1
|
Characterization of functionally deficient SIM2 variants found in patients with neurological phenotypes. Biochem J 2022; 479:1441-1454. [PMID: 35730699 PMCID: PMC9342896 DOI: 10.1042/bcj20220209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Single-Minded 2 (SIM2) is a neuron enriched basic Helix-Loop-Helix/PER-ARNT-SIM (bHLH/PAS) transcription factor essential for mammalian survival. SIM2 is located within the Down Syndrome Critical Region (DSCR) of chromosome 21, and manipulation in mouse models suggests Sim2 may play a role in brain development and function. During screening of a clinical exome sequencing database, nine SIM2 non-synonymous mutations were found which were subsequently investigated for impaired function using cell-based reporter gene assays. A number of these human variants attenuated abilities to activate transcription and were further characterized to determine the mechanisms underpinning their deficiencies. These included impaired partner protein dimerization, reduced DNA binding and reduced expression and nuclear localization. This study highlighted several SIM2 variants found in patients with disabilities and validated a candidate set as potentially contributing to pathology.
Collapse
|
2
|
Rossi JJ, Rosenfeld JA, Chan KM, Streff H, Nankivell V, Peet DJ, Whitelaw ML, Bersten DC. Molecular characterisation of rare loss-of-function NPAS3 and NPAS4 variants identified in individuals with neurodevelopmental disorders. Sci Rep 2021; 11:6602. [PMID: 33758288 PMCID: PMC7987981 DOI: 10.1038/s41598-021-86041-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/01/2021] [Indexed: 01/01/2023] Open
Abstract
Aberrations in the excitatory/inhibitory balance within the brain have been associated with both intellectual disability (ID) and schizophrenia (SZ). The bHLH-PAS transcription factors NPAS3 and NPAS4 have been implicated in controlling the excitatory/inhibitory balance, and targeted disruption of either gene in mice results in a phenotype resembling ID and SZ. However, there are few human variants in NPAS3 and none in NPAS4 that have been associated with schizophrenia or neurodevelopmental disorders. From a clinical exome sequencing database we identified three NPAS3 variants and four NPAS4 variants that could potentially disrupt protein function in individuals with either developmental delay or ID. The transcriptional activity of the variants when partnered with either ARNT or ARNT2 was assessed by reporter gene activity and it was found that variants which truncated the NPAS3/4 protein resulted in a complete loss of transcriptional activity. The ability of loss-of-function variants to heterodimerise with neuronally enriched partner protein ARNT2 was then determined by co-immunoprecipitation experiments. It was determined that the mechanism for the observed loss of function was the inability of the truncated NPAS3/4 protein to heterodimerise with ARNT2. This further establishes NPAS3 and NPAS4 as candidate neurodevelopmental disorder genes.
Collapse
Affiliation(s)
- Joseph J Rossi
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Clinical Genomics, Baylor Genetics Laboratory, Houston, TX, 77030, USA
| | - Katie M Chan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Victoria Nankivell
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Daniel J Peet
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Murray L Whitelaw
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - David C Bersten
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia.
| |
Collapse
|
3
|
The Participation of the Intrinsically Disordered Regions of the bHLH-PAS Transcription Factors in Disease Development. Int J Mol Sci 2021; 22:ijms22062868. [PMID: 33799876 PMCID: PMC8001110 DOI: 10.3390/ijms22062868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/14/2022] Open
Abstract
The basic helix–loop–helix/Per-ARNT-SIM (bHLH-PAS) proteins are a family of transcription factors regulating expression of a wide range of genes involved in different functions, ranging from differentiation and development control by oxygen and toxins sensing to circadian clock setting. In addition to the well-preserved DNA-binding bHLH and PAS domains, bHLH-PAS proteins contain long intrinsically disordered C-terminal regions, responsible for regulation of their activity. Our aim was to analyze the potential connection between disordered regions of the bHLH-PAS transcription factors, post-transcriptional modifications and liquid-liquid phase separation, in the context of disease-associated missense mutations. Highly flexible disordered regions, enriched in short motives which are more ordered, are responsible for a wide spectrum of interactions with transcriptional co-regulators. Based on our in silico analysis and taking into account the fact that the functions of transcription factors can be modulated by posttranslational modifications and spontaneous phase separation, we assume that the locations of missense mutations inducing disease states are clearly related to sequences directly undergoing these processes or to sequences responsible for their regulation.
Collapse
|
4
|
Identification of a Locus on the X Chromosome Linked to Familial Membranous Nephropathy. Kidney Int Rep 2021; 6:1669-1676. [PMID: 34169208 PMCID: PMC8207324 DOI: 10.1016/j.ekir.2021.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 02/01/2023] Open
Abstract
Introduction Membranous nephropathy (MN) is the most common cause of nephrotic syndrome (NS) in adults and is a leading cause of end-stage renal disease due to glomerulonephritis. Primary MN has a strong male predominance, accounting for approximately 65% of cases; yet, currently associated genetic loci are all located on autosomes. Previous reports of familial MN have suggested the existence of a potential X-linked susceptibility locus. Identification of such risk locus may provide clues to the etiology of MN. Methods We identified 3 families with 8 members affected by primary MN. Genotyping was performed using single-nucleotide polymorphism microarrays, and serum was sent for anti-phospholipase A2 receptor (PLA2R) antibody testing. All affected members were male and connected through the maternal line, consistent with X-linked inheritance. Genome-wide multipoint parametric linkage analysis using a model of X-linked recessive inheritance was conducted, and genetic risk scores (GRSs) based on known MN-associated variants were determined. Results Anti-PLA2R testing was negative in all affected family members. Linkage analysis revealed a significant logarithm of the odds score (3.260) on the short arm of the X chromosome at a locus of approximately 11 megabases (Mb). Haplotype reconstruction further uncovered a shared haplotype spanning 2 Mb present in all affected individuals from the 3 families. GRSs in familial MN were significantly lower than in anti-PLA2R-associated MN and were not different from controls. Conclusions Our study identifies linkage of familial membranous nephropathy to chromosome Xp11.3-11.22. Family members affected with MN have a significantly lower GRS than individuals with anti-PLA2R-associated MN, suggesting that X-linked familial MN represents a separate etiologic entity.
Collapse
|
5
|
Florke Gee RR, Chen H, Lee AK, Daly CA, Wilander BA, Fon Tacer K, Potts PR. Emerging roles of the MAGE protein family in stress response pathways. J Biol Chem 2020; 295:16121-16155. [PMID: 32921631 PMCID: PMC7681028 DOI: 10.1074/jbc.rev120.008029] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
The melanoma antigen (MAGE) proteins all contain a MAGE homology domain. MAGE genes are conserved in all eukaryotes and have expanded from a single gene in lower eukaryotes to ∼40 genes in humans and mice. Whereas some MAGEs are ubiquitously expressed in tissues, others are expressed in only germ cells with aberrant reactivation in multiple cancers. Much of the initial research on MAGEs focused on exploiting their antigenicity and restricted expression pattern to target them with cancer immunotherapy. Beyond their potential clinical application and role in tumorigenesis, recent studies have shown that MAGE proteins regulate diverse cellular and developmental pathways, implicating them in many diseases besides cancer, including lung, renal, and neurodevelopmental disorders. At the molecular level, many MAGEs bind to E3 RING ubiquitin ligases and, thus, regulate their substrate specificity, ligase activity, and subcellular localization. On a broader scale, the MAGE genes likely expanded in eutherian mammals to protect the germline from environmental stress and aid in stress adaptation, and this stress tolerance may explain why many cancers aberrantly express MAGEs Here, we present an updated, comprehensive review on the MAGE family that highlights general characteristics, emphasizes recent comparative studies in mice, and describes the diverse functions exerted by individual MAGEs.
Collapse
Affiliation(s)
- Rebecca R Florke Gee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Helen Chen
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anna K Lee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christina A Daly
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Benjamin A Wilander
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Klementina Fon Tacer
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; School of Veterinary Medicine, Texas Tech University, Amarillo, Texas, USA.
| | - Patrick Ryan Potts
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
6
|
Brigidi GS, Hayes MGB, Delos Santos NP, Hartzell AL, Texari L, Lin PA, Bartlett A, Ecker JR, Benner C, Heinz S, Bloodgood BL. Genomic Decoding of Neuronal Depolarization by Stimulus-Specific NPAS4 Heterodimers. Cell 2019; 179:373-391.e27. [PMID: 31585079 PMCID: PMC6800120 DOI: 10.1016/j.cell.2019.09.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/22/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
Cells regulate gene expression in response to salient external stimuli. In neurons, depolarization leads to the expression of inducible transcription factors (ITFs) that direct subsequent gene regulation. Depolarization encodes both a neuron's action potential (AP) output and synaptic inputs, via excitatory postsynaptic potentials (EPSPs). However, it is unclear if distinct types of electrical activity can be transformed by an ITF into distinct modes of genomic regulation. Here, we show that APs and EPSPs in mouse hippocampal neurons trigger two spatially segregated and molecularly distinct induction mechanisms that lead to the expression of the ITF NPAS4. These two pathways culminate in the formation of stimulus-specific NPAS4 heterodimers that exhibit distinct DNA binding patterns. Thus, NPAS4 differentially communicates increases in a neuron's spiking output and synaptic inputs to the nucleus, enabling gene regulation to be tailored to the type of depolarizing activity along the somato-dendritic axis of a neuron.
Collapse
Affiliation(s)
- G Stefano Brigidi
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | - Michael G B Hayes
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | - Nathaniel P Delos Santos
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA; Department of Biomedical Informatics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | - Andrea L Hartzell
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA; Neuroscience Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | - Lorane Texari
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | - Pei-Ann Lin
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA; Neuroscience Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | - Anna Bartlett
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, La Jolla, CA 92093, USA
| | - Christopher Benner
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | - Sven Heinz
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | - Brenda L Bloodgood
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| |
Collapse
|
7
|
Subcellular Localization Signals of bHLH-PAS Proteins: Their Significance, Current State of Knowledge and Future Perspectives. Int J Mol Sci 2019; 20:ijms20194746. [PMID: 31554340 PMCID: PMC6801399 DOI: 10.3390/ijms20194746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
The bHLH-PAS (basic helix-loop-helix/ Period-ARNT-Single minded) proteins are a family of transcriptional regulators commonly occurring in living organisms. bHLH-PAS members act as intracellular and extracellular "signals" sensors, initiating response to endo- and exogenous signals, including toxins, redox potential, and light. The activity of these proteins as transcription factors depends on nucleocytoplasmic shuttling: the signal received in the cytoplasm has to be transduced, via translocation, to the nucleus. It leads to the activation of transcription of particular genes and determines the cell response to different stimuli. In this review, we aim to present the current state of knowledge concerning signals that affect shuttling of bHLH-PAS transcription factors. We summarize experimentally verified and published nuclear localization signals/nuclear export signals (NLSs/NESs) in the context of performed in silico predictions. We have used most of the available NLS/NES predictors. Importantly, all our results confirm the existence of a complex system responsible for protein localization regulation that involves many localization signals, which activity has to be precisely controlled. We conclude that the current stage of knowledge in this area is still not complete and for most of bHLH-PAS proteins an experimental verification of the activity of further NLS/NES is needed.
Collapse
|
8
|
Luoma LM, Berry FB. Molecular analysis of NPAS3 functional domains and variants. BMC Mol Biol 2018; 19:14. [PMID: 30509165 PMCID: PMC6276216 DOI: 10.1186/s12867-018-0117-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
Background NPAS3 encodes a transcription factor which has been associated with multiple human psychiatric and neurodevelopmental disorders. In mice, deletion of Npas3 was found to cause alterations in neurodevelopment, as well as a marked reduction in neurogenesis in the adult mouse hippocampus. This neurogenic deficit, alongside the reduction in cortical interneuron number, likely contributes to the behavioral and cognitive alterations observed in Npas3 knockout mice. Although loss of Npas3 has been found to affect proliferation and apoptosis, the molecular function of NPAS3 is largely uncharacterized outside of predictions based on its high homology to bHLH–PAS transcription factors. Here we set out to characterize NPAS3 as a transcription factor, and to confirm whether NPAS3 acts as predicted for a Class 1 bHLH–PAS family member. Results Through these studies we have experimentally demonstrated that NPAS3 behaves as a true transcription factor, capable of gene regulation through direct association with DNA. NPAS3 and ARNT are confirmed to directly interact in human cells through both bHLH and PAS dimerization domains. The C-terminus of NPAS3 was found to contain a functional transactivation domain. Further, the NPAS3::ARNT heterodimer was shown to directly regulate the expression of VGF and TXNIP through binding of their proximal promoters. Finally, we assessed the effects of three human variants of NPAS3 on gene regulatory function and do not observe significant deficits. Conclusions NPAS3 is a true transcription factor capable of regulating expression of target genes through their promoters by directly cooperating with ARNT. The tested human variants of NPAS3 require further characterization to identify their effects on NPAS3 expression and function in the individuals that carry them. These data enhance our understanding of the molecular function of NPAS3 and the mechanism by which it contributes to normal and abnormal neurodevelopment and neural function. Electronic supplementary material The online version of this article (10.1186/s12867-018-0117-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leiah M Luoma
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Fred B Berry
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada. .,Department of Surgery, 3002D Li Ka Shing Centre, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
9
|
Greb-Markiewicz B, Zarębski M, Ożyhar A. Multiple sequences orchestrate subcellular trafficking of neuronal PAS domain-containing protein 4 (NPAS4). J Biol Chem 2018; 293:11255-11270. [PMID: 29899116 PMCID: PMC6065191 DOI: 10.1074/jbc.ra118.001812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/05/2018] [Indexed: 01/25/2023] Open
Abstract
Neuronal Per-Arnt-Sim (PAS) domain-containing protein 4 (NPAS4) is a basic helix-loop-helix (bHLH)-PAS transcription factor first discovered in neurons in the neuronal layer of the mammalian hippocampus and later discovered in pancreatic β-cells. NPAS4 has been proposed as a therapeutic target not only for depression and neurodegenerative diseases associated with synaptic dysfunction but also for type 2 diabetes and pancreas transplantation. The ability of bHLH-PAS proteins to fulfil their function depends on their intracellular trafficking, which is regulated by specific sequences, i.e. the nuclear localization signal (NLS) and the nuclear export signal (NES). However, until now, no study examining the subcellular localization signals of NPAS4 has been published. We show here that Rattus norvegicus NPAS4 was not uniformly localized in the nuclei of COS-7 and N2a cells 24 h after transfection. Additionally, cytoplasmic localization of NPAS4 was leptomycin B-sensitive. We demonstrate that NPAS4 possesses a unique arrangement of localization signals. Its bHLH domain contains an overlapping NLS and NES. We observed that its PAS-2 domain contains an NLS, an NES, and a second, proximally located, putative NLS. Moreover, the C terminus of NPAS4 contains two active NESs that overlap with a putative NLS. Our data indicate that glucose concentration could be one of the factors influencing NPAS4 localization. The presence of multiple localization signals and the differentiated localization of NPAS4 suggest a precise, multifactor-dependent regulation of NPAS4 trafficking, potentially crucial for its ability to act as a cellular stress sensor and transcription factor.
Collapse
Affiliation(s)
- Beata Greb-Markiewicz
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Mirosław Zarębski
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
10
|
Grau C, Starkovich M, Azamian MS, Xia F, Cheung SW, Evans P, Henderson A, Lalani SR, Scott DA. Xp11.22 deletions encompassing CENPVL1, CENPVL2, MAGED1 and GSPT2 as a cause of syndromic X-linked intellectual disability. PLoS One 2017; 12:e0175962. [PMID: 28414775 PMCID: PMC5393878 DOI: 10.1371/journal.pone.0175962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/03/2017] [Indexed: 12/27/2022] Open
Abstract
By searching a clinical database of over 60,000 individuals referred for array-based CNV analyses and online resources, we identified four males from three families with intellectual disability, developmental delay, hypotonia, joint hypermobility and relative macrocephaly who carried small, overlapping deletions of Xp11.22. The maximum region of overlap between their deletions spanned ~430 kb and included two pseudogenes, CENPVL1 and CENPVL2, whose functions are not known, and two protein coding genes-the G1 to S phase transition 2 gene (GSPT2) and the MAGE family member D1 gene (MAGED1). Deletions of this ~430 kb region have not been previously implicated in human disease. Duplications of GSPT2 have been documented in individuals with intellectual disability, but the phenotypic consequences of a loss of GSPT2 function have not been elucidated in humans or mouse models. Changes in MAGED1 have not been associated with intellectual disability in humans, but loss of MAGED1 function is associated with neurocognitive and neurobehavioral phenotypes in mice. In all cases, the Xp11.22 deletion was inherited from an unaffected mother. Studies performed on DNA from one of these mothers did not show evidence of skewed X-inactivation. These results suggest that deletions of an ~430 kb region on chromosome Xp11.22 that encompass CENPVL1, CENPVL2, GSPT2 and MAGED1 cause a distinct X-linked syndrome characterized by intellectual disability, developmental delay, hypotonia, joint hypermobility and relative macrocephaly. Loss of GSPT2 and/or MAGED1 function may contribute to the intellectual disability and developmental delay seen in males with these deletions.
Collapse
Affiliation(s)
- Christina Grau
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Molly Starkovich
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mahshid S. Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Baylor Genetics, Houston, Texas, Unite States of America
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Baylor Genetics, Houston, Texas, Unite States of America
| | - Patricia Evans
- Departments of Pediatrics and Neurology, University of Texas Southwestern Medical School, Dallas, Texas, United States of America
| | - Alex Henderson
- The Newcastle upon Tyne Hospitals, Newcastle upon Tyne, England
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|