1
|
Landau M, Elsabbagh S, Gross H, Fuchs ACD, Schultz ACF, Schultz JE. The membrane domains of mammalian adenylyl cyclases are lipid receptors. eLife 2024; 13:RP101483. [PMID: 39611663 PMCID: PMC11606603 DOI: 10.7554/elife.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
The biosynthesis of cyclic 3',5'-adenosine monophosphate (cAMP) by mammalian membrane-bound adenylyl cyclases (mACs) is predominantly regulated by G-protein-coupled receptors (GPCRs). Up to now the two hexahelical transmembrane domains of mACs were considered to fix the enzyme to membranes. Here, we show that the transmembrane domains serve in addition as signal receptors and transmitters of lipid signals that control Gsα-stimulated mAC activities. We identify aliphatic fatty acids and anandamide as receptor ligands of mAC isoforms 1-7 and 9. The ligands enhance (mAC isoforms 2, 3, 7, and 9) or attenuate (isoforms 1, 4, 5, and 6) Gsα-stimulated mAC activities in vitro and in vivo. Substitution of the stimulatory membrane receptor of mAC3 by the inhibitory receptor of mAC5 results in a ligand inhibited mAC5-mAC3 chimera. Thus, we discovered a new class of membrane receptors in which two signaling modalities are at a crossing, direct tonic lipid and indirect phasic GPCR-Gsα signaling regulating the biosynthesis of cAMP.
Collapse
Affiliation(s)
- Marius Landau
- Pharmazeutisches Institut der Universität TübingenTübingenGermany
| | - Sherif Elsabbagh
- Pharmazeutisches Institut der Universität TübingenTübingenGermany
| | - Harald Gross
- Pharmazeutisches Institut der Universität TübingenTübingenGermany
| | | | - Anita CF Schultz
- Pharmazeutisches Institut der Universität TübingenTübingenGermany
| | | |
Collapse
|
2
|
Schuster D, Khanppnavar B, Kantarci I, Mehta V, Korkhov VM. Structural insights into membrane adenylyl cyclases, initiators of cAMP signaling. Trends Biochem Sci 2024; 49:156-168. [PMID: 38158273 DOI: 10.1016/j.tibs.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Membrane adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. As effector proteins of G protein-coupled receptors and other signaling pathways, ACs receive and amplify signals from the cell surface, translating them into biochemical reactions in the intracellular space and integrating different signaling pathways. Despite their importance in signal transduction and physiology, our knowledge about the structure, function, regulation, and molecular interactions of ACs remains relatively scarce. In this review, we summarize recent advances in our understanding of these membrane enzymes.
Collapse
Affiliation(s)
- Dina Schuster
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland; Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland; Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Basavraj Khanppnavar
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland; Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland
| | - Ilayda Kantarci
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Ved Mehta
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Volodymyr M Korkhov
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland; Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland.
| |
Collapse
|
3
|
Broser M, Busse W, Spreen A, Reh M, Bernal Sierra YA, Hwang S, Utesch T, Sun H, Hegemann P. Diversity of rhodopsin cyclases in zoospore-forming fungi. Proc Natl Acad Sci U S A 2023; 120:e2310600120. [PMID: 37871207 PMCID: PMC10622942 DOI: 10.1073/pnas.2310600120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/25/2023] Open
Abstract
Light perception for orientation in zoospore-forming fungi is linked to homo- or heterodimeric rhodopsin-guanylyl cyclases (RGCs). Heterodimeric RGCs, first identified in the chytrid Rhizoclosmatium globosum, consist of an unusual near-infrared absorbing highly fluorescent sensitizer neorhodopsin (NeoR) that is paired with a visual light-absorbing rhodopsin responsible for enzyme activation. Here, we present a comprehensive analysis of the distribution of RGC genes in early-branching fungi using currently available genetic data. Among the characterized RGCs, we identified red-sensitive homodimeric RGC variants with maximal light activation close to 600 nm, which allow for red-light control of GTP to cGMP conversion in mammalian cells. Heterodimeric RGC complexes have evolved due to a single gene duplication within the branching of Chytridiales and show a spectral range for maximal light activation between 480 to 600 nm. In contrast, the spectral sensitivity of NeoRs is reaching into the near-infrared range with maximal absorption between 641 and 721 nm, setting the low energy spectral edge of rhodopsins so far. Based on natural NeoR variants and mutational studies, we reevaluated the role of the counterion-triad proposed to cause the extreme redshift. With the help of chimera constructs, we disclose that the cyclase domain is crucial for functioning as homo- or heterodimers, which enables the adaptation of the spectral sensitivity by modular exchange of the photosensor. The extreme spectral plasticity of retinal chromophores in native photoreceptors provides broad perspectives on the achievable spectral adaptation for rhodopsin-based molecular tools ranging from UVB into the near-infrared.
Collapse
Affiliation(s)
- Matthias Broser
- Institute of Biology, Department of Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin10115, Germany
| | - Wayne Busse
- Institute of Biology, Department of Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin10115, Germany
| | - Anika Spreen
- Institute of Biology, Department of Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin10115, Germany
| | - Maila Reh
- Institute of Biology, Department of Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin10115, Germany
| | - Yinth Andrea Bernal Sierra
- Institute of Biology, Department of Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin10115, Germany
| | - Songhwan Hwang
- Institute of Biology, Department of Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin10115, Germany
- Research Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin13125, Germany
| | - Tillmann Utesch
- Research Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin13125, Germany
| | - Han Sun
- Research Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin13125, Germany
- Department of Chemistry, Technische Universität Berlin, Berlin10623, Germany
| | - Peter Hegemann
- Institute of Biology, Department of Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin10115, Germany
| |
Collapse
|
4
|
Elsabbagh S, Landau M, Gross H, Schultz A, Schultz JE. Heme b inhibits class III adenylyl cyclases. Cell Signal 2023; 103:110568. [PMID: 36565898 DOI: 10.1016/j.cellsig.2022.110568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Acidic lipid extracts from mouse liver, kidney, heart, brain, and lung inhibited human pseudoheterodimeric adenylyl cyclases (hACs) expressed in HEK293 cells. Using an acidic lipid extract from bovine lung, a combined MS- and bioassay-guided fractionation identified heme b as inhibitor of membrane-bound ACs. IC50 concentrations were 8-12 μM for the hAC isoforms. Hemopexin and bacterial hemophore attenuated heme b inhibition of hAC5. Structurally related compounds, such as hematin, protoporphyrin IX, and biliverdin, were significantly less effective. Monomeric bacterial class III ACs (mycobacterial ACs Rv1625c; Rv3645; Rv1264; cyanobacterial AC CyaG) were inhibited by heme b with similar efficiency. Surprisingly, structurally related chlorophyll a similarly inhibited hAC5. Heme b inhibited isoproterenol-stimulated cAMP accumulation in HEK293 cells. Using cortical membranes from mouse brain hemin efficiently and reversibly inhibited basal and Gsα-stimulated AC activity. The physiological relevance of heme b inhibition of the cAMP generating system in certain pathologies is discussed.
Collapse
Affiliation(s)
- Sherif Elsabbagh
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany
| | - Marius Landau
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany
| | - Harald Gross
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany
| | - Anita Schultz
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany
| | - Joachim E Schultz
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Schultz JE. The evolutionary conservation of eukaryotic membrane-bound adenylyl cyclase isoforms. Front Pharmacol 2022; 13:1009797. [PMID: 36238545 PMCID: PMC9552081 DOI: 10.3389/fphar.2022.1009797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
The nine membrane-delimited eukaryotic adenylyl cyclases are pseudoheterodimers with an identical domain order of seven (nine) distinct subdomains. Bioinformatics show that the protein evolved from a monomeric bacterial progenitor by gene duplication and fusion probably in a primordial eukaryotic cell around 1.5 billion years ago. Over a timespan of about 1 billion years, the first fusion product diverged into nine highly distinct pseudoheterodimeric isoforms. The evolutionary diversification ended approximately 0.5 billion years ago because the present isoforms are found in the living fossil coelacanth, a fish. Except for the two catalytic domains, C1 and C2, the mAC isoforms are fully diverged. Yet, within each isoform a high extent of conservation of respective subdomains is found. This applies to the C- and N-termini, a long linker region between the protein halves (C1b), two short cyclase-transducing-elements (CTE) and notably to the two hexahelical membrane domains TM1 and TM2. Except for the membrane anchor all subdomains were previously implicated in regulatory modalities. The bioinformatic results unequivocally indicate that the membrane anchors must possess an important regulatory function specifically tailored for each mAC isoform.
Collapse
|
6
|
Mehta V, Khanppnavar B, Schuster D, Kantarci I, Vercellino I, Kosturanova A, Iype T, Stefanic S, Picotti P, Korkhov VM. Structure of Mycobacterium tuberculosis Cya, an evolutionary ancestor of the mammalian membrane adenylyl cyclases. eLife 2022; 11:77032. [PMID: 35980026 PMCID: PMC9433096 DOI: 10.7554/elife.77032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium tuberculosis adenylyl cyclase (AC) Rv1625c / Cya is an evolutionary ancestor of the mammalian membrane ACs and a model system for studies of their structure and function. Although the vital role of ACs in cellular signaling is well established, the function of their transmembrane (TM) regions remains unknown. Here we describe the cryo-EM structure of Cya bound to a stabilizing nanobody at 3.6 Å resolution. The TM helices 1-5 form a structurally conserved domain that facilitates the assembly of the helical and catalytic domains. The TM region contains discrete pockets accessible from the extracellular and cytosolic side of the membrane. Neutralization of the negatively charged extracellular pocket Ex1 destabilizes the cytosolic helical domain and reduces the catalytic activity of the enzyme. The TM domain acts as a functional component of Cya, guiding the assembly of the catalytic domain and providing the means for direct regulation of catalytic activity in response to extracellular ligands.
Collapse
Affiliation(s)
- Ved Mehta
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Basavraj Khanppnavar
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Dina Schuster
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Ilayda Kantarci
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Irene Vercellino
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Angela Kosturanova
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Tarun Iype
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Sasa Stefanic
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Volodymyr M Korkhov
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
7
|
Seth A, Landau M, Shevchenko A, Traikov S, Schultz A, Elsabbagh S, Schultz JE. Distinct glycerophospholipids potentiate Gsα-activated adenylyl cyclase activity. Cell Signal 2022; 97:110396. [PMID: 35787445 DOI: 10.1016/j.cellsig.2022.110396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022]
Abstract
Nine mammalian adenylyl cyclases (AC) are pseudoheterodimers with two hexahelical membrane domains, which are isoform-specifically conserved. Previously we proposed that these membrane domains are orphan receptors (https://doi.org/10.7554/eLife.13098; https://doi.org/10.1016/j.cellsig.2020.109538). Lipids extracted from fetal bovine serum at pH 1 inhibited several mAC activities. Guided by a lipidomic analysis we tested glycerophospholipids as potential ligands. Contrary to expectations we surprisingly discovered that 1-stearoyl-2-docosahexaenoyl-phosphatidic acid (SDPA) potentiated Gsα-activated activity of human AC isoform 3 seven-fold. The specificity of fatty acyl esters at glycerol positions 1 and 2 was rather stringent. 1-Stearoyl-2-docosahexaenoyl-phosphatidylserine and 1-stearoyl-2-docosahexaenoyl-phosphatidylethanolamine significantly potentiated several Gsα-activated mAC isoforms to different extents. SDPA appears not interact with forskolin activation of AC isoform 3. SDPA enhanced Gsα-activated AC activities in membranes from mouse brain cortex. The action of SDPA was reversible. Unexpectedly, SDPA did not affect cAMP generation in HEK293 cells stimulated by isoproterenol, PGE2 and adenosine, virtually excluding a role as an extracellular ligand and, instead, suggesting an intracellular role. In summary, we discovered a new dimension of intracellular AC regulation by chemically defined glycerophospholipids.
Collapse
Affiliation(s)
- Anubha Seth
- Max-Planck-Institut für Biologie, Tübingen, Germany
| | - Marius Landau
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany
| | - Andrej Shevchenko
- Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden, Germany
| | - Sofia Traikov
- Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden, Germany
| | - Anita Schultz
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany
| | - Sherif Elsabbagh
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany
| | - Joachim E Schultz
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
8
|
Jiang D, Min Z, Leng J, Niu H, Chen Y, Liu D, Zhu C, Li M, Zhuang W, Ying H. Characterization of two halophilic adenylate cyclases from Thermobifida halotolerans and Haloactinopolyspora alba. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Wilburn KM, Montague CR, Qin B, Woods AK, Love MS, McNamara CW, Schultz PG, Southard TL, Huang L, Petrassi HM, VanderVen BC. Pharmacological and genetic activation of cAMP synthesis disrupts cholesterol utilization in Mycobacterium tuberculosis. PLoS Pathog 2022; 18:e1009862. [PMID: 35134095 PMCID: PMC8856561 DOI: 10.1371/journal.ppat.1009862] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/18/2022] [Accepted: 01/18/2022] [Indexed: 01/27/2023] Open
Abstract
There is a growing appreciation for the idea that bacterial utilization of host-derived lipids, including cholesterol, supports Mycobacterium tuberculosis (Mtb) pathogenesis. This has generated interest in identifying novel antibiotics that can disrupt cholesterol utilization by Mtb in vivo. Here we identify a novel small molecule agonist (V-59) of the Mtb adenylyl cyclase Rv1625c, which stimulates 3', 5'-cyclic adenosine monophosphate (cAMP) synthesis and inhibits cholesterol utilization by Mtb. Similarly, using a complementary genetic approach that induces bacterial cAMP synthesis independent of Rv1625c, we demonstrate that inducing cAMP synthesis is sufficient to inhibit cholesterol utilization in Mtb. Although the physiological roles of individual adenylyl cyclase enzymes in Mtb are largely unknown, here we demonstrate that the transmembrane region of Rv1625c is required during cholesterol metabolism. Finally, the pharmacokinetic properties of Rv1625c agonists have been optimized, producing an orally-available Rv1625c agonist that impairs Mtb pathogenesis in infected mice. Collectively, this work demonstrates a role for Rv1625c and cAMP signaling in controlling cholesterol metabolism in Mtb and establishes that cAMP signaling can be pharmacologically manipulated for the development of new antibiotic strategies.
Collapse
Affiliation(s)
- Kaley M. Wilburn
- Microbiology & Immunology, Cornell University, Ithaca, New York, United States of America
| | - Christine R. Montague
- Microbiology & Immunology, Cornell University, Ithaca, New York, United States of America
| | - Bo Qin
- Calibr, a division of The Scripps Research Institute, San Diego, California, United States of America
| | - Ashley K. Woods
- Calibr, a division of The Scripps Research Institute, San Diego, California, United States of America
| | - Melissa S. Love
- Calibr, a division of The Scripps Research Institute, San Diego, California, United States of America
| | - Case W. McNamara
- Calibr, a division of The Scripps Research Institute, San Diego, California, United States of America
| | - Peter G. Schultz
- Calibr, a division of The Scripps Research Institute, San Diego, California, United States of America
| | - Teresa L. Southard
- Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - Lu Huang
- Microbiology & Immunology, Cornell University, Ithaca, New York, United States of America
| | - H. Michael Petrassi
- Calibr, a division of The Scripps Research Institute, San Diego, California, United States of America
| | - Brian C. VanderVen
- Microbiology & Immunology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
10
|
Fischer P, Mukherjee S, Schiewer E, Broser M, Bartl F, Hegemann P. The inner mechanics of rhodopsin guanylyl cyclase during cGMP-formation revealed by real-time FTIR spectroscopy. eLife 2021; 10:e71384. [PMID: 34665128 PMCID: PMC8575461 DOI: 10.7554/elife.71384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023] Open
Abstract
Enzymerhodopsins represent a recently discovered class of rhodopsins which includes histidine kinase rhodopsin, rhodopsin phosphodiesterases, and rhodopsin guanylyl cyclases (RGCs). The regulatory influence of the rhodopsin domain on the enzyme activity is only partially understood and holds the key for a deeper understanding of intra-molecular signaling pathways. Here, we present a UV-Vis and FTIR study about the light-induced dynamics of a RGC from the fungus Catenaria anguillulae, which provides insights into the catalytic process. After the spectroscopic characterization of the late rhodopsin photoproducts, we analyzed truncated variants and revealed the involvement of the cytosolic N-terminus in the structural rearrangements upon photo-activation of the protein. We tracked the catalytic reaction of RGC and the free GC domain independently by UV-light induced release of GTP from the photolabile NPE-GTP substrate. Our results show substrate binding to the dark-adapted RGC and GC alike and reveal differences between the constructs attributable to the regulatory influence of the rhodopsin on the conformation of the binding pocket. By monitoring the phosphate rearrangement during cGMP and pyrophosphate formation in light-activated RGC, we were able to confirm the M state as the active state of the protein. The described setup and experimental design enable real-time monitoring of substrate turnover in light-activated enzymes on a molecular scale, thus opening the pathway to a deeper understanding of enzyme activity and protein-protein interactions.
Collapse
Affiliation(s)
- Paul Fischer
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu BerlinBerlinGermany
| | - Shatanik Mukherjee
- Institute of Biology, Biophysical Chemistry, Humboldt University of BerlinBerlinGermany
| | - Enrico Schiewer
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu BerlinBerlinGermany
| | - Matthias Broser
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu BerlinBerlinGermany
| | - Franz Bartl
- Institute of Biology, Biophysical Chemistry, Humboldt University of BerlinBerlinGermany
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu BerlinBerlinGermany
| |
Collapse
|
11
|
Tsunoda SP, Sugiura M, Kandori H. Molecular Properties and Optogenetic Applications of Enzymerhodopsins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:153-165. [PMID: 33398812 DOI: 10.1007/978-981-15-8763-4_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cyclic nucleotides cAMP and cGMP are ubiquitous secondary messengers that regulate multiple biological functions including gene expression, differentiation, proliferation, and cell survival. In sensory neurons, cyclic nucleotides are responsible for signal modulation, amplification, and encoding. For spatial and temporal manipulation of cyclic nucleotide dynamics, optogenetics have a great advantage over pharmacological approaches. Enzymerhodopsins are a unique family of microbial rhodopsins. These molecules are made up of a membrane-embedded rhodopsin domain, which binds an all trans-retinal to form a chromophore, and a cytoplasmic water-soluble catalytic domain. To date, three kinds of molecules have been identified from lower eukaryotes such as fungi, algae, and flagellates. Among these, histidine kinase rhodopsin (HKR) is a light-inhibited guanylyl cyclase. Rhodopsin GC (Rh-GC) functions as a light-activated guanylyl cyclase, while rhodopsin PDE (Rh-PDE) functions as a light-activated phosphodiesterase that degrades cAMP and cGMP. These enzymerhodopsins have great potential in optogenetic applications for manipulating the intracellular cyclic nucleotide dynamics of living cells. Here we introduce the molecular function and applicability of these molecules.
Collapse
Affiliation(s)
- Satoshi P Tsunoda
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan. .,JST PRESTO, Saitama, Japan.
| | - Masahiro Sugiura
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
12
|
The chilling of adenylyl cyclase 9 and its translational potential. Cell Signal 2020; 70:109589. [PMID: 32105777 DOI: 10.1016/j.cellsig.2020.109589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/26/2022]
Abstract
A recent break-through paper has revealed for the first time the high-resolution, three-dimensional structure of a mammalian trans-membrane adenylyl cyclase (tmAC) obtained by cryo-electronmicroscopy (cryo-EM). Reporting the structure of adenylyl cyclase 9 (AC9) in complex with activated Gsα, the cryo-EM study revealed that AC9 has three functionally interlinked, yet structurally distinct domains. The array of the twelve transmembrane helices is connected to the cytosolic catalytic core by two helical segments that are stabilized through the formation of a parallel coiled-coil. Surprisingly, in the presence of Gsα, the isoform-specific carboxyl-terminal tail of AC9 occludes the forskolin- as well as the active substrate-sites, resulting in marked autoinhibition of the enzyme. As AC9 has the lowest primary sequence homology with the eight further mammalian tmAC paralogues, it appears to be the best candidate for selective pharmacologic targeting. This is now closer to reality as the structural insight provided by the cryo-EM study indicates that all of the three structural domains are potential targets for bioactive agents. The present paper summarizes for molecular physiologists and pharmacologists what is known about the biological role of AC9, considers the potential modes of physiologic regulation, as well as pharmacologic targeting on the basis of the high-resolution cryo-EM structure. The translational potential of AC9 is considered upon highlighting the current state of genome-wide association screens, and the corresponding experimental evidence. Overall, whilst the high- resolution structure presents unique opportunities for the full understanding of the control of AC9, the data on the biological role of the enzyme and its translational potential are far from complete, and require extensive further study.
Collapse
|
13
|
Seth A, Finkbeiner M, Grischin J, Schultz JE. Gsα stimulation of mammalian adenylate cyclases regulated by their hexahelical membrane anchors. Cell Signal 2020; 68:109538. [PMID: 31931092 DOI: 10.1016/j.cellsig.2020.109538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
Abstract
Mammalian adenylate cyclases (ACs) are pseudoheterodimers with dissimilar hexahelical membrane-anchors, isoform-specifically conserved for more than half a billion years. We exchanged both membrane anchors of the AC isoform 2 by the quorum-sensing receptor from Vibrio harveyi, CqsS, which has a ligand, Cholera-Autoinducer-1 (CAI-1). In the chimera, AC activity was stimulated by Gsα, CAI-1 had no effect. Surprisingly, CAI-1 inhibited Gsα stimulation. We report that Gsα stimulation of human AC isoforms 2, 3, 5, and 9 expressed in Sf9 cells is inhibited by serum as is AC activity in membranes isolated from rat brain cortex. AC2 activation by forskolin or forskolin/Gsα was similarly inhibited. Obviously, serum contains as yet unidentified factors affecting AC activity. The data establish a linkage in ACs, in which the membrane anchors, as receptors, transduce extracellular signals to the cytosolic catalytic dimer. A mechanistic three state model of AC regulation is presented compatible with all known regulatory inputs into mammalian ACs. The data allow designating the membrane anchors of mammalian ACs as orphan receptors, and establish a new level of AC regulation.
Collapse
Affiliation(s)
- Anubha Seth
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany; Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | | | - Julia Grischin
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | - Joachim E Schultz
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
14
|
Butryn A, Raza H, Rada H, Moraes I, Owens RJ, Orville AM. Molecular basis for GTP recognition by light-activated guanylate cyclase RhGC. FEBS J 2019; 287:2797-2807. [PMID: 31808997 PMCID: PMC7384201 DOI: 10.1111/febs.15167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/23/2019] [Accepted: 12/05/2019] [Indexed: 11/27/2022]
Abstract
Cyclic guanosine 3',5'-monophosphate (cGMP) is an intracellular signalling molecule involved in many sensory and developmental processes. Synthesis of cGMP from GTP is catalysed by guanylate cyclase (GC) in a reaction analogous to cAMP formation by adenylate cyclase (AC). Although detailed structural information is available on the catalytic region of nucleotidyl cyclases (NCs) in various states, these atomic models do not provide a sufficient explanation for the substrate selectivity between GC and AC family members. Detailed structural information on the GC domain in its active conformation is largely missing, and no crystal structure of a GTP-bound wild-type GC domain has been published to date. Here, we describe the crystal structure of the catalytic domain of rhodopsin-GC (RhGC) from Catenaria anguillulae in complex with GTP at 1.7 Å resolution. Our study reveals the organization of a eukaryotic GC domain in its active conformation. We observe that the binding mode of the substrate GTP is similar to that of AC-ATP interaction, although surprisingly not all of the interactions predicted to be responsible for base recognition are present. The structure provides insights into potential mechanisms of substrate discrimination and activity regulation that may be common to all class III purine NCs. DATABASE: Structural data are available in Protein Data Bank database under the accession number 6SIR. ENZYMES: EC4.6.1.2.
Collapse
Affiliation(s)
- Agata Butryn
- Diamond Light Source Limited, Didcot, UK.,Research Complex at Harwell, Didcot, UK
| | - Hadeeqa Raza
- Diamond Light Source Limited, Didcot, UK.,Research Complex at Harwell, Didcot, UK
| | - Heather Rada
- Protein Production UK, Research Complex at Harwell, Didcot, UK
| | - Isabel Moraes
- Research Complex at Harwell, Didcot, UK.,Membrane Protein Laboratory, Diamond Light Source Limited, Didcot, UK
| | - Raymond J Owens
- Protein Production UK, Research Complex at Harwell, Didcot, UK
| | - Allen M Orville
- Diamond Light Source Limited, Didcot, UK.,Research Complex at Harwell, Didcot, UK
| |
Collapse
|
15
|
Childers KC, Yao XQ, Giannakoulias S, Amason J, Hamelberg D, Garcin ED. Synergistic mutations in soluble guanylyl cyclase (sGC) reveal a key role for interfacial regions in the sGC activation mechanism. J Biol Chem 2019; 294:18451-18464. [PMID: 31645439 PMCID: PMC6885636 DOI: 10.1074/jbc.ra119.011010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/17/2019] [Indexed: 01/20/2023] Open
Abstract
Soluble guanylyl cyclase (sGC) is the main receptor for nitric oxide (NO) and a central component of the NO-cGMP pathway, critical to cardiovascular function. NO binding to the N-terminal sensor domain in sGC enhances the cyclase activity of the C-terminal catalytic domain. Our understanding of the structural elements regulating this signaling cascade is limited, hindering structure-based drug design efforts that target sGC to improve the management of cardiovascular diseases. Conformational changes are thought to propagate the NO-binding signal throughout the entire sGC heterodimer, via its coiled-coil domain, to reorient the catalytic domain into an active conformation. To identify the structural elements involved in this signal transduction cascade, here we optimized a cGMP-based luciferase assay that reports on heterologous sGC activity in Escherichia coli and identified several mutations that activate sGC. These mutations resided in the dorsal flaps, dimer interface, and GTP-binding regions of the catalytic domain. Combinations of mutations from these different elements synergized, resulting in even greater activity and indicating a complex cross-talk among these regions. Molecular dynamics simulations further revealed conformational changes underlying the functional impact of these mutations. We propose that the interfacial residues play a central role in the sGC activation mechanism by coupling the coiled-coil domain to the active site via a series of hot spots. Our results provide new mechanistic insights not only into the molecular pathway for sGC activation but also for other members of the larger nucleotidyl cyclase family.
Collapse
Affiliation(s)
- Kenneth C Childers
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965
| | - Sam Giannakoulias
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Joshua Amason
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250.
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965
| | - Elsa D Garcin
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250.
| |
Collapse
|
16
|
Wissig J, Grischin J, Bassler J, Schubert C, Friedrich T, Bähre H, Schultz JE, Unden G. CyaC, a redox‐regulated adenylate cyclase ofSinorhizobium melilotiwith a quinone responsive diheme‐B membrane anchor domain. Mol Microbiol 2019; 112:16-28. [DOI: 10.1111/mmi.14251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Juliane Wissig
- Microbiology and Wine Research, Institute for Molecular Physiology Johannes Gutenberg‐University of Mainz Becherweg 1555099Mainz Germany
| | - Julia Grischin
- Max‐Planck‐Institut für Entwicklungsbiologie, Abt. Proteinevolution Max‐Planck‐Ring 572076Tübingen Germany
| | - Jens Bassler
- Max‐Planck‐Institut für Entwicklungsbiologie, Abt. Proteinevolution Max‐Planck‐Ring 572076Tübingen Germany
| | - Christopher Schubert
- Microbiology and Wine Research, Institute for Molecular Physiology Johannes Gutenberg‐University of Mainz Becherweg 1555099Mainz Germany
| | | | - Heike Bähre
- Medizinische Hochschule Hannover Hannover Germany
| | - Joachim E. Schultz
- Pharmazeutisches Institut der Universität Tübingen Auf der Morgenstelle 872076Tübingen Germany
| | - Gottfried Unden
- Microbiology and Wine Research, Institute for Molecular Physiology Johannes Gutenberg‐University of Mainz Becherweg 1555099Mainz Germany
| |
Collapse
|
17
|
Mukherjee S, Hegemann P, Broser M. Enzymerhodopsins: novel photoregulated catalysts for optogenetics. Curr Opin Struct Biol 2019; 57:118-126. [PMID: 30954887 DOI: 10.1016/j.sbi.2019.02.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 12/22/2022]
Abstract
Enzymerhodopsins are a recently discovered class of natural rhodopsin-based photoreceptors with light-regulated enzyme activity. Currently, three different types of these fusion proteins with an N-terminal type-1 rhodopsin and a C-terminal enzyme domain have been identified, but their physiological relevance is mostly unknown. Among these, histidine kinase rhodopsins (HKR) are photo-regulated two-component-like signaling systems that trigger a phosphorylation cascade, whereas rhodopsin phosphodiesterase (RhoPDE) or rhodopsin guanylyl cyclase (RhGC) show either light-activated hydrolysis or production of cyclic nucleotides. RhGC, the best characterized enzymerhodopsin, is involved in the phototaxis of fungal zoospores and allows for optically controlled production of cyclic nucleotides in different cell-types. These photoreceptors have great optogenetic potential and possess several advantages over the hitherto existing tools to manipulate cyclic-nucleotide dynamics in living cells.
Collapse
Affiliation(s)
- Shatanik Mukherjee
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Germany.
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Germany
| | - Matthias Broser
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Germany.
| |
Collapse
|
18
|
Hu P, Guo R, Zhou M, Gärtner W, Zhao K. The Red‐/Green‐Switching GAF3 of Cyanobacteriochrome Slr1393 from
Synechocystis
sp. PCC6803 Regulates the Activity of an Adenylyl Cyclase. Chembiochem 2018; 19:1887-1895. [DOI: 10.1002/cbic.201800323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Ping‐Ping Hu
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 China
| | - Rui Guo
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 China
| | - Ming Zhou
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 China
| | - Wolfgang Gärtner
- Institute for Analytical ChemistryUniversity of Leipzig Linnéstrasse 3 04103 Leipzig Germany
| | - Kai‐Hong Zhao
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 China
| |
Collapse
|
19
|
Gourinchas G, Heintz U, Winkler A. Asymmetric activation mechanism of a homodimeric red light-regulated photoreceptor. eLife 2018; 7:e34815. [PMID: 29869984 PMCID: PMC6005682 DOI: 10.7554/elife.34815] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/03/2018] [Indexed: 12/18/2022] Open
Abstract
Organisms adapt to environmental cues using diverse signaling networks. In order to sense and integrate light for regulating various biological functions, photoreceptor proteins have evolved in a modular way. This modularity is targeted in the development of optogenetic tools enabling the control of cellular events with high spatiotemporal precision. However, the limited understanding of signaling mechanisms impedes the rational design of innovative photoreceptor-effector couples. Here, we reveal molecular details of signal transduction in phytochrome-regulated diguanylyl cyclases. Asymmetric structural changes of the full-length homodimer result in a functional heterodimer featuring two different photoactivation states. Structural changes around the cofactors result in a quasi-translational rearrangement of the distant coiled-coil sensor-effector linker. Eventually, this regulates enzymatic activity by modulating the dimer interface of the output domains. Considering the importance of phytochrome heterodimerization in plant signaling, our mechanistic details of asymmetric photoactivation in a bacterial system reveal novel aspects of the evolutionary adaptation of phytochromes.
Collapse
Affiliation(s)
| | - Udo Heintz
- Max Planck Institute for Medical ResearchHeidelbergGermany
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of TechnologyGrazAustria
| |
Collapse
|
20
|
Etzl S, Lindner R, Nelson MD, Winkler A. Structure-guided design and functional characterization of an artificial red light-regulated guanylate/adenylate cyclase for optogenetic applications. J Biol Chem 2018; 293:9078-9089. [PMID: 29695503 PMCID: PMC5995499 DOI: 10.1074/jbc.ra118.003069] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/21/2018] [Indexed: 12/02/2022] Open
Abstract
Genetically targeting biological systems to control cellular processes with light is the concept of optogenetics. Despite impressive developments in this field, underlying molecular mechanisms of signal transduction of the employed photoreceptor modules are frequently not sufficiently understood to rationally design new optogenetic tools. Here, we investigate the requirements for functional coupling of red light–sensing phytochromes with non-natural enzymatic effectors by creating a series of constructs featuring the Deinococcus radiodurans bacteriophytochrome linked to a Synechocystis guanylate/adenylate cyclase. Incorporating characteristic structural elements important for cyclase regulation in our designs, we identified several red light–regulated fusions with promising properties. We provide details of one light-activated construct with low dark-state activity and high dynamic range that outperforms previous optogenetic tools in vitro and expands our in vivo toolkit, as demonstrated by manipulation of Caenorhabditis elegans locomotor activity. The full-length crystal structure of this phytochrome-linked cyclase revealed molecular details of photoreceptor–effector coupling, highlighting the importance of the regulatory cyclase element. Analysis of conformational dynamics by hydrogen–deuterium exchange in different functional states enriched our understanding of phytochrome signaling and signal integration by effectors. We found that light-induced conformational changes in the phytochrome destabilize the coiled-coil sensor–effector linker, which releases the cyclase regulatory element from an inhibited conformation, increasing cyclase activity of this artificial system. Future designs of optogenetic functionalities may benefit from our work, indicating that rational considerations for the effector improve the rate of success of initial designs to obtain optogenetic tools with superior properties.
Collapse
Affiliation(s)
- Stefan Etzl
- From the Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria
| | - Robert Lindner
- the Max Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany, and
| | - Matthew D Nelson
- the Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
| | - Andreas Winkler
- From the Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria,
| |
Collapse
|
21
|
Bassler J, Schultz JE, Lupas AN. Adenylate cyclases: Receivers, transducers, and generators of signals. Cell Signal 2018; 46:135-144. [PMID: 29563061 DOI: 10.1016/j.cellsig.2018.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 11/18/2022]
Abstract
Class III adenylate cyclases (ACs) are widespread signaling proteins, which translate diverse intracellular and extracellular stimuli into a uniform intracellular signal. They are typically composed of an N-terminal array of input domains and transducers, followed C-terminally by a catalytic domain, which, as a dimer, generates the second messenger cAMP. The input domains, which receive stimuli, and the transducers, which propagate the signals, are often found in other signaling proteins. The nature of stimuli and the regulatory mechanisms of ACs have been studied experimentally in only a few cases, and even in these, important questions remain open, such as whether eukaryotic ACs regulated by G protein-coupled receptors can also receive stimuli through their own membrane domains. Here we survey the current knowledge on regulation and intramolecular signal propagation in ACs and draw comparisons to other signaling proteins. We highlight the pivotal role of a recently identified cyclase-specific transducer element located N-terminally of many AC catalytic domains, suggesting an intramolecular signaling capacity.
Collapse
Affiliation(s)
- Jens Bassler
- Max-Planck-Institut für Entwicklungsbiologie, Abt. Proteinevolution, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Joachim E Schultz
- Pharmazeutisches Institut der Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | - Andrei N Lupas
- Max-Planck-Institut für Entwicklungsbiologie, Abt. Proteinevolution, Max-Planck-Ring 5, 72076 Tübingen, Germany.
| |
Collapse
|
22
|
Vercellino I, Rezabkova L, Olieric V, Polyhach Y, Weinert T, Kammerer RA, Jeschke G, Korkhov VM. Role of the nucleotidyl cyclase helical domain in catalytically active dimer formation. Proc Natl Acad Sci U S A 2017; 114:E9821-E9828. [PMID: 29087332 PMCID: PMC5699072 DOI: 10.1073/pnas.1712621114] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Nucleotidyl cyclases, including membrane-integral and soluble adenylyl and guanylyl cyclases, are central components in a wide range of signaling pathways. These proteins are architecturally diverse, yet many of them share a conserved feature, a helical region that precedes the catalytic cyclase domain. The role of this region in cyclase dimerization has been a subject of debate. Although mutations within this region in various cyclases have been linked to genetic diseases, the molecular details of their effects on the enzymes remain unknown. Here, we report an X-ray structure of the cytosolic portion of the membrane-integral adenylyl cyclase Cya from Mycobacterium intracellulare in a nucleotide-bound state. The helical domains of each Cya monomer form a tight hairpin, bringing the two catalytic domains into an active dimerized state. Mutations in the helical domain of Cya mimic the disease-related mutations in human proteins, recapitulating the profiles of the corresponding mutated enzymes, adenylyl cyclase-5 and retinal guanylyl cyclase-1. Our experiments with full-length Cya and its cytosolic domain link the mutations to protein stability, and the ability to induce an active dimeric conformation of the catalytic domains. Sequence conservation indicates that this domain is an integral part of cyclase machinery across protein families and species. Our study provides evidence for a role of the helical domain in establishing a catalytically competent dimeric cyclase conformation. Our results also suggest that the disease-associated mutations in the corresponding regions of human nucleotidyl cyclases disrupt the normal helical domain structure.
Collapse
Affiliation(s)
- Irene Vercellino
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Lenka Rezabkova
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Vincent Olieric
- Macromolecular Crystallography Group, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Yevhen Polyhach
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology in Zurich (ETH Zurich), 8093 Zurich, Switzerland
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology in Zurich (ETH Zurich), 8093 Zurich, Switzerland
| | - Volodymyr M Korkhov
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland;
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|