1
|
Maurya D, Mondal BC. Larval hematopoietic organs of multiple Drosophila species show effector caspase activity and DNA damage response. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001392. [PMID: 39758584 PMCID: PMC11696351 DOI: 10.17912/micropub.biology.001392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/13/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025]
Abstract
Macrophages are present in various forms throughout metazoans and play conserved roles in phagocytosis, immunity, and tissue homeostasis. In Drosophila melanogaster' s larval hematopoietic organ, the lymph gland, transient caspase-mediated activation of caspase-activated DNase triggers the DNA damage response (DDR), which is crucial for macrophage-type cell differentiation. Here, we report that other Drosophila species having different-sized mature lymph glands show effector caspase activity and DDR similar to those in Drosophila melanogaster , indicating that the developmental mechanism regulating phagocytic macrophage differentiation is conserved in different species of Drosophila .
Collapse
Affiliation(s)
- Deepak Maurya
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Bama Charan Mondal
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
2
|
Peng Z, Xiao H, Tan Y, Zhang X. Spotlight on macrophage pyroptosis: A bibliometric and visual analysis from 2001 to 2023. Heliyon 2024; 10:e31819. [PMID: 38845992 PMCID: PMC11154638 DOI: 10.1016/j.heliyon.2024.e31819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Macrophage pyroptosis plays a significant role in the pathogenesis of various diseases, especially acute lung injury, atherosclerosis, and sepsis. Despite its importance, analysis of the existing literature has been limited. Therefore, we conducted a bibliometric analysis to provide a comprehensive overview of research on macrophage pyroptosis and identify the current research foci and trends in this field. We collected articles related to macrophage pyroptosis published between 2001 and 2022 from the Web of Science Core Collection and PubMed. Citespace, VOSviewer, bibliometrix R package, and Microsoft Excel 2019 were used to analyze co-occurrence relationships and the contribution of countries/regions, institutions, journals, authors, references, and keywords. In total, 1321 papers were included. China and the United States of America published the most articles in this field. TD Kanneganti had the most publications; BT Cookson was the most cited. Although China contributed the most publications, it had a relatively low ratio of multiple-country collaborations (0.132). Among journals, Frontiers in Immunology and Cell Death Disease published the most papers; Nature and the Journal of Immunology were frequently co-cited. Frequently occurring keywords included "inflammation," "NLRP3 inflammasome," "apoptosis," "caspase-1," and "cell death." Moreover, with the advancement of gene editing technology and the integration of clinical applications, novel molecules ("caspases," "GSDMD," "ASC"), programmed cell death topics ("pyroptosis," "ferroptosis," "necrosis"), and clinical applications ("alveolar macrophage," "atherosclerosis," "prognosis") emerged as frontiers. The macrophage pyroptosis field is rapidly evolving and holds promise as a potential target for treating macrophage pyroptosis-related diseases.
Collapse
Affiliation(s)
- Zhimei Peng
- Department of Nephrology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Hua Xiao
- Department of Nephrology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yao Tan
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410000, China
| | - Xinzhou Zhang
- Department of Nephrology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Zhou Y, Du T, Yang CL, Li T, Li XL, Liu W, Zhang P, Dong J, Si WY, Duan RS, Wang CC. Extracellular vesicles encapsulated with caspase-1 inhibitor ameliorate experimental autoimmune myasthenia gravis through targeting macrophages. J Control Release 2023; 364:458-472. [PMID: 37935259 DOI: 10.1016/j.jconrel.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Cysteinyl aspartate-specific proteinase-1 (caspase-1) is a multifunctional inflammatory mediator in many inflammation-related diseases. Previous studies show that caspase-1 inhibitors produce effective therapeutic outcomes in a rat model of myasthenia gravis. However, tissue toxicity and unwanted off-target effects are the major disadvantages limiting their clinical application as therapeutic agents. This study shows that dendritic cell-derived extracellular vesicles (EVs) loaded with a caspase-1 inhibitor (EVs-VX-765) are phagocytized mainly by macrophages, and caspase-1 is precisely expressed in macrophages. Furthermore, EVs-VX-765 demonstrates excellent therapeutic effects through a macrophage-dependent mechanism, and it notably inhibits the level of interleukin-1β and subsequently inhibits Th17 response and germinal center (GC) reactions. In addition, EVs-VX-765 demonstrates better therapeutic effects than routine doses of VX-765, although drug loading is much lower than routine doses, consequently reducing tissue toxicity. In conclusion, this study's findings suggest that EV-mediated delivery of caspase-1 inhibitors is effective for treating myasthenia gravis and is promising for clinical applications.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Tong Du
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China; Shandong Institute of Neuroimmunology, Jinan, Shandong, China; Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China
| | - Chun-Lin Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China; Shandong Institute of Neuroimmunology, Jinan, Shandong, China; Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China
| | - Tao Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Xiao-Li Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China; Shandong Institute of Neuroimmunology, Jinan, Shandong, China; Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China
| | - Wei Liu
- Department of Cerebral Disease, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Peng Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China; Shandong Institute of Neuroimmunology, Jinan, Shandong, China; Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China
| | - Jing Dong
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Wei-Yue Si
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Rui-Sheng Duan
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China; Shandong Institute of Neuroimmunology, Jinan, Shandong, China; Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China; Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China.
| | - Cong-Cong Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China; Shandong Institute of Neuroimmunology, Jinan, Shandong, China; Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China.
| |
Collapse
|
4
|
Alam MA, Caocci M, Ren M, Chen Z, Liu F, Khatun MS, Kolls JK, Qin X, Burdo TH. Deficiency of Caspase-1 Attenuates HIV-1-Associated Atherogenesis in Mice. Int J Mol Sci 2023; 24:12871. [PMID: 37629052 PMCID: PMC10454548 DOI: 10.3390/ijms241612871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Within arterial plaque, HIV infection creates a state of inflammation and immune activation, triggering NLRP3/caspase-1 inflammasome, tissue damage, and monocyte/macrophage infiltration. Previously, we documented that caspase-1 activation in myeloid cells was linked with HIV-associated atherosclerosis in mice and people with HIV. Here, we mechanistically examined the direct effect of caspase-1 on HIV-associated atherosclerosis. Caspase-1-deficient (Casp-1-/-) mice were crossed with HIV-1 transgenic (Tg26+/-) mice with an atherogenic ApoE-deficient (ApoE-/-) background to create global caspase-1-deficient mice (Tg26+/-/ApoE-/-/Casp-1-/-). Caspase-1-sufficient (Tg26+/-/ApoE-/-/Casp-1+/+) mice served as the controls. Next, we created chimeric hematopoietic cell-deficient mice by reconstituting irradiated ApoE-/- mice with bone marrow cells transplanted from Tg26+/-/ApoE-/-/Casp-1-/- (BMT Casp-1-/-) or Tg26+/-/ApoE-/-/Casp-1+/+ (BMT Casp-1+/+) mice. Global caspase-1 knockout in mice suppressed plaque deposition in the thoracic aorta, serum IL-18 levels, and ex vivo foam cell formation. The deficiency of caspase-1 in hematopoietic cells resulted in reduced atherosclerotic plaque burden in the whole aorta and aortic root, which was associated with reduced macrophage infiltration. Transcriptomic analyses of peripheral mononuclear cells and splenocytes indicated that caspase-1 deficiency inhibited caspase-1 pathway-related genes. These results document the critical atherogenic role of caspase-1 in chronic HIV infection and highlight the implication of this pathway and peripheral immune activation in HIV-associated atherosclerosis.
Collapse
Affiliation(s)
- Mohammad Afaque Alam
- Department of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA; (M.A.A.); (M.R.); (Z.C.); (F.L.)
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Maurizio Caocci
- Department of Microbiology, Immunology and Inflammation, Center for NeuroVirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Mi Ren
- Department of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA; (M.A.A.); (M.R.); (Z.C.); (F.L.)
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Zheng Chen
- Department of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA; (M.A.A.); (M.R.); (Z.C.); (F.L.)
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Fengming Liu
- Department of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA; (M.A.A.); (M.R.); (Z.C.); (F.L.)
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Mst Shamima Khatun
- Departments of Pediatrics & Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA; (M.S.K.); (J.K.K.)
| | - Jay K. Kolls
- Departments of Pediatrics & Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA; (M.S.K.); (J.K.K.)
- Department of Medicine, Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Xuebin Qin
- Department of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA; (M.A.A.); (M.R.); (Z.C.); (F.L.)
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Tricia H. Burdo
- Department of Microbiology, Immunology and Inflammation, Center for NeuroVirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| |
Collapse
|
5
|
Yu X, Liu X, Liu X, Jin S, Zhong M, Nie D, Zeng X, Wang X, Tan J, Li Y, Zeng C. Overexpression of CASP1 triggers acute promyelocytic leukemia cell pyroptosis and differentiation. Eur J Pharmacol 2023; 945:175614. [PMID: 36822457 DOI: 10.1016/j.ejphar.2023.175614] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
Caspase-1 (CASP1)-mediated classical pyroptosis plays a key role in cancer development and management, however, the role of CASP1 and its regulation has not yet been documented for acute promyelocytic leukemia (APL). Here, we found that CASP1/GSDMD had lower expression in patients with APL and most other subtypes of primary de novo acute myeloid leukemia (AML) and was increased in all-trans-retinoic acid (ATRA)-treated APL cells. We showed that ATRA increases and activates CASP1 to trigger the pyroptosis and differentiation of APL cells. Mechanistically, ATRA could induce CASP1 expression via the IFNγ/STAT1 pathway in APL cells. In conclusion, ATRA-induced activation of CASP1 may serve as a suppressor in APL progression, as it triggers pyroptotic cell death and differentiation.
Collapse
Affiliation(s)
- Xibao Yu
- The First Affiliated Hospital and Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Xin Liu
- The First Affiliated Hospital and Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China; Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Xuan Liu
- The First Affiliated Hospital and Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Shuang Jin
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Mengjun Zhong
- The First Affiliated Hospital and Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Dingrui Nie
- The First Affiliated Hospital and Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiangbo Zeng
- The First Affiliated Hospital and Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xianfeng Wang
- The First Affiliated Hospital and Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China; Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiaxiong Tan
- The First Affiliated Hospital and Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yangqiu Li
- The First Affiliated Hospital and Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.
| | - Chengwu Zeng
- The First Affiliated Hospital and Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
6
|
FLI1 regulates inflammation-associated genes to accelerate leukemogenesis. Cell Signal 2022; 92:110269. [DOI: 10.1016/j.cellsig.2022.110269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 01/03/2023]
|
7
|
Ramesova A, Vesela B, Svandova E, Lesot H, Matalova E. Caspase-1 Inhibition Impacts the Formation of Chondrogenic Nodules, and the Expression of Markers Related to Osteogenic Differentiation and Lipid Metabolism. Int J Mol Sci 2021; 22:ijms22179576. [PMID: 34502478 PMCID: PMC8431148 DOI: 10.3390/ijms22179576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 08/31/2021] [Indexed: 01/13/2023] Open
Abstract
Caspase-1, as the main pro-inflammatory cysteine protease, was investigated mostly with respect to inflammation-related processes. Interestingly, caspase-1 was identified as being involved in lipid metabolism, which is extremely important for the proper differentiation of chondrocytes. Based on a screening investigation, general caspase inhibition impacts the expression of Cd36 in chondrocytes, the fatty acid translocase with a significant impact on lipid metabolism. However, the engagement of individual caspases in the effect has not yet been identified. Therefore, the hypothesis that caspase-1 might be a candidate here appears challenging. The primary aim of this study thus was to find out whether the inhibition of caspase-1 activity would affect Cd36 expression in a chondrogenic micromass model. The expression of Pparg, a regulator Cd36, was examined as well. In the caspase-1 inhibited samples, both molecules were significantly downregulated. Notably, in the treated group, the formation of the chondrogenic nodules was apparently disrupted, and the subcellular deposition of lipids and polysaccharides showed an abnormal pattern. To further investigate this observation, the samples were subjected to an osteogenic PCR array containing selected markers related to cartilage/bone cell differentiation. Among affected molecules, Bmp7 and Gdf10 showed a significantly increased expression, while Itgam, Mmp9, Vdr, and Rankl decreased. Notably, Rankl is a key marker in bone remodeling/homeostasis and thus is a target in several treatment strategies, including a variety of fatty acids, and is balanced by its decoy receptor Opg (osteoprotegerin). To evaluate the effect of Cd36 downregulation on Rankl and Opg, Cd36 silencing was performed using micromass cultures. After Cd36 silencing, the expression of Rankl was downregulated and Opg upregulated, which was an inverse effect to caspase-1 inhibition (and Cd36 upregulation). These results demonstrate new functions of caspase-1 in chondrocyte differentiation and lipid metabolism-related pathways. The effect on the Rankl/Opg ratio, critical for bone maintenance and pathology, including osteoarthritis, is particularly important here as well.
Collapse
Affiliation(s)
- Alice Ramesova
- Department of Physiology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic; (A.R.); (E.S.); (E.M.)
| | - Barbora Vesela
- Department of Physiology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic; (A.R.); (E.S.); (E.M.)
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 602 00 Brno, Czech Republic;
- Correspondence:
| | - Eva Svandova
- Department of Physiology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic; (A.R.); (E.S.); (E.M.)
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 602 00 Brno, Czech Republic;
| | - Herve Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 602 00 Brno, Czech Republic;
| | - Eva Matalova
- Department of Physiology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic; (A.R.); (E.S.); (E.M.)
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 602 00 Brno, Czech Republic;
| |
Collapse
|
8
|
Development of mode of action networks related to the potential role of PPARγ in respiratory diseases. Pharmacol Res 2021; 172:105821. [PMID: 34403731 DOI: 10.1016/j.phrs.2021.105821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/30/2022]
Abstract
The peroxisome proliferator-activated receptor γ (PPARγ) is a key transcription factor, operating at the intercept of metabolic control and immunomodulation. It is ubiquitously expressed in multiple tissues and organs, including lungs. There is a growing body of information supporting the role of PPARγ signalling in respiratory diseases. The aim of the present study was to develop mode of action (MoA) networks reflecting the relationships between PPARγ signalling and the progression/alleviation of a spectrum of lung pathologies. Data mining was performed using the resources of the NIH PubMed and PubChem information systems. By linking available data on pathological/therapeutic effects of PPARγ modulation, knowledge-based MoA networking at different levels of biological organization (molecular, cellular, tissue, organ, and system) was performed. Multiple MoA networks were developed to relate PPARγ modulation to the progress or the alleviation of pulmonary disorders, triggered by diverse pathogenic, genetic, chemical, or mechanical factors. Pharmacological targeting of PPARγ signalling was discussed with regard to ligand- and cell type-specific effects in the context of distinct disease inductor- and disease stage-dependent patterns. The proposed MoA networking analysis allows for a better understanding of the potential role of PPARγ modulation in lung pathologies. It presents a mechanistically justified basis for further computational, experimental, and clinical monitoring studies on the dynamic control of PPARγ signalling in respiratory diseases.
Collapse
|
9
|
Sharma V, Fernando V, Letson J, Walia Y, Zheng X, Fackelman D, Furuta S. S-Nitrosylation in Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22094600. [PMID: 33925645 PMCID: PMC8124305 DOI: 10.3390/ijms22094600] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
S-nitrosylation is a selective and reversible post-translational modification of protein thiols by nitric oxide (NO), which is a bioactive signaling molecule, to exert a variety of effects. These effects include the modulation of protein conformation, activity, stability, and protein-protein interactions. S-nitrosylation plays a central role in propagating NO signals within a cell, tissue, and tissue microenvironment, as the nitrosyl moiety can rapidly be transferred from one protein to another upon contact. This modification has also been reported to confer either tumor-suppressing or tumor-promoting effects and is portrayed as a process involved in every stage of cancer progression. In particular, S-nitrosylation has recently been found as an essential regulator of the tumor microenvironment (TME), the environment around a tumor governing the disease pathogenesis. This review aims to outline the effects of S-nitrosylation on different resident cells in the TME and the diverse outcomes in a context-dependent manner. Furthermore, we will discuss the therapeutic potentials of modulating S-nitrosylation levels in tumors.
Collapse
|
10
|
Chen G, Zheng B. Effect of macrophages in semen on sperm quality. Reprod Biol Endocrinol 2021; 19:38. [PMID: 33663557 PMCID: PMC7931606 DOI: 10.1186/s12958-021-00724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This was a cross-sectional study in China which analyzed the levels of macrophages (Mφ) in semen and evaluated the influence of Mφ levels in semen on sperm quality. METHODS The subjects involves 78 males, 25- to 35-year old. The samples were divided into a low group (Mφ < 6 × 105/ml) and a high group (Mφ > 6 × 105/ml). Evaluation included consideration of the influencing factors of male semen quality, macrophage concentration, sperm motility, morphology, membrane integrity DNA fragmentation index (DFI), anti-sperm antibodies (AsAb), IL-10, and IL-12 in semen. RESULTS There was no difference in the physical or chemical indices of the semen, sperm concentration, AsAb, IL-10, or IL-12 between the two groups (P > 0.05). The percentage of sperm forward motility (PR%), the rate of normal sperm shape, and the integrity of cell membranes in the low group were higher than those in the high group (P < 0.05), while the percentage of sperm inactivity (IM%), the rate of sperm head deformity, the rate of deformity in the neck and middle segment, the sperm deformity index (SDI), the teratozoospermia index (TZI), and the sperm DFI in the low group were lower than those in the high group (P < 0.05). The concentration of Mφ in the semen was linearly correlated with sperm concentration, sperm PR%, IM%, sperm normal shape rate, head deformity rate, neck and middle deformity rate, SDI, TZI, sperm DFI, and sperm cell membrane integrity (P < 0.05), but there was no linear correlation with IL-10 or IL-12 (P > 0.05). CONCLUSIONS The Mφ concentration in semen is not significantly correlated with semen volume or sperm concentration, but negatively correlated with sperm motility, morphology, cell membrane integrity, and DNA damage rate. There is no significant correlation between the macrophages and the concentration of IL-10 or IL-12.
Collapse
Affiliation(s)
- Gangxin Chen
- Reproductive Medicine Center, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Daoshan Road 18, Fuzhou, Fujian, 350001, China.
| | - Beihong Zheng
- Reproductive Medicine Center, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Daoshan Road 18, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
11
|
Reichl FX, Högg C, Liu F, Schwarz M, Teupser D, Hickel R, Bloch W, Schweikl H, Thomas P, Summer B. Actovegin® reduces PMA-induced inflammation on human cells. Eur J Appl Physiol 2020; 120:1671-1680. [PMID: 32447451 PMCID: PMC8497287 DOI: 10.1007/s00421-020-04398-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/16/2020] [Indexed: 01/06/2023]
Abstract
Purpose The effect of Actovegin® was investigated on PMA- and LPS-induced human peripheral blood mononuclear cells (PBMCs). Methods PBMCs (1 × 106 cells/ml) from five blood donors (2 f, 3 m; 45–55 years) were grown in medium and exposed to Actovegin® in the presence or absence of PMA or LPS. Supernatants were collected to assess the concentration of cytokines (TNF-α, IL-1beta, IL-6 and IL-10). The reactive oxygen species (ROS) were assessed by a ROS-GloTM H2O2 assay. Results Stimulation of cells by PMA or LPS (without Actovegin®) significantly increased the secretion of IL-1beta, IL-6, IL-10 and TNF-α from PBMCs, compared to controls. Pre-treatment of cells with Actovegin® (1, 5, 25, 125 µg/ml) plus PMA significantly decreased the secretion of IL-1beta from PBMCs, compared to controls (PMA without Actovegin®). In contrast, addition of Actovegin® (1, 5, 25, 125 and 250 µg/ml) plus LPS did not alter the IL-1beta production, compared to controls (LPS without Actovegin®). TNF-α, IL-6 and IL-10 do not contribute to the reduction of inflammatory reactions with Actovegin®. Conclusions Actovegin® can reduce the PMA-induced IL-1beta release and the ROS production from PBMCs. These findings may help to explain the clinically known positive effects of Actovegin® on athletic injuries with inflammatory responses (e.g., muscle injuries, tendinopathies).
Collapse
Affiliation(s)
- Franz-Xaver Reichl
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestr. 70, 80336, Munich, Germany.
| | - Christof Högg
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestr. 70, 80336, Munich, Germany
| | - Fangfang Liu
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestr. 70, 80336, Munich, Germany
| | - Markus Schwarz
- Institute for Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Daniel Teupser
- Institute for Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Reinhard Hickel
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestr. 70, 80336, Munich, Germany
| | - Wilhelm Bloch
- Molecular and Cellular Sport Medicine, German Sport University, Cologne, Germany
| | - Helmut Schweikl
- Department of Conservative Dentistry and Periodontology, University Hospital, Regensburg, Germany
| | - Peter Thomas
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Burkhard Summer
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
12
|
Piedra-Quintero ZL, Serrano C, Villegas-Sepúlveda N, Maravillas-Montero JL, Romero-Ramírez S, Shibayama M, Medina-Contreras O, Nava P, Santos-Argumedo L. Myosin 1F Regulates M1-Polarization by Stimulating Intercellular Adhesion in Macrophages. Front Immunol 2019; 9:3118. [PMID: 30687322 PMCID: PMC6335276 DOI: 10.3389/fimmu.2018.03118] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
Intestinal macrophages are highly mobile cells with extraordinary plasticity and actively contribute to cytokine-mediated epithelial cell damage. The mechanisms triggering macrophage polarization into a proinflammatory phenotype are unknown. Here, we report that during inflammation macrophages enhance its intercellular adhesion properties in order to acquire a M1-phenotype. Using in vitro and in vivo models we demonstrate that intercellular adhesion is mediated by integrin-αVβ3 and relies in the presence of the unconventional class I myosin 1F (Myo1F). Intercellular adhesion mediated by αVβ3 stimulates M1-like phenotype in macrophages through hyperactivation of STAT1 and STAT3 downstream of ILK/Akt/mTOR signaling. Inhibition of integrin-αVβ3, Akt/mTOR, or lack of Myo1F attenuated the commitment of macrophages into a pro-inflammatory phenotype. In a model of colitis, Myo1F deficiency strongly reduces the secretion of proinflammatory cytokines, decreases epithelial damage, ameliorates disease activity, and enhances tissue repair. Together our findings uncover an unknown role for Myo1F as part of the machinery that regulates intercellular adhesion and polarization in macrophages.
Collapse
Affiliation(s)
| | - Carolina Serrano
- Department of Physiology, Biophysics and Neurosciences, Cinvestav Zacatenco, Mexico City, Mexico
| | | | - José L Maravillas-Montero
- Research Support Network, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Sandra Romero-Ramírez
- Research Support Network, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Cinvestav Zacatenco, Mexico City, Mexico
| | - Oscar Medina-Contreras
- Immunology and Proteomics Laboratory, Mexico Children's Hospital Federico Gómez, Mexico City, Mexico
| | - Porfirio Nava
- Department of Physiology, Biophysics and Neurosciences, Cinvestav Zacatenco, Mexico City, Mexico
| | | |
Collapse
|
13
|
Chang WC, Chu MT, Hsu CY, Wu YJJ, Lee JY, Chen TJ, Chung WH, Chen DY, Hung SI. Rhein, An Anthraquinone Drug, Suppresses the NLRP3 Inflammasome and Macrophage Activation in Urate Crystal-Induced Gouty Inflammation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:135-151. [PMID: 30612459 DOI: 10.1142/s0192415x19500071] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rhein, an anthraquinone drug, is a widely used traditional Chinese medicine. Rhein is a major bioactive metabolite of diacerein which has been approved for treating osteoarthritis with a good safety profile in humans. Gouty arthritis is an inflammatory disease characterized by urate crystal-induced NLRP3 inflammasome activation with up-regulated caspase-1 protease and IL-1 β in macrophages. Inhibition of the NLRP3 inflammasome formation has been considered as a potential therapeutic avenue for treating or preventing many inflammatory diseases. This study aimed to evaluate the anti-inflammatory effects of rhein on gouty arthritis. Rhein within the physiological levels of humans showed no toxicity on the cell viability and differentiation, but significantly decreased the production of IL-1 β , TNF- α and caspase-1 protease in urate crystal-activated macrophages. Compared to medium controls, rhein at the therapeutic concentration (2.5 μ g/mL) effectively inhibited IL-1 β production by 47% ( P=0.002 ). Rhein did not affect the mRNA levels of CASP1, NLRP3 and ASC, but suppressed the protein expression and enzyme activity of caspase-1. Immunofluorescence confocal microscopy further revealed that rhein suppressed the aggregation of ASC speck and inhibited the formation of NLRP3 inflammasome. Rhein of 5 μ g/mL significantly decreased the ASC speck to 36% ( P=0.0011 ), and reduced the NLRP3 aggregates to 37.5% ( P=0.014 ). Our data demonstrate that rhein possesses pharmacological activity to suppress caspase-1 protease activity and IL-1 β production by interfering with the formation of NLRP3 multiprotein complex. These results suggest that rhein has therapeutic potential for treating NLRP3 inflammasome-mediated diseases such as gouty arthritis.
Collapse
Affiliation(s)
- Wan-Chun Chang
- * Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Mu-Tzu Chu
- * Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yuan Hsu
- * Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yeong-Jian Jan Wu
- † Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Keelung, Taiwan
| | | | - Ting-Jui Chen
- * Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,§ Department of Dermatology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Wen-Hung Chung
- ¶ Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, College of Medicine and Chang Gung University, Taipei, Taiwan
| | - Der-Yuan Chen
- ∥ Rheumatology and Immunology Center, China Medical University Hospital; Department of Medicine, China Medical University, Taichung, Taiwan
| | - Shuen-Iu Hung
- * Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|