by a simultaneous precipitation of Ti3+ and Fe3+ ions to achieve their uniform distribution, and the other one after a sequential precipitation of these two cations for a higher concentration of iron on the surface. Physico-chemical characterization, photocatalytic efficiency evaluation, antimicrobial analysis and biocompatibility assessment were performed for these TiO₂-based composites. The best photocatalytic efficiency was found for the sample with iron atoms localized at the sample surface. A very good anti-inhibitory activity was obtained for both samples against biofilms of Gram-positive and Gram-negative strains. Exposure of human skin and lung fibroblasts to photocatalysts did not significantly affect cell viability, but analysis of oxidative stress showed increased levels of carbonyl groups and advanced oxidation protein products for both cell lines after 48 h of incubation. Our findings are of major importance by providing useful knowledge for future photocatalytic self-cleaning and biomedical applications of graphene-based materials.
Collapse
Affiliation(s)
- Ionela Cristina Nica
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| | - Miruna S Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| | - Marcela Popa
- Department of Botanic-Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania.
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| | - Mariana Carmen Chifiriuc
- Department of Botanic-Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania.
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| | - Gratiela G Pircalabioru
- Department of Botanic-Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania.
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| | - Veronica Lazar
- Department of Botanic-Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania.
| | - Iuliana Dumitrescu
- National R&D Institute for Textiles and Leather Bucharest (INCDTP), 16 Lucretiu Patrascanu, 030508 Bucharest, Romania.
| | - Lucian Diamandescu
- National Institute of Materials Physics (NIMP), Atomistilor 405A, 077125 Bucharest-Magurele, Romania.
| | - Marcel Feder
- National Institute of Materials Physics (NIMP), Atomistilor 405A, 077125 Bucharest-Magurele, Romania.
| | - Mihaela Baibarac
- National Institute of Materials Physics (NIMP), Atomistilor 405A, 077125 Bucharest-Magurele, Romania.
| | - Marin Cernea
- National Institute of Materials Physics (NIMP), Atomistilor 405A, 077125 Bucharest-Magurele, Romania.
| | - Valentin Adrian Maraloiu
- National Institute of Materials Physics (NIMP), Atomistilor 405A, 077125 Bucharest-Magurele, Romania.
| | - Traian Popescu
- National Institute of Materials Physics (NIMP), Atomistilor 405A, 077125 Bucharest-Magurele, Romania.
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| |
Collapse
|
23
|
Wang M, Li M, Yu A, Zhu Y, Yang M, Mao C. Fluorescent Nanomaterials for the Development of Latent Fingerprints in Forensic Sciences. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1606243. [PMID: 29657570 PMCID: PMC5898818 DOI: 10.1002/adfm.201606243] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This review presents an overview on the application of latent fingerprint development techniques in forensic sciences. At present, traditional developing methods such as powder dusting, cyanoacrylate fuming, chemical method, and small particle reagent method, have all been gradually compromised given their emerging drawbacks such as low contrast, sensitivity, and selectivity, as well as high toxicity. Recently, much attention has been paid to the use of fluorescent nanomaterials including quantum dots (QDs) and rare earth upconversion fluorescent nanomaterials (UCNMs) due to their unique optical and chemical properties. Thus, this review lays emphasis on latent fingerprint development based on QDs and UCNMs. Compared to latent fingerprint development by traditional methods, the new methods using fluorescent nanomaterials can achieve high contrast, sensitivity, and selectivity while showing reduced toxicity. Overall, this review provides a systematic overview on such methods.
Collapse
Affiliation(s)
- Meng Wang
- Department of Trace Examination, National Police University of China, Shenyang, Liaoning 110035, P. R. China
| | - Ming Li
- Department of Trace Examination, National Police University of China, Shenyang, Liaoning 110035, P. R. China
| | - Aoyang Yu
- Department of Trace Examination, National Police University of China, Shenyang, Liaoning 110035, P. R. China
| | - Ye Zhu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Chuanbin Mao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
24
|
Madni A, Batool A, Noreen S, Maqbool I, Rehman F, Kashif PM, Tahir N, Raza A. Novel nanoparticulate systems for lung cancer therapy: an updated review. J Drug Target 2017; 25:499-512. [PMID: 28151021 DOI: 10.1080/1061186x.2017.1289540] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths in the world. Conventional therapy for lung cancer is associated with lack of specificity and access to the normal cells resulting in cytotoxicity, reduced cellular uptake, drug resistance and rapid drug clearance from the body. The emergence of nanotechnology has revolutionized the treatment of lung cancer. The focus of nanotechnology is to target tumor cells with improved bioavailability and reduced toxicity. In the recent years, nanoparticulate systems have extensively been exploited in order to overcome the obstacles in treatment of lung cancer. Nanoparticulate systems have shown much potential for lung cancer therapy by gaining selective access to the tumor cells due to surface modifiability and smaller size. In this review, various novel nanoparticles (NPs) based formulations have been discussed in the treatment of lung cancer. Nanotechnology is expected to grow fast in future, and it will provide new avenues for the improved treatment of lung cancer. This review article also highlights the characteristics, recent advances in the designing of NPs and therapeutic outcomes.
Collapse
Affiliation(s)
- Asadullah Madni
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Amna Batool
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Sobia Noreen
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Irsah Maqbool
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Faizza Rehman
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Prince Muhammad Kashif
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Nayab Tahir
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Ahmad Raza
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| |
Collapse
|
25
|
Ji J, Hedelin A, Malmlöf M, Kessler V, Seisenbaeva G, Gerde P, Palmberg L. Development of Combining of Human Bronchial Mucosa Models with XposeALI® for Exposure of Air Pollution Nanoparticles. PLoS One 2017; 12:e0170428. [PMID: 28107509 PMCID: PMC5249057 DOI: 10.1371/journal.pone.0170428] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/04/2017] [Indexed: 11/18/2022] Open
Abstract
Background Exposure to agents via inhalation is of great concerns both in workplace environment and in the daily contact with particles in the ambient air. Reliable human airway exposure systems will most likely replace animal experiment in future toxicity assessment studies of inhaled agents. Methods In this study, we successfully established a combination of an exposure system (XposeALI) with 3D models mimicking both healthy and chronic bronchitis-like mucosa by co-culturing human primary bronchial epithelial cells (PBEC) and fibroblast at air-liquid interface (ALI). Light-, confocal microscopy, scanning- and transmission electron microscopy, transepithelial electrical resistance (TEER) measurement and RT-PCR were performed to identify how the PBEC differentiated under ALI culture condition. Both models were exposed to palladium (Pd) nanoparticles which sized 6–10 nm, analogous to those released from modern car catalysts, at three different concentrations utilizing the XposeALI module of the PreciseInhale® exposure system. Results Exposing the 3D models to Pd nanoparticles induced increased secretion of IL-8, yet the chronic bronchitis-like model released significantly more IL-8 than the normal model. The levels of IL-8 in basal medium (BM) and apical lavage medium (AM) were in the same ranges, but the secretion of MMP-9 was significantly higher in the AM compared to the BM. Conclusion This combination of relevant human bronchial mucosa models and sophisticated exposure system can mimic in vivo conditions and serve as a useful alternative animal testing tool when studying adverse effects in humans exposed to aerosols, air pollutants or particles in an occupational setting.
Collapse
Affiliation(s)
- Jie Ji
- Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Anna Hedelin
- Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Malmlöf
- Inhalation Sciences Sweden AB, Stockholm, Sweden
- Experimental Asthma and Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vadim Kessler
- Inorganic Bionanotechnology Unit, Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Gulaim Seisenbaeva
- Inorganic Bionanotechnology Unit, Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Per Gerde
- Inhalation Sciences Sweden AB, Stockholm, Sweden
- Experimental Asthma and Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lena Palmberg
- Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Bunderson-Schelvan M, Holian A, Hamilton RF. Engineered nanomaterial-induced lysosomal membrane permeabilization and anti-cathepsin agents. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:230-248. [PMID: 28632040 PMCID: PMC6127079 DOI: 10.1080/10937404.2017.1305924] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Engineered nanomaterials (ENMs), or small anthropogenic particles approximately < 100 nm in size and of various shapes and compositions, are increasingly incorporated into commercial products and used for industrial and medical purposes. There is an exposure risk to both the population at large and individuals in the workplace with inhalation exposures to ENMs being a primary concern. Further, there is increasing evidence to suggest that certain ENMs may represent a significant health risk, and many of these ENMs exhibit distinct similarities with other particles and fibers that are known to induce adverse health effects, such as asbestos, silica, and particulate matter (PM). Evidence regarding the importance of lysosomal membrane permeabilization (LMP) and release of cathepsins in ENM toxicity has been accumulating. The aim of this review was to describe our current understanding of the mechanisms leading to ENM-associated pathologies, including LMP and the role of cathepsins with a focus on inflammation. In addition, anti-cathepsin agents, some of which have been tested in clinical trials and may prove useful for ameliorating the harmful effects of ENM exposure, are examined.
Collapse
Affiliation(s)
| | - Andrij Holian
- Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, USA
| | - Raymond F. Hamilton
- Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
27
|
Volkov Y. Quantum dots in nanomedicine: recent trends, advances and unresolved issues. Biochem Biophys Res Commun 2015; 468:419-27. [PMID: 26168726 DOI: 10.1016/j.bbrc.2015.07.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/07/2015] [Indexed: 12/27/2022]
Abstract
The review addresses the current state of progress in the use of ultra-small nanoparticles from the category of quantum dots (QDs), which presently embraces a widening range of nanomaterials of different nature, including "classical" semiconductor groups III-V and II-VI nanocrystals, along with more recently emerged carbon, silicon, gold and other types of nanoparticles falling into this class of nanomaterials due to their similar physical characteristics such as small size and associated quantum confinement effects. A diverse range of QDs applications in nanomedicine has been extensively summarised previously in numerous publications. Therefore, this review is not intended to provide an all-embracing survey of the well documented QDs uses, but is rather focused on the most recent emerging developments, concepts and outstanding unresolved problematic and sometimes controversial issues. Over 125 publications are overviewed and discussed here in the context of major nanomedicine domains, i.e. medical imaging, diagnostics, therapeutic applications and combination of them in multifunctional theranostic systems.
Collapse
Affiliation(s)
- Yuri Volkov
- Department of Clinical Medicine, School of Medicine and AMBER Centre, Trinity College, Dublin 8, Ireland.
| |
Collapse
|