1
|
Liu L, Zhang Z, Liu F, Liu H, Ye L, Liu F, Gupta N, Wang C, Hu M. In vitro culture of the parasitic stage larvae of hematophagous parasitic nematode Haemonchus contortus. Int J Parasitol 2025:S0020-7519(25)00007-4. [PMID: 39848307 DOI: 10.1016/j.ijpara.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/06/2024] [Accepted: 01/14/2025] [Indexed: 01/25/2025]
Abstract
Current research on common parasitic nematodes is limited because their infective stages cannot be propagated in vitro. Here, we report a culture system for developing L4s of Haemonchus contortus, a blood-feeding nematode of ruminants. Our results demonstrated that a proportionate mixture of NCTC-109 to Luria-Bertini (1:2) media promoted the formation of early L4s and then into late L4s upon inclusion of 12.5% (v/v) defibrinated blood, albeit with a decline in survival. Adding antioxidants (0.3 mg/mL of L-glutathione or 200 nmol of vitamin C) improved survival of L4s, with approximately 90% developing to late L4s by 22 days. These L4s showed parallel morphological features (such as digestive and reproduction systems) compared with in vivo L4s at day 7 (following challenge infection), although with delayed development. Our work optimized the in vitro culture system for L4s while providing an important platform for in-depth molecular research on Haemonchus and other related parasitic nematodes.
Collapse
Affiliation(s)
- Lu Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 China.
| | - Zongshan Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 China.
| | - Fuqiang Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 China.
| | - Hui Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 China.
| | - Lisha Ye
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 China.
| | - Feng Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 China.
| | - Nishith Gupta
- Intracellular Parasite Education and Research Labs (iPEARL), Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS-Pilani), Hyderabad, India; Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany.
| | - Chunqun Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 China.
| | - Min Hu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 China.
| |
Collapse
|
2
|
Riera-Ferrer E, Estensoro I, López-Gurillo B, Del Pozo R, Montero FE, Sitjà-Bobadilla A, Palenzuela O. Hooked on fish blood: the reliance of a gill parasite on haematophagy. Proc Biol Sci 2024; 291:20241611. [PMID: 39474874 PMCID: PMC11523107 DOI: 10.1098/rspb.2024.1611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/09/2024] [Accepted: 09/16/2024] [Indexed: 11/02/2024] Open
Abstract
Parasitism involves diverse evolutionary strategies, including adaptations for blood feeding, which provides essential nutrients for growth and reproduction. Sparicotyle chrysophrii (Polyopisthocotyla: Microcotylidae), an ectoparasitic flatworm, infects the gills of gilthead seabream (Sparus aurata), significantly affecting fish health, welfare and Mediterranean cage farm profitability. Despite its impact, limited information exists on its feeding behaviour. This study demonstrates the presence of blood and exogenous haem groups in S. chrysophrii and explores its digestive tract using light and electron microscopy, elucidating its internal morphology and spatial arrangement. Elemental analysis of the digestive haematin cells shows residual oxidized haem depots as haematin crystals. Additionally, we studied the impact of the blood feeding on the host by estimating the average volume of blood intake for an adult parasite (2.84 ± 2.12µl·24h-1) and we described the significant drop of the plasmatic free iron levels in infected hosts. Overall, we demonstrate the parasite's reliance on its host blood, the parasite's buccal and digestive morphological adaptations for blood feeding and the provoked effect on the fish host's health.
Collapse
Affiliation(s)
- Enrique Riera-Ferrer
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), Consejo Superior de Investigaciones Científicas, Castellón, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), Consejo Superior de Investigaciones Científicas, Castellón, Spain
| | - Beatriz López-Gurillo
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), Consejo Superior de Investigaciones Científicas, Castellón, Spain
| | - Raquel Del Pozo
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), Consejo Superior de Investigaciones Científicas, Castellón, Spain
| | - Francisco Esteban Montero
- Cavanilles Institute for Biodiversity and Evolutionary Biology, Science Park, University of Valencia, Valencia46071, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), Consejo Superior de Investigaciones Científicas, Castellón, Spain
| | - Oswaldo Palenzuela
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), Consejo Superior de Investigaciones Científicas, Castellón, Spain
| |
Collapse
|
3
|
Zeng F, Yi C, Zhang W, Cheng S, Sun C, Luo F, Feng Z, Hu W. A new ferritin SjFer0 affecting the growth and development of Schistosoma japonicum. Parasit Vectors 2022; 15:177. [PMID: 35610663 PMCID: PMC9128280 DOI: 10.1186/s13071-022-05247-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/21/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Schistosomiasis, an acute and chronic parasitic disease, causes substantial morbidity and mortality in tropical and subtropical regions of the world. Iron is an essential constituent of numerous macromolecules involving in important cellular reactions in virtually all organisms. Trematodes of the genus Schistosoma live in iron-rich blood, feed on red blood cells and store abundant iron in vitelline cells. Ferritins are multi-meric proteins that store iron inside cells. Three ferritin isoforms in Schistosoma japonicum are known, namely SjFer0, SjFer1 and SjFer2; however, their impact on the growth and development of the parasites is still unknown. In this study we report on and characterize the ferritins in S. japonicum. METHODS A phylogenetic tree of the SjFer0, SjFer1 and SjFer2 genes was constructed to show the evolutionary relationship among species of genus Schistosoma. RNA interference in vivo was used to investigate the impact of SjFer0 on schistosome growth and development. Immunofluorescence assay was applied to localize the expression of the ferritins. RNA-sequencing was performed to characterize the iron transport profile after RNA interference. RESULTS SjFer0 was found to have low similarity with SjFer1 and SjFer2 and contain an additional signal peptide sequence. Phylogenetic analysis revealed that SjFer0 can only cluster with some ferritins of other trematodes and tapeworms, suggesting that this ferritin branch might be unique to these parasites. RNA interference in vivo showed that SjFer0 significantly affected the growth and development of schistosomula but did not affect egg production of adult female worms. SjFer1 and SjFer2 had no significant impact on growth and development. The immunofluorescence study showed that SjFer0 was widely expressed in the somatic cells and vitelline glands but not in the testicle or ovary. RNA-sequencing indicated that, in female, the ion transport process and calcium ion binding function were downregulated after SjFer0 RNA interference. Among the differentially downregulated genes, Sj-cpi-2, annexin and insulin-like growth factor-binding protein may be accounted for the suppression of schistosome growth and development. CONCLUSIONS The results indicate that SjFer0 affects the growth and development of schistosomula but does not affect egg production of adult female worms. SjFer0 can rescue the growth of the fet3fet4 double mutant Saccharomyces cerevisiae (strain DEY1453), suggesting being able to promote iron absorption. The RNA interference of SjFer0 inferred that the suppression of worm growth and development may via down-regulating Sj-cpi-2, annexin, and IGFBP.
Collapse
Affiliation(s)
- Fanyuan Zeng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China
| | - Cun Yi
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China
| | - Shaoyun Cheng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China
| | - Chengsong Sun
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China
| | - Fang Luo
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China
| | - Zheng Feng
- Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-Host Interaction, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, People's Republic of China
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China.
- Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-Host Interaction, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, People's Republic of China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Monglia University, Hohhot, 010030, People's Republic of China.
| |
Collapse
|
4
|
Geiser DL, Li W, Pham DQD, Wysocki VH, Winzerling JJ. Shotgun and TMT-Labeled Proteomic Analysis of the Ovarian Proteins of an Insect Vector, Aedes aegypti (Diptera: Culicidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:7. [PMID: 35303100 PMCID: PMC8932505 DOI: 10.1093/jisesa/ieac018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Indexed: 06/14/2023]
Abstract
Aedes aegypti [Linnaeus in Hasselquist; yellow fever mosquito] transmits several viruses that infect millions of people each year, including Zika, dengue, yellow fever, chikungunya, and West Nile. Pathogen transmission occurs during blood feeding. Only the females blood feed as they require a bloodmeal for oogenesis; in the bloodmeal, holo-transferrin and hemoglobin provide the females with a high iron load. We are interested in the effects of the bloodmeal on the expression of iron-associated proteins in oogenesis. Previous data showed that following digestion of a bloodmeal, ovarian iron concentrations doubles by 72 hr. We have used shotgun proteomics to identify proteins expressed in Ae. aegypti ovaries at two oogenesis developmental stages following blood feeding, and tandem mass tag-labeling proteomics to quantify proteins expressed at one stage following feeding of a controlled iron diet. Our findings provide the first report of mosquito ovarian protein expression in early and late oogenesis. We identify proteins differentially expressed in the two oogenesis development stages. We establish that metal-associated proteins play an important role in Ae. aegypti oogenesis and we identify new candidate proteins that might be involved in mosquito iron metabolism. Finally, this work identified a unique second ferritin light chain subunit, the first reported in any species. The shotgun proteomic data are available via ProteomeXchange with identifier PXD005893, while the tandem mass tag-labeled proteomic data are available with identifier PXD028242.
Collapse
Affiliation(s)
- Dawn L Geiser
- Nutritional Sciences, Division of Agriculture, Life and Veterinary Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Wenzhou Li
- Department of Chemistry and Biochemistry, College of Science, University of Arizona, Tucson, AZ 85721, USA
- Present Address: Amgen Incorporation, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Daphne Q-D Pham
- Department of Biological Sciences, University of Wisconsin-Parkside, Kenosha, WI 53141, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, College of Science, University of Arizona, Tucson, AZ 85721, USA
- Present Address: Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Joy J Winzerling
- Nutritional Sciences, Division of Agriculture, Life and Veterinary Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
5
|
Kumagai T, Shimogawara R, Ichimura K, Iwanaga S. Calpain inhibitor suppresses both extracellular vesicle-mediated secretion of miRNAs and egg production from paired adults of Schistosoma japonicum. Parasitol Int 2022; 87:102540. [PMID: 35007765 DOI: 10.1016/j.parint.2022.102540] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) have been reported to be secreted from Schistosoma japonicum at all developmental stages. However, the reproduction and communication mechanisms between the paired adults through the EVs in dioecious Trematoda have not been reported. In this study, EVs containing many exosome-like vesicles and microvesicles were observed in the supernatants of paired adults cultured in vitro, and abundant selected miRNAs were contained in them. In particular, the female-specific miR-bantam was present only in vesicles and was hardly secreted outside the vesicles. In this study, we found that male-female pairing induced secretion of miR-3479 and miR-bantam in EVs, but not of male-specific miR-61. Furthermore, ingestion of mouse erythrocytes also increased the production of miRNAs in paired adult and single female worms. Vesicles were found in the tegument of females treated with erythrocytes under electron microscopy. After the paired worms were treated with several inhibitors against the secretion of EVs, only calpain inhibitor (calpeptin) significantly reduced the amount of miRNA in EVs. Furthermore, the worms treated with only calpeptin inhibited egg production in vitro. Together, these results indicate that qualitative miRNA production through EVs regulated by calpain plays a role in egg production in S. japonicum.
Collapse
Affiliation(s)
- Takashi Kumagai
- Department of Parasitology and Tropical Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | - Rieko Shimogawara
- Department of Parasitology and Tropical Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Koichiro Ichimura
- Department of Anatomy and Life Structure, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shiroh Iwanaga
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Perner J, Hatalova T, Cabello-Donayre M, Urbanova V, Sojka D, Frantova H, Hartmann D, Jirsova D, Pérez-Victoria JM, Kopacek P. Haem-responsive gene transporter enables mobilization of host haem in ticks. Open Biol 2021; 11:210048. [PMID: 34465215 PMCID: PMC8437232 DOI: 10.1098/rsob.210048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ticks, notorious blood-feeders and disease-vectors, have lost a part of their genetic complement encoding haem biosynthetic enzymes and are, therefore, dependent on the acquisition and distribution of host haem. Solute carrier protein SLC48A1, aka haem-responsive gene 1 protein (HRG1), has been implicated in haem transport, regulating the availability of intracellular haem. HRG1 transporter has been identified in both free-living and parasitic organisms ranging from unicellular kinetoplastids, nematodes, up to vertebrates. However, an HRG1 homologue in the arthropod lineage has not yet been identified. We have identified a single HRG1 homologue in the midgut transcriptome of the tick Ixodes ricinus, denoted as IrHRG, and have elucidated its role as a haem transporter. Data from haem biosynthesis-deficient yeast growth assays, systemic RNA interference and the evaluation of gallium protoporphyrin IX-mediated toxicity through tick membrane feeding clearly show that IrHRG is the bona fide tetrapyrrole transporter. We argue that during evolution, ticks profited from retaining a functional hrg1 gene in the genome because its protein product facilitates host haem escort from intracellularly digested haemoglobin, rendering haem bioavailable for a haem-dependent network of enzymes.
Collapse
Affiliation(s)
- J. Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - T. Hatalova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - M. Cabello-Donayre
- Institute of Parasitology and Biomedicine ‘López-Neyra’, CSIC, (IPBLN-CSIC), Granada, Spain
| | - V. Urbanova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - D. Sojka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - H. Frantova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - D. Hartmann
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - D. Jirsova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - J. M. Pérez-Victoria
- Institute of Parasitology and Biomedicine ‘López-Neyra’, CSIC, (IPBLN-CSIC), Granada, Spain
| | - P. Kopacek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| |
Collapse
|
7
|
Recognition Pattern of the Fasciola hepatica Excretome/Secretome during the Course of an Experimental Infection in Sheep by 2D Immunoproteomics. Pathogens 2021; 10:pathogens10060725. [PMID: 34207550 PMCID: PMC8228785 DOI: 10.3390/pathogens10060725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 01/01/2023] Open
Abstract
Excretory/secretory products released by helminth parasites have been widely studied for their diagnostic utility, immunomodulatory properties, as well as for their use as vaccines. Due to their location at the host/parasite interface, the characterization of parasite secretions is important to unravel the molecular interactions governing the relationships between helminth parasites and their hosts. In this study, the excretory/secretory products from adult worms of the trematode Fasciola hepatica (FhES) were employed in a combination of two-dimensional electrophoresis, immunoblot and mass spectrometry, to analyze the immune response elicited in sheep during the course of an experimental infection. Ten different immunogenic proteins from FhES recognized by serum samples from infected sheep at 4, 8, and/or 12 weeks post-infection were identified. Among these, different isoforms of cathepsin L and B, peroxiredoxin, calmodulin, or glutathione S-transferase were recognized from the beginning to the end of the experimental infection, suggesting their potential role as immunomodulatory antigens. Furthermore, four FhES proteins (C2H2-type domain-containing protein, ferritin, superoxide dismutase, and globin-3) were identified for the first time as non-immunogenic proteins. These results may help to further understand host/parasite relationships in fasciolosis, and to identify potential diagnostic molecules and drug target candidates of F. hepatica.
Collapse
|
8
|
Vorel J, Cwiklinski K, Roudnický P, Ilgová J, Jedličková L, Dalton JP, Mikeš L, Gelnar M, Kašný M. Eudiplozoon nipponicum (Monogenea, Diplozoidae) and its adaptation to haematophagy as revealed by transcriptome and secretome profiling. BMC Genomics 2021; 22:274. [PMID: 33858339 PMCID: PMC8050918 DOI: 10.1186/s12864-021-07589-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background Ectoparasites from the family Diplozoidae (Platyhelminthes, Monogenea) belong to obligate haematophagous helminths of cyprinid fish. Current knowledge of these worms is for the most part limited to their morphological, phylogenetic, and population features. Information concerning the biochemical and molecular nature of physiological processes involved in host–parasite interaction, such as evasion of the immune system and its regulation, digestion of macromolecules, suppression of blood coagulation and inflammation, and effect on host tissue and physiology, is lacking. In this study, we report for the first time a comprehensive transcriptomic/secretome description of expressed genes and proteins secreted by the adult stage of Eudiplozoon nipponicum (Goto, 1891) Khotenovsky, 1985, an obligate sanguivorous monogenean which parasitises the gills of the common carp (Cyprinus carpio). Results RNA-seq raw reads (324,941 Roche 454 and 149,697,864 Illumina) were generated, de novo assembled, and filtered into 37,062 protein-coding transcripts. For 19,644 (53.0%) of them, we determined their sequential homologues. In silico functional analysis of E. nipponicum RNA-seq data revealed numerous transcripts, pathways, and GO terms responsible for immunomodulation (inhibitors of proteolytic enzymes, CD59-like proteins, fatty acid binding proteins), feeding (proteolytic enzymes cathepsins B, D, L1, and L3), and development (fructose 1,6-bisphosphatase, ferritin, and annexin). LC-MS/MS spectrometry analysis identified 721 proteins secreted by E. nipponicum with predominantly immunomodulatory and anti-inflammatory functions (peptidyl-prolyl cis-trans isomerase, homolog to SmKK7, tetraspanin) and ability to digest host macromolecules (cathepsins B, D, L1). Conclusions In this study, we integrated two high-throughput sequencing techniques, mass spectrometry analysis, and comprehensive bioinformatics approach in order to arrive at the first comprehensive description of monogenean transcriptome and secretome. Exploration of E. nipponicum transcriptome-related nucleotide sequences and translated and secreted proteins offer a better understanding of molecular biology and biochemistry of these, often neglected, organisms. It enabled us to report the essential physiological pathways and protein molecules involved in their interactions with the fish hosts. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07589-z.
Collapse
Affiliation(s)
- Jiří Vorel
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Pavel Roudnický
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jana Ilgová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Lucie Jedličková
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic.,Department of Zoology and Fisheries, Centre of Infectious Animal Diseases, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - John P Dalton
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Milan Gelnar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Martin Kašný
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| |
Collapse
|
9
|
King M, Carson J, Stewart MT, Gobert GN. Revisiting the Schistosoma japonicum life cycle transcriptome for new insights into lung schistosomula development. Exp Parasitol 2021; 223:108080. [PMID: 33548219 DOI: 10.1016/j.exppara.2021.108080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/12/2021] [Accepted: 01/31/2021] [Indexed: 12/12/2022]
Abstract
Schistosome parasites are complex trematode blood flukes responsible for the disease schistosomiasis; a global health concern prevalent in many tropical and sub-tropical countries. While established transcriptomic databases are accessed ad hoc to facilitate studies characterising specific genes or gene families, a more comprehensive systematic updating of gene annotation and survey of the literature to aid in annotation and context is rarely addressed. We have reanalysed an online transcriptomic dataset originally published in 2009, where seven life cycle stages of Schistosoma japonicum were examined. Using the online pathway analysis tool Reactome, we have revisited key data from the original study. A key focus of this study was to improve the interpretation of the gene expression profile of the developmental lung-stage schistosomula, since it is one of the principle targets for worm elimination. Highly enriched transcripts, associated with lung schistosomula, were related to a number of important biological pathways including host immune evasion, energy metabolism and parasitic development. Revisiting large transcriptomic databases should be considered in the context of substantial new literature. This approach could aid in the improved understanding of the molecular basis of parasite biology. This may lead to the identification of new targets for diagnosis and therapies for schistosomes, and other helminths.
Collapse
Affiliation(s)
- Meághan King
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Jack Carson
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Michael T Stewart
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Geoffrey N Gobert
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK.
| |
Collapse
|
10
|
Zhou JR, Bu DR, Zhao XF, Wu F, Chen XQ, Shi HZ, Yao CQ, Du AF, Yang Y. Hc-hrg-2, a glutathione transferase gene, regulates heme homeostasis in the blood-feeding parasitic nematode Haemonchus contortus. Parasit Vectors 2020; 13:40. [PMID: 31996262 PMCID: PMC6988263 DOI: 10.1186/s13071-020-3911-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/15/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Haemonchus contortus, a blood-feeding parasite, is constantly surrounded by large quantities of heme released from the catabolism of host red blood cells. To cope with the toxicity of free heme, H. contortus needs to uptake and detoxify the heme, a process believed to be paramount for parasite survival. METHODS A heme-responsive gene Hc-hrg-2 was identified which is the homologue of Ce-hrg-2. The transcriptional levels in all developmental stages and heme-responsive ability of Hc-hrg-2 were analyzed by qRT-PCR. Immunofluorescence analysis and cell transfections were performed to analyze the expression pattern of Hc-HGR-2. Statistical analyses were performed with GraghPad Prism 6.0 using Student's t-test. RESULTS To investigate the heme homeostasis of H. contortus, we first identified a heme-responsive gene Hc-hrg-2, a homolog of Ce-hrg-2 that is involved in heme transport in the hypodermis of Caenorhabditis elegans. Using qRT-PCR, we showed that Hc-hrg-2 mRNA was expressed throughout all life-cycle stages of H. contortus with the highest level in the third-stage larvae (L3s). Notably, transcription of Hc-hrg-2 in the exsheathed L3s was significantly upregulated in the presence of high concentration of heme. We found that Hc-HRG-2 protein was mainly located in the hypodermal tissues of adult H. contortus in vivo and the endoplasmic reticulum in the transfected mammalian cells. Our in vitro assay demonstrated that Hc-HRG-2 is a heme-binding protein with glutathione S-transferase activity and heme had a significant effect on its enzymatic activity when a model substrate 1-chloro-2, 4-dinitrobenzene (CDNB) was used. CONCLUSIONS Hc-hrg-2 is a heme-responsive gene and engaged in heme homeostasis regulation in hypodermal tissues during the free-living stages of H. contortus.
Collapse
Affiliation(s)
- Jing-Ru Zhou
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Dan-Ru Bu
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xian-Feng Zhao
- Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, Guangdong, 518045, People's Republic of China
| | - Fei Wu
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xue-Qiu Chen
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Heng-Zhi Shi
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Chao-Qun Yao
- Ross University School of Veterinary Medicine and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, Saint Kitts and Nevis
| | - Ai-Fang Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Yi Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
11
|
Brandão-Bezerra L, de Carvalho Martins JSC, de Oliveira RMF, Lopes-Torres EJ, Neves RH, Corrêa CL, Machado-Silva JR. Long-term ethanol intake causes morphological changes in Schistosoma mansoni adult worms in mice. Exp Parasitol 2019; 203:30-35. [PMID: 31150655 DOI: 10.1016/j.exppara.2019.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 05/03/2019] [Accepted: 05/27/2019] [Indexed: 12/18/2022]
Abstract
Schistosoma mansoni adult worms are extensively challenged by reactive oxygen species from intrinsic sources. However, the effects of extrinsic sources such as ethanol have not been looked at in schistosomes. We examined adult worms recovered from ethanol-consuming mice by light (LM), confocal (CM) and scanning electron microscopy (SEM) to address this question. Schistosomiasis-infected mice were orally gavaged with 18% (v/v) ethanol from 35 to 63 days post-infection, when they were euthanized. CM examination revealed reduced germ cells density (-36%, p = 0.0001) and sperm density (-58%, p = 0.0001) in testicular lobes, and immature cells in seminal vesicle compared to unexposed control worms. Female worms showed reduced density of vitellin glands (-71%, p = 0.0001), maturation of oocytes (-7%, p = 0.0071) and reduced spermatozoa density (-23%, p = 0.0002) within the seminal receptacle. SEM revealed remarkable damages in male's tegument, including tubercles flattening, tegumental peeling and erosive lesions. Given that lipids are present in reproductive system and tegument, our results suggest that phenotypic changes are due to ethanol-induced lipid peroxidation. To the best of our knowledge, this is the first report revealing the biological action of ethanol intake on adult schistosomes in vivo.
Collapse
Affiliation(s)
- Luciana Brandão-Bezerra
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, School of Medical Sciences, Rio de Janeiro State University, Brazil
| | - Jéssica Santa Cruz de Carvalho Martins
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, School of Medical Sciences, Rio de Janeiro State University, Brazil
| | - Regina Maria Figueiredo de Oliveira
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, School of Medical Sciences, Rio de Janeiro State University, Brazil
| | - Eduardo José Lopes-Torres
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, School of Medical Sciences, Rio de Janeiro State University, Brazil
| | - Renata Heisler Neves
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, School of Medical Sciences, Rio de Janeiro State University, Brazil
| | - Christiane Leal Corrêa
- Department of Pathology and Laboratories, School of Medical Sciences, Rio de Janeiro State University, Brazil; Medicine School, Estácio de Sá University, Brazil
| | - José Roberto Machado-Silva
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, School of Medical Sciences, Rio de Janeiro State University, Brazil.
| |
Collapse
|
12
|
Heggland EI, Eichner C, Støve SI, Martinez A, Nilsen F, Dondrup M. A scavenger receptor B (CD36)-like protein is a potential mediator of intestinal heme absorption in the hematophagous ectoparasite Lepeophtheirus salmonis. Sci Rep 2019; 9:4218. [PMID: 30862948 PMCID: PMC6414551 DOI: 10.1038/s41598-019-40590-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 02/19/2019] [Indexed: 02/01/2023] Open
Abstract
Intestinal absorption of heme has remained enigmatic for years, even though heme provides the most bioavailable form of iron. The salmon louse, Lepeophtheirus salmonis, is a heme auxotrophic ectoparasite feeding on large quantities of blood from its host, the salmon. Here we show that a scavenging CD36-like receptor is a potential mediator of heme absorption in the intestine of the salmon louse. The receptor was characterized by a heme binding assay using recombinantly expressed protein, in situ hybridization and immunohistochemistry, as well as functional knockdown studies in the louse. A computational structural model of the receptor predicted a binding pocket for heme, as also supported by in silico docking. The mRNA and protein were expressed exclusively in the intestine of the louse. Further, knocking down the transcript resulted in lower heme levels in the adult female louse, production of shorter egg strings, and an overall lower hatching success of the eggs. Finally, starving the lice caused the transcript expression of the receptor to decrease. To our knowledge, this is the first time a CD36-like protein has been suggested to be an intestinal heme receptor.
Collapse
Affiliation(s)
- Erna Irene Heggland
- Department of Biological Sciences & Sea Lice Research Centre (SLRC), University of Bergen, Bergen, Norway
| | - Christiane Eichner
- Department of Biological Sciences & Sea Lice Research Centre (SLRC), University of Bergen, Bergen, Norway
| | - Svein Isungset Støve
- Department of Biomedicine & K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Aurora Martinez
- Department of Biomedicine & K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Frank Nilsen
- Department of Biological Sciences & Sea Lice Research Centre (SLRC), University of Bergen, Bergen, Norway
| | - Michael Dondrup
- Department of Informatics & Sea Lice Research Centre (SLRC), University of Bergen, Bergen, Norway.
| |
Collapse
|
13
|
Haem Biology in Metazoan Parasites - 'The Bright Side of Haem'. Trends Parasitol 2019; 35:213-225. [PMID: 30686614 DOI: 10.1016/j.pt.2019.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/12/2022]
Abstract
Traditionally, host haem has been recognized as a cytotoxic molecule that parasites need to eliminate or detoxify in order to survive. However, recent evidence indicates that some lineages of parasites have lost genes that encode enzymes involved specifically in endogenous haem biosynthesis. Such lineages thus need to acquire and utilize haem originating from their host animal, making it an indispensable molecule for their survival and reproduction. In multicellular parasites, host haem needs to be systemically distributed throughout their bodies to meet the haem demands in all cell and tissue types. Host haem also gets deposited in parasite eggs, enabling embryogenesis and reproduction. Clearly, a better understanding of haem biology in multicellular parasites should elucidate organismal adaptations to obligatory blood-feeding.
Collapse
|
14
|
Abdelgelil NH, Abdellatif MZM, Abdel-Hafeez EH, Belal US, Mohamed RM, Abdel-Razik ARH, Hassanin KMA, Abdel-Wahab A. Effects of iron chelating agent on Schistosoma mansoni infected murine model. Biomed Pharmacother 2018; 109:28-38. [PMID: 30391706 DOI: 10.1016/j.biopha.2018.10.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/29/2022] Open
Abstract
Schistosomiasis is one of the major health problems in many tropical and developing countries. Infection takes place once cerceriae penetrate human skin, then it changed into schistosomules. The schistosomules takes iron in the form of heme from host's haemoglobin, ferritin and transferrin. Iron is a vital element not only for growth and sexual maturity of schistosomules to adults but also for oogenesis. Since the trapped eggs are the pathological causative agent for most of pathogenesis and complications, the current work was designed to study the effects of early deprivation of schistosomules from iron in the host (in vivo) by chelating it with deferoxamine (DFO). The iron chelation has effects on growth, maturity and egg deposition, as well as it has ameliorative effects on liver pathology such as hepatic fibrosis. Mice were classified into four groups, normal control, DFO treated only, Schistosoma mansoni (S. mansoni) infected DFO untreated and S. mansoni infected DFO treated. The infected DFO treated mice showed significant reduction in fecal egg excretion with increased percentage of dead eggs and this was accompanied with a significant reduction of both total worm burden and hepatic egg load and increased dead egg percentage compared to the infected DFO untreated group. There was also a significant reduction in both serum and hepatic tissue ferritin concentrations in the infected DFO treated mice in comparison to the infected DFO untreated group. Additionally, a significant decrease in number and size of granulomas with subsequent improvement of liver fibrosis was recorded in the infected DFO treated group. This immunopathology was also associated with significant up regulation of Interlukine12 (IL12), Interferon gamma (IFN γ) and significant down regulation in interleukin4 (IL4), interleukin10 (IL10) in both serum and hepatic tissue in the infected DFO treated compared to other groups. Entirely, DFO succeeded in diminishing the growth, maturity and fecundity of S. mansoni with a subsequent improvement of hepatic pathology. As a result of the above findings, it can be concluded that DFO could be considered as a useful treatment against schistosomal infection.
Collapse
Affiliation(s)
- Noha H Abdelgelil
- Department of Parasitology, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Manal Z M Abdellatif
- Department of Parasitology, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Ekhlas H Abdel-Hafeez
- Department of Parasitology, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Usama S Belal
- Department of Parasitology, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Rabie M Mohamed
- Department of Parasitology, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Abdel-Razik H Abdel-Razik
- Department of Histology, Faculty of Veterinary Medicine, Beni - Suef University, Beni - Suef 62511, Egypt
| | - Kamel M A Hassanin
- Department of Biochemistry, Faculty of Veterinary Medicine, Minia University, Minia 61519, Egypt
| | - Ahmed Abdel-Wahab
- Department of Physiology, Faculty of Veterinary Medicine, Minia University, Minia 61519, Egypt.
| |
Collapse
|
15
|
Blay EA, Kumagai T, Yamabe M, Hino A, Shimogawara R, Kim HS, Sato A, Ichimura K, Ayi I, Iwanaga S, Ohta N. Insights into the mode of action of 1,2,6,7-tetraoxaspiro [7.11] nonadecane (N-89) against adult Schistosoma mansoni worms. Parasitol Int 2018; 67:403-412. [PMID: 29617630 DOI: 10.1016/j.parint.2018.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/14/2018] [Accepted: 03/28/2018] [Indexed: 01/16/2023]
Abstract
Control of morbidity associated with schistosomiasis via chemotherapy largely relies on the drug praziquantel. Repeated therapy with praziquantel has created concerns about the possible selection of resistant worms and necessitated the search for novel drugs to treat schistosomiasis. Here, a murine model was infected with Schistosoma mansoni and treated with oral 1,2,6,7-tetraoxaspiro [7.11] nonadecane (N-89), which caused a significant reduction in fecundity and egg burden and reduced morbidity when administered at 5-weeks post-infection. The analysis showed that the mode of action occurred through the ingestion of activated N-89 by the worms, and that there was no direct external effect on the S. mansoni worms. Ultrastructural analysis of the treated worms showed disruptions in the gut lumen and the presence of large volumes of material, suggestive of undigested blood meals or red blood cells. In addition, there were reduced vitelline cells in female worms and damage to sub-tegmental musculature in male worms. Eggs recovered from the treated mice showed both damage to the eggs and the production of immature eggs. Expression of mRNA responsible for gut and digestive function and egg production was also significantly affected by N-89 treatment, whereas control genes for musculature showed no significant changes. Thus, N-89 drastically affected the total digestive function and egg production of S. mansoni worms. Physiological processes requiring heme uptake such as egg production and eggshell formation were subsequently affected, suggesting that the compound could be a possible therapeutic drug candidate for schistosomiasis control.
Collapse
Affiliation(s)
- Emmanuel Awusah Blay
- Department of Environmental Parasitology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Takashi Kumagai
- Department of Environmental Parasitology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Masafumi Yamabe
- Department of Environmental Parasitology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Akina Hino
- Department of Environmental Parasitology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Rieko Shimogawara
- Department of Environmental Parasitology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Hye-Sook Kim
- Division of International Infectious Disease Control, Faculty of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Akira Sato
- Division of International Infectious Disease Control, Faculty of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Koichiro Ichimura
- Department of Anatomy and Life Structure, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Irene Ayi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG581, Legon, Accra, Ghana
| | - Shiroh Iwanaga
- Department of Environmental Parasitology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Nobuo Ohta
- Department of Environmental Parasitology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
16
|
Ferreira CM, Oliveira MP, Paes MC, Oliveira MF. Modulation of mitochondrial metabolism as a biochemical trait in blood feeding organisms: the redox vampire hypothesis redux. Cell Biol Int 2018; 42:683-700. [PMID: 29384241 DOI: 10.1002/cbin.10945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/27/2018] [Indexed: 12/31/2022]
Abstract
Hematophagous organisms undergo remarkable metabolic changes during the blood digestion process, increasing fermentative glucose metabolism, and reducing respiratory rates, both consequence of functional mitochondrial remodeling. Here, we review the pathways involved in energy metabolism and mitochondrial functionality in a comparative framework across different hematophagous species, and consider how these processes regulate redox homeostasis during blood digestion. The trend across distinct species indicate that a switch in energy metabolism might represent an important defensive mechanism to avoid the potential harmful interaction of oxidants generated from aerobic energy metabolism with products derived from blood digestion. Indeed, in insect vectors, blood feeding transiently reduces respiratory rates and oxidant production, irrespective of tissue and insect model. On the other hand, a different scenario is observed in several unrelated parasite species when exposed to blood digestion products, as respiratory rates reduce and mitochondrial oxidant production increase. The emerging picture indicates that re-wiring of energy metabolism, through reduced mitochondrial function, culminates in improved tolerance to redox insults and seems to represent a key step for hematophagous organisms to cope with the overwhelming and potentially toxic blood meal.
Collapse
Affiliation(s)
- Caroline M Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil
| | - Matheus P Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil.,Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Marcia C Paes
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Marcus F Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil
| |
Collapse
|
17
|
Whiten SR, Eggleston H, Adelman ZN. Ironing out the Details: Exploring the Role of Iron and Heme in Blood-Sucking Arthropods. Front Physiol 2018; 8:1134. [PMID: 29387018 PMCID: PMC5776124 DOI: 10.3389/fphys.2017.01134] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022] Open
Abstract
Heme and iron are essential molecules for many physiological processes and yet have the ability to cause oxidative damage such as lipid peroxidation, protein degradation, and ultimately cell death if not controlled. Blood-sucking arthropods have evolved diverse methods to protect themselves against iron/heme-related damage, as the act of bloodfeeding itself is high risk, high reward process. Protective mechanisms in medically important arthropods include the midgut peritrophic matrix in mosquitoes, heme aggregation into the crystalline structure hemozoin in kissing bugs and hemosomes in ticks. Once heme and iron pass these protective mechanisms they are presumed to enter the midgut epithelial cells via membrane-bound transporters, though relatively few iron or heme transporters have been identified in bloodsucking arthropods. Upon iron entry into midgut epithelial cells, ferritin serves as the universal storage protein and transport for dietary iron in many organisms including arthropods. In addition to its role as a nutrient, heme is also an important signaling molecule in the midgut epithelial cells for many physiological processes including vitellogenesis. This review article will summarize recent advancements in heme/iron uptake, detoxification and exportation in bloodfeeding arthropods. While initial strides have been made at ironing out the role of dietary iron and heme in arthropods, much still remains to be discovered as these molecules may serve as novel targets for the control of many arthropod pests.
Collapse
Affiliation(s)
- Shavonn R Whiten
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Heather Eggleston
- Genetics Graduate Program, Texas A&M University, College Station, TX, United States
| | - Zach N Adelman
- Department of Entomology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
18
|
Candido RRF, Morassutti AL, Graeff-Teixeira C, St Pierre TG, Jones MK. Exploring Structural and Physical Properties of Schistosome Eggs: Potential Pathways for Novel Diagnostics? ADVANCES IN PARASITOLOGY 2018; 100:209-237. [PMID: 29753339 DOI: 10.1016/bs.apar.2018.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this era of increasing demand for sensitive techniques to diagnose schistosomiasis, there is a need for an increased focus on the properties of the parasite eggs. The eggs are not only directly linked to the morbidity of chronic infection but are also potential key targets for accurate diagnostics. Eggs were the primary target of diagnostic tools in the past and we argue they could be the target of highly sensitive tools in the future if we focus on characteristics of their structure and shell surface that could be exploited for enhanced detection. In this review, we discuss the current state of knowledge of the physical structures of schistosome eggs and eggshells with a view to identifying pathways to a comprehensive understanding of their role in the host-parasite relationship and pathogenesis of infection, and pathways to new strategies for development of diagnostics.
Collapse
Affiliation(s)
- Renata R F Candido
- School of Physics, The University of Western Australia, Crawley, WA, Australia.
| | - Alessandra L Morassutti
- School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Graeff-Teixeira
- School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Timothy G St Pierre
- School of Physics, The University of Western Australia, Crawley, WA, Australia
| | - Malcolm K Jones
- School of Veterinary Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
19
|
Abstract
Praziquantel has remained the drug of choice for schistosomiasis chemotherapy for almost 40 years. The pressing need to develop a new antischistosomal drug may necessitate exploring and filtering chemotherapeutic history to search for the most promising ones. In this context, this review attempts to summarize all progress made in schistosomiasis chemotherapy from the early 20th century (mid-1910s) to 2016. We gathered almost 100 compounds providing information on therapeutic action, specifically covering at least first in vivo studies in animal model and in vitro. Pharmacokinetic and toxicity profiles of antischistosomal agents were also described. Preclinical studies indicate a handful of promising future candidates.
Collapse
|
20
|
Han Q, Jia B, Hong Y, Cao X, Zhai Q, Lu K, Li H, Zhu C, Fu Z, Shi Y, Lin J. Suppression of VAMP2 Alters Morphology of the Tegument and Affects Glucose uptake, Development and Reproduction of Schistosoma japonicum. Sci Rep 2017; 7:5212. [PMID: 28701752 PMCID: PMC5507895 DOI: 10.1038/s41598-017-05602-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/31/2017] [Indexed: 01/17/2023] Open
Abstract
Schistosomiasis caused by schsitosomes is a serious global public health concern. The tegument that surrounds the worm is critical to the schistosomes survival. The tegument apical membrane undergoes a continuous process of rupture and repair owing to membranous vacuoles fusing with the plasma membrane. Vesicle-associated membrane protein 2 (VAMP2), a member of soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNAREs) is required for membrane fusion. Here, we used RNA interference (RNAi) to knock down the expression of VAMP2 of Schistosoma japonicum (SjVAMP2), and both real-time PCR and western blot analysis confirmed the suppression of this molecule, as well as the suppression of the transcript levels of schistosome glucose transporters (SGTP1 and SGTP4), and insulin receptors (SjIR1 and SjIR2). SjVAMP2-suppressed worms exhibited a lower viability, and phenotypic alterations were also observed in the tegument. Moreover, the glucose consumption of SjVAMP2-suppressed worms decreased significantly in 4 and 6 days, respectively, as well as a significant reduction in egg production. We also observed a significant reduction in worm burden and hepatic eggs burden in two independent RNAi experiment in vivo, and minor pathological changes in mice treated with SjVAMP2 specific small interfering (si)RNA. These findings reveal that SjVAMP2 may play important roles in the maintenance of tegument, glucose uptake, worm development and egg production in schistosomes.
Collapse
Affiliation(s)
- Qian Han
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Bingguang Jia
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Yang Hong
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Xiaodan Cao
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Qi Zhai
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Ke Lu
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Hao Li
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Chuangang Zhu
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Zhiqiang Fu
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Yonghong Shi
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Jiaojiao Lin
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
21
|
Vasconcelos DIBD, Mota EM, Pelajo-Machado M. Characterisation of the vascular pathology in Sigmodon hispidus (Rodentia: Cricetidae) following experimental infection with Angiostrongylus costaricensis (Nematoda: Metastrongylidae). Mem Inst Oswaldo Cruz 2017; 112:328-338. [PMID: 28443978 PMCID: PMC5398158 DOI: 10.1590/0074-02760160124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 06/27/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Angiostrongylus costaricensis is a nematode that causes human abdominal angiostrongyliasis, a disease found mainly in Latin American countries and particularly in Brazil and Costa Rica. Its life cycle involves exploitation of both invertebrate and vertebrate hosts. Its natural reservoir is a vertebrate host, the cotton rat Sigmodon hispidus. The adult worms live in the ileo-colic branches of the upper mesenteric artery of S. hispidus, causing periarteritis. However, there is a lack of data on the development of vasculitis in the course of infection. OBJECTIVE To describe the histopathology of vascular lesions in S. hispidus following infection with A. costaricensis. METHODS Twenty-one S. hispidus were euthanised at 30, 50, 90 and 114 days post-infection (dpi), and guts and mesentery (including the cecal artery) were collected. Tissues were fixed in Carson's Millonig formalin, histologically processed for paraffin embedding, sectioned with a rotary microtome, and stained with hematoxylin-eosin, resorcin-fuchsin, Perls, Sirius Red (pH = 10.2), Congo Red, and Azan trichrome for brightfield microscopy analysis. FINDINGS At 30 and 50 dpi, live eggs and larvae were present inside the vasa vasorum of the cecal artery, leading to eosinophil infiltrates throughout the vessel adventitia and promoting centripetal vasculitis with disruption of the elastic layers. Disease severity increased at 90 and 114 dpi, when many worms had died and the intensity of the vascular lesions was greatest, with intimal alterations, thrombus formation, iron accumulation, and atherosclerosis. CONCLUSION In addition to abdominal angiostrongyliasis, our data suggest that this model could be very useful for autoimune vasculitis and atherosclerosis studies.
Collapse
Affiliation(s)
| | - Ester Maria Mota
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Patologia, Rio de Janeiro, RJ, Brasil
| | - Marcelo Pelajo-Machado
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Patologia, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
22
|
Xiao SH, Sun J. Schistosoma hemozoin and its possible roles. Int J Parasitol 2016; 47:171-183. [PMID: 28012717 DOI: 10.1016/j.ijpara.2016.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 12/20/2022]
Abstract
More than 95years ago Schistosoma pigment had been deemed as a degradation product of haemoglobin. Until the 1950s, scientists initiated to pay attention to understand the hematophagous habit of schistosomes, and to study the degradation of haemoglobin as well as the formation of hemozoin inside the gut of the worms. For a long time, the formation of hemozoin in both Plasmodium and in Schistosoma was considered to be the major route of heme detoxification, and hemozoin served a role in waste disposal. At the beginning of this century, the chemical structure of Schistosoma pigment was confirmed to be identical to that of malarial pigment (hemozoin) and its synthetic analogue, β-hematin. Since then, studies on Schistosoma hemozoin have been investigated by some workers and the results showed that Schistosoma hemozoin may play important roles in pathogenicity, immune modulation, iron supply for egg formation, and interaction with some anti-schistosomal drugs. In this review, we briefly review and discuss the hematophagous habit of schistosomes, degradation of haemoglobin, formation of hemozoin in the worm gut, and possible roles of hemozoin.
Collapse
Affiliation(s)
- Shu-Hua Xiao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, WHO Collaborating Centre for Malaria, Schistosomiasis, and Filariasis, Shanghai 200025, China.
| | - Jun Sun
- Institute for Infectious Disease and Vaccine Development, Tongji University School of Medicine, Shanghai 200092, China.
| |
Collapse
|