1
|
Tanaka M, Kato T, Oda M. Conformational changes of α-helical peptides with different hydrophobic residues induced by metal-ion binding. Biophys Chem 2021; 277:106661. [PMID: 34388679 DOI: 10.1016/j.bpc.2021.106661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/08/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022]
Abstract
We designed peptides that formed helix bundle structures upon binding of the metal-ions to His residues to form a stable hydrophobic core, in order to analyze the effects of Ala, Val, Ile, and Leu residues, located in the hydrophobic core, together with His, on the conformational changes in respective peptides designated as HA, HV, HI, and HL, respectively. Circular dichroism measurements showed that HV and HI changed from random coil to helix bundle structures upon Zn2+ binding, similar to that observed for HA, while HL existed in the helix bundle structure even in the absence of Zn2+. Electron spin resonance measurements showed that Cu2+ coordination of HI and HL was quite different from that of HA and HV, indicating that HA and HV fluctuated to a greater extent in the solution, despite that their apparent α-helical contents being similar to those of HI and HL. This was also supported by the results obtained from the analyses of thermal stabilities. The change in the structural fluctuation for each peptide upon Zn2+ binding was evaluated based on binding thermodynamics using isothermal titration calorimetry. The structural flexibility in the metal-ion-bound state was found to be in the order HA > HV > HI, and that in the metal-ion-unbound state was found to be greater for HI than that for HL.
Collapse
Affiliation(s)
- Masahiro Tanaka
- Faculty of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan
| | - Tatsuhisa Kato
- Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano-Nishihiraki-cho, Sakyo-ku, Kyoto, Kyoto 606-8103, Japan
| | - Masayuki Oda
- Faculty of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan; Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan.
| |
Collapse
|
2
|
Hosoe Y, Sekiguchi H, Sasaki YC, Oda M. Structural dynamics of a DNA-binding protein analyzed using diffracted X-ray tracking. Biophys Chem 2021; 278:106669. [PMID: 34416518 DOI: 10.1016/j.bpc.2021.106669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Diffracted X-ray tracking (DXT) is one of methods for the real-time evaluation of protein structural dynamics by detecting the movement of a gold-nanocrystal attached to a target protein. However, one of the technical concerns is the size of the gold-nanocrystals, which are larger than the protein. In our previous results of mean square angular displacement curves in DXT analysis, dynamical movements of the DNA-binding protein, c-Myb R2R3, were observed in only one population in either DNA-unbound or -bound state, and was found to decrease upon DNA binding. In this study, c-Myb R2R3 dynamical movements were re-evaluated with a low density of the protein immobilized on the DXT substrate, to decrease the possibility that the gold-nanocrystals attached to more than one R2R3 molecule. We observed two dynamical moving populations in the DNA-bound state, which could be classified due to electrostatic attraction and repulsion between the DNA-protein complexes, and determined the apparent angular diffusion constant, which was similar to the value calculated in our previous study. We showed more real movement of the protein could be observed by lowering the immobilization density of the protein.
Collapse
Affiliation(s)
- Yuhi Hosoe
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan
| | - Hiroshi Sekiguchi
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Yuji C Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan.
| |
Collapse
|
3
|
Kawasaki M, Oda M. DNA-binding function of c-Myb R2R3 around thermal denaturation temperature. Biophys Physicobiol 2021; 18:78-84. [PMID: 33977005 PMCID: PMC8056152 DOI: 10.2142/biophysico.bppb-v18.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/22/2021] [Indexed: 01/23/2023] Open
Abstract
The minimum DNA-binding domain of the transcriptional factor c-Myb R2R3 remarkably fluctuates in the solution. In the present study, we evaluated the protein fluctuation of R2R3 C130I mutant, R2R3*, on its DNA-binding and folding thermodynamics. DNA-binding analysis using isothermal titration calorimetry revealed that the heat capacity change determined from the correlation between temperature and binding enthalpy change is highly negative above 35°C, indicating that the fluctuation increases with increasing temperature and elevates the conformational change on DNA binding. The results were in accordance with those of differential scanning calorimetry, which revealed that the heat capacity corresponding to thermal denaturation gradually increased above 35°C, followed by the broad transition peak. In contrast, the transition peak of R2R3* in the DNA-bound state was sharper and larger than that in the DNA-unbound state. The fluctuating form could transform into lesser fluctuating form upon DNA binding, resulting in a larger enthalpy change for denaturation of R2R3* in the DNA-bound state. It should also be noted that R2R3* could specifically bind to DNA around thermal denaturation temperature. This would be due to proteins with numerous fluctuations. Moreover, we discuss specific and non-specific DNA binding accompanied by the conformational change between well-ordered and disordered forms of R2R3* observed around the denaturation temperature.
Collapse
Affiliation(s)
- Maki Kawasaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| |
Collapse
|
4
|
Kawasaki M, Hosoe Y, Kamatari YO, Oda M. Naïve balance between structural stability and DNA-binding ability of c-Myb R2R3 under physiological ionic conditions. Biophys Chem 2020; 258:106319. [DOI: 10.1016/j.bpc.2019.106319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/26/2019] [Accepted: 12/31/2019] [Indexed: 01/22/2023]
|
5
|
Inaba S, Shiota A, Yoshida T, Oda M. Site-specific observation of the conformational change of a protein with 15N-labeled Tyr residues using NMR. Anal Biochem 2019; 574:34-38. [PMID: 30910701 DOI: 10.1016/j.ab.2019.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 11/19/2022]
Abstract
One of the reasons it is difficult to analyze protein structural dynamics at atomic resolution using NMR is the molecular size of the protein. The selective amino acid labeling method is one of the effective methods that can solve this problem. In this study, to determine the site-specific conformational change in 3α-hydroxysteroid dehydrogenase from Pseudomonas sp. B-0831 (Ps3αHSD), which forms a dimer composed of two 26 kDa subunits, we expressed and purified 15N-Tyr labeled Ps3αHSD and its mutants, and analyzed the conformational change upon NADH binding. Using the Tyr substituted mutants, we first assigned the respective signals of four Tyr residues. In the titration experiments with NADH, the four Tyr signals changed uniquely; changes in chemical shift and signal broadening were observed. The NADH binding affinity, determined from the plots of the 1H and 15N chemical shift changes, was comparable to those reported previously. Together with the crystal structure information for Ps3αHSD in the NADH-free and -bound states, site-specific conformational changes including environmental changes could be deduced.
Collapse
Affiliation(s)
- Satomi Inaba
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan; Research & Utilization Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Ayako Shiota
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan
| | - Takuya Yoshida
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan.
| |
Collapse
|
6
|
Hosoe Y, Inaba S, Sekiguchi H, Sasaki YC, Oda M. DNA-binding induced conformational change of c-Myb R2R3 analyzed using diffracted X-ray tracking. Biochem Biophys Res Commun 2018; 503:338-343. [DOI: 10.1016/j.bbrc.2018.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/07/2018] [Indexed: 11/29/2022]
|
7
|
Usui D, Inaba S, Sekiguchi H, Sasaki YC, Tanaka T, Oda M. First observation of metal ion-induced structural fluctuations of α-helical peptides by using diffracted X-ray tracking. Biophys Chem 2017; 228:81-86. [DOI: 10.1016/j.bpc.2017.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022]
|