1
|
Maggs LR, McVey M. REV7: a small but mighty regulator of genome maintenance and cancer development. Front Oncol 2025; 14:1516165. [PMID: 39839778 PMCID: PMC11747621 DOI: 10.3389/fonc.2024.1516165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
REV7, also known as MAD2B, MAD2L2, and FANCV, is a HORMA-domain family protein crucial to multiple genome stability pathways. REV7's canonical role is as a member of polymerase ζ, a specialized translesion synthesis polymerase essential for DNA damage tolerance. REV7 also ensures accurate cell cycle progression and prevents premature mitotic progression by sequestering an anaphase-promoting complex/cyclosome activator. Additionally, REV7 supports genome integrity by directing double-strand break repair pathway choice as part of the recently characterized mammalian shieldin complex. Given that genome instability is a hallmark of cancer, it is unsurprising that REV7, with its numerous genome maintenance roles, is implicated in multiple malignancies, including ovarian cancer, glioma, breast cancer, malignant melanoma, and small-cell lung cancer. Moreover, high REV7 expression is associated with poor prognoses and treatment resistance in these and other cancers. Promisingly, early studies indicate that REV7 suppression enhances sensitivity to chemotherapeutics, including cisplatin. This review aims to provide a comprehensive overview of REV7's myriad roles in genome maintenance and other functions as well as offer an updated summary of its connections to cancer and treatment resistance.
Collapse
Affiliation(s)
- Lara R. Maggs
- Department of Biology, Tufts University, Medford, MA, United States
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, MA, United States
| |
Collapse
|
2
|
Zhang L, Cui H, Hu W, Meng X, Zhang C. Targeting MAD2B as a strategy for ischemic stroke therapy. J Adv Res 2024:S2090-1232(24)00269-8. [PMID: 38972542 DOI: 10.1016/j.jare.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/28/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024] Open
Abstract
INTRODUCTION Post-stroke cognitive impairment is one of the major causes of disability due to cerebral ischemia. MAD2B is an inhibitor of Cdh1/APC, and loss of Cdh1/APC function in mature neurons increases ROCK2 activity, leading to changes in synaptic plasticity and memory loss in mouse neurons. Whether MAD2B regulates learning memory capacity through ROCK2 in cerebral ischemia is not known. OBJECTIVES We investigated the role and mechanism of MAD2B in cerebral ischemia-induced cognitive dysfunction. METHODS The expression of MAD2B and its downstream related molecules was detected by immunoblotting and intervened with neuroprotectants after middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation/reoxygenation (OGD/R). We constructed MAD2B-cKO-specific knockout mice, knocked down and overexpressed MAD2B in mouse hippocampus by lentiviral injection in brain stereotaxis, modeled cerebral ischemia by using MCAO, and explored the role of MAD2B in post-stroke cognitive impairment (PSCI) by animal behaviors such as Y-maze and Novel object recognition test. Then the expression of MAD2B/ROCK2, downstream molecules and apoptosis-related molecules was detected. Finally, ROCK2 expression was intervened using its inhibitor and shRNA-ROCK2 lentivirus. RESULTS The expression of MAD2B and its downstream molecules increased after MCAO and OGD/R. Nonetheless, this expression underwent a decline post-therapy with neuroprotective agents. Deletion of MAD2B in the hippocampus ameliorated memory and learning deficits and improved motor coordination in MCAO mice. Conversely, the overexpression of MAD2B in the hippocampus exacerbated learning and memory deficits. Deletion of MAD2B resulted in the downregulation of ROCK2/LIMK1/cofilin. It effectively reduced ischemia-induced upregulation of BAX and cleaved caspase-3, which could be reversed by MAD2B overexpression. Inhibition or knockdown of ROCK2 expression in primary cultured neurons led to the downregulation of LIMK1/cofilin expression and reduced the expression of apoptosis-associated molecules induced by ischemia. CONCLUSIONS Our findings suggest that MAD2B affects neuronal apoptosis via Rock2, which affects neurological function and cerebral infarction.
Collapse
Affiliation(s)
- Lijing Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hengzhen Cui
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wandi Hu
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xianfang Meng
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Venkadakrishnan J, Lahane G, Dhar A, Xiao W, Bhat KM, Pandita TK, Bhat A. Implications of Translesion DNA Synthesis Polymerases on Genomic Stability and Human Health. Mol Cell Biol 2023; 43:401-425. [PMID: 37439479 PMCID: PMC10448981 DOI: 10.1080/10985549.2023.2224199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/03/2023] [Accepted: 06/01/2023] [Indexed: 07/14/2023] Open
Abstract
Replication fork arrest-induced DNA double strand breaks (DSBs) caused by lesions are effectively suppressed in cells due to the presence of a specialized mechanism, commonly referred to as DNA damage tolerance (DDT). In eukaryotic cells, DDT is facilitated through translesion DNA synthesis (TLS) carried out by a set of DNA polymerases known as TLS polymerases. Another parallel mechanism, referred to as homology-directed DDT, is error-free and involves either template switching or fork reversal. The significance of the DDT pathway is well established. Several diseases have been attributed to defects in the TLS pathway, caused either by mutations in the TLS polymerase genes or dysregulation. In the event of a replication fork encountering a DNA lesion, cells switch from high-fidelity replicative polymerases to low-fidelity TLS polymerases, which are associated with genomic instability linked with several human diseases including, cancer. The role of TLS polymerases in chemoresistance has been recognized in recent years. In addition to their roles in the DDT pathway, understanding noncanonical functions of TLS polymerases is also a key to unraveling their importance in maintaining genomic stability. Here we summarize the current understanding of TLS pathway in DDT and its implication for human health.
Collapse
Affiliation(s)
| | - Ganesh Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Hyderabad, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Hyderabad, India
| | - Wei Xiao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Krishna Moorthi Bhat
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Tej K. Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Audesh Bhat
- Center for Molecular Biology, Central University of Jammu, UT Jammu and Kashmir, India
| |
Collapse
|
4
|
Ticli G, Cazzalini O, Stivala LA, Prosperi E. Revisiting the Function of p21CDKN1A in DNA Repair: The Influence of Protein Interactions and Stability. Int J Mol Sci 2022; 23:ijms23137058. [PMID: 35806061 PMCID: PMC9267019 DOI: 10.3390/ijms23137058] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
The p21CDKN1A protein is an important player in the maintenance of genome stability through its function as a cyclin-dependent kinase inhibitor, leading to cell-cycle arrest after genotoxic damage. In the DNA damage response, p21 interacts with specific proteins to integrate cell-cycle arrest with processes such as transcription, apoptosis, DNA repair, and cell motility. By associating with Proliferating Cell Nuclear Antigen (PCNA), the master of DNA replication, p21 is able to inhibit DNA synthesis. However, to avoid conflicts with this process, p21 protein levels are finely regulated by pathways of proteasomal degradation during the S phase, and in all the phases of the cell cycle, after DNA damage. Several lines of evidence have indicated that p21 is required for the efficient repair of different types of genotoxic lesions and, more recently, that p21 regulates DNA replication fork speed. Therefore, whether p21 is an inhibitor, or rather a regulator, of DNA replication and repair needs to be re-evaluated in light of these findings. In this review, we will discuss the lines of evidence describing how p21 is involved in DNA repair and will focus on the influence of protein interactions and p21 stability on the efficiency of DNA repair mechanisms.
Collapse
Affiliation(s)
- Giulio Ticli
- Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy;
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Ornella Cazzalini
- Dipartimento di Medicina Molecolare, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy; (O.C.); (L.A.S.)
| | - Lucia A. Stivala
- Dipartimento di Medicina Molecolare, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy; (O.C.); (L.A.S.)
| | - Ennio Prosperi
- Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy;
- Correspondence: ; Tel.: +39-0382-986267
| |
Collapse
|
5
|
Bhat A. Meet Our Editorial Board Member. Curr Pharm Biotechnol 2021. [DOI: 10.2174/138920102208210507102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Jammu and Kashmir,India
| |
Collapse
|
6
|
de Krijger I, Boersma V, Jacobs JJL. REV7: Jack of many trades. Trends Cell Biol 2021; 31:686-701. [PMID: 33962851 DOI: 10.1016/j.tcb.2021.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 01/01/2023]
Abstract
The HORMA domain protein REV7, also known as MAD2L2, interacts with a variety of proteins and thereby contributes to the establishment of different complexes. With doing so, REV7 impacts a diverse range of cellular processes and gained increasing interest as more of its activities became uncovered. REV7 has important roles in translesion synthesis and mitotic progression, and acts as a central component in the recently discovered shieldin complex that operates in DNA double-strand break repair. Here we discuss the roles of REV7 in its various complexes, focusing on its activity in genome integrity maintenance. Moreover, we will describe current insights on REV7 structural features that allow it to be such a versatile protein.
Collapse
Affiliation(s)
- Inge de Krijger
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Vera Boersma
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Jacqueline J L Jacobs
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
DNA-damage tolerance through PCNA ubiquitination and sumoylation. Biochem J 2021; 477:2655-2677. [PMID: 32726436 DOI: 10.1042/bcj20190579] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022]
Abstract
DNA-damage tolerance (DDT) is employed by eukaryotic cells to bypass replication-blocking lesions induced by DNA-damaging agents. In budding yeast Saccharomyces cerevisiae, DDT is mediated by RAD6 epistatic group genes and the central event for DDT is sequential ubiquitination of proliferating cell nuclear antigen (PCNA), a DNA clamp required for replication and DNA repair. DDT consists of two parallel pathways: error-prone DDT is mediated by PCNA monoubiquitination, which recruits translesion synthesis DNA polymerases to bypass lesions with decreased fidelity; and error-free DDT is mediated by K63-linked polyubiquitination of PCNA at the same residue of monoubiquitination, which facilitates homologous recombination-mediated template switch. Interestingly, the same PCNA residue is also subjected to sumoylation, which leads to inhibition of unwanted recombination at replication forks. All three types of PCNA posttranslational modifications require dedicated conjugating and ligation enzymes, and these enzymes are highly conserved in eukaryotes, from yeast to human.
Collapse
|
8
|
CRL4 Ubiquitin Pathway and DNA Damage Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:225-239. [PMID: 31898231 DOI: 10.1007/978-981-15-1025-0_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
DNA damage occurs in a human cell at an average frequency of 10,000 incidences per day by means of external and internal culprits, damage that triggers sequential cellular responses and stalls the cell cycle while activating specific DNA repair pathways. Failure to remove DNA lesions would compromise genomic integrity, leading to human diseases such as cancer and premature aging. If DNA damage is extensive and cannot be repaired, cells undergo apoptosis. DNA damage response (DDR) often entails posttranslational modifications of key DNA repair and DNA damage checkpoint proteins, including phosphorylation and ubiquitination. Cullin-RING ligase 4 (CRL4) enzyme has been found to target multiple DDR proteins for ubiquitination. In this chapter, we will discuss key repair and checkpoint proteins that are subject to ubiquitin-dependent regulation by members of the CRL4 family during ultraviolet light (UV)-induced DNA damage.
Collapse
|
9
|
Gu C, Luo J, Lu X, Tang Y, Ma Y, Yun Y, Cao J, Cao J, Huang Z, Zhou X, Zhang S. REV7 confers radioresistance of esophagus squamous cell carcinoma by recruiting PRDX2. Cancer Sci 2019; 110:962-972. [PMID: 30657231 PMCID: PMC6398896 DOI: 10.1111/cas.13946] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/28/2018] [Accepted: 01/10/2019] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy has been widely used for the clinical management of esophageal squamous cell carcinoma. However, radioresistance remains a serious concern that prevents the efficacy of esophageal squamous cell carcinoma (ESCC) radiotherapy. REV7, the structural subunit of eukaryotic DNA polymerase ζ, has multiple functions in bypassing DNA damage and modulating mitotic arrest in human cell lines. However, the expression and molecular function of REV7 in ESCC progression remains unclear. In this study, we first examined the expression of REV7 in clinical ESCC samples, and we found higher expression of REV7 in ESCC tissues compared to matched adjacent or normal tissues. Knockdown of REV7 resulted in decreased colony formation and increased apoptosis in irradiated Eca‐109 and TE‐1 cells coupled with decreased tumor weight in a xenograft nude mouse model postirradiation. Conversely, overexpression of REV7 resulted in radioresistance in vitro and in vivo. Moreover, silencing of REV7 induced increased reactive oxygen species levels postirradiation. Proteomic analysis of REV7‐interacting proteins revealed that REV7 interacted with peroxiredoxin 2 (PRDX2), a well‐known antioxidant protein. Existence of REV7‐PRDX2 complex and its augmentation postirradiation were further validated by immunoprecipitation and immunofluorescence assays. REV7 knockdown significantly disrupted the presence of nuclear PRDX2 postirradiation, which resulted in oxidative stress. REV7‐PRDX2 complex also assembled onto DNA double‐strand breaks, whereas REV7 knockdown evidently increased double‐strand breaks that were unmerged by PRDX2. Taken together, the present study sheds light on REV7‐modulated radiosensitivity through interacting with PRDX2, which provides a novel target for ESCC radiotherapy.
Collapse
Affiliation(s)
- Cheng Gu
- Department of Radiation Oncology, Changzhou No. 4 People's Hospital, Soochow University, Changzhou, China
| | - Judong Luo
- Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xujing Lu
- Department of Radiation Oncology, Changzhou No. 4 People's Hospital, Soochow University, Changzhou, China
| | - Yiting Tang
- Department of Radiation Oncology, Changzhou No. 4 People's Hospital, Soochow University, Changzhou, China
| | - Yan Ma
- Department of Radiation Oncology, Changzhou No. 4 People's Hospital, Soochow University, Changzhou, China
| | - Yifei Yun
- Department of Radiation Oncology, Changzhou No. 4 People's Hospital, Soochow University, Changzhou, China
| | - Jianping Cao
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Juhua Cao
- Department of Internal Medicine, Changzhou No. 1 People's Hospital, Soochow University, Changzhou, China
| | - Zeyu Huang
- Department of Science and Education, Changzhou No. 3 People's Hospital, Changzhou, China
| | - Xifa Zhou
- Department of Radiation Oncology, Changzhou No. 4 People's Hospital, Soochow University, Changzhou, China
| | - Shuyu Zhang
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|