1
|
Wang Z, Shi H, Silveira PA, Mithieux SM, Wong WC, Liu L, Pham NTH, Hawkett BS, Wang Y, Weiss AS. Tropoelastin modulates systemic and local tissue responses to enhance wound healing. Acta Biomater 2024; 184:54-67. [PMID: 38871204 DOI: 10.1016/j.actbio.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/13/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Wound healing is facilitated by biomaterials-based grafts and substantially impacted by orchestrated inflammatory responses that are essential to the normal repair process. Tropoelastin (TE) based materials are known to shorten the period for wound repair but the mechanism of anti-inflammatory performance is not known. To explore this, we compared the performance of the gold standard Integra Dermal Regeneration Template (Integra), polyglycerol sebacate (PGS), and TE blended with PGS, in a murine full-thickness cutaneous wound healing study. Systemically, blending with TE favorably increased the F4/80+ macrophage population by day 7 in the spleen and contemporaneously induced elevated plasma levels of anti-inflammatory IL-10. In contrast, the PGS graft without TE prompted prolonged inflammation, as evidenced by splenomegaly and greater splenic granulocyte and monocyte fractions at day 14. Locally, the inclusion of TE in the graft led to increased anti-inflammatory M2 macrophages and CD4+T cells at the wound site, and a rise in Foxp3+ regulatory T cells in the wound bed by day 7. We conclude that the TE-incorporated skin graft delivers a pro-healing environment by modulating systemic and local tissue responses. STATEMENT OF SIGNIFICANCE: Tropoelastin (TE) has shown significant benefits in promoting the repair and regeneration of damaged human tissues. In this study, we show that TE promotes an anti-inflammatory environment that facilitates cutaneous wound healing. In a mouse model, we find that inserting a TE-containing material into a full-thickness wound results in defined, pro-healing local and systemic tissue responses. These findings advance our understanding of TE's restorative value in tissue engineering and regenerative medicine, and pave the way for clinical applications.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life and Environmental Sciences, the University of Sydney, NSW 2006, Australia; Charles Perkins Centre, the University of Sydney, NSW 2006, Australia
| | - Huaikai Shi
- Burns Research and Reconstructive Surgery, Anzac Research Institute, NSW 2139, Australia; Asbestos and Dust Disease Research Institute, Concord Hospital, Sydney, NSW 2139, Australia
| | - Pablo A Silveira
- Dendritic Cell Group, ANZAC Research Institute, Concord Hospital, Sydney, NSW 2139, Australia
| | - Suzanne M Mithieux
- School of Life and Environmental Sciences, the University of Sydney, NSW 2006, Australia; Charles Perkins Centre, the University of Sydney, NSW 2006, Australia
| | - Wai Cheng Wong
- Charles Perkins Centre, the University of Sydney, NSW 2006, Australia
| | - Linyang Liu
- School of Life and Environmental Sciences, the University of Sydney, NSW 2006, Australia; Charles Perkins Centre, the University of Sydney, NSW 2006, Australia
| | - Nguyen T H Pham
- Key Centre for Polymers and Colloids, School of Chemistry, the University of Sydney, NSW 2006, Australia
| | - Brian S Hawkett
- Key Centre for Polymers and Colloids, School of Chemistry, the University of Sydney, NSW 2006, Australia
| | - Yiwei Wang
- Burns Research and Reconstructive Surgery, Anzac Research Institute, NSW 2139, Australia; Jiangsu Provincial Engineering Research Centre of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Anthony S Weiss
- School of Life and Environmental Sciences, the University of Sydney, NSW 2006, Australia; Charles Perkins Centre, the University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, the University of Sydney, NSW 2006, Australia.
| |
Collapse
|
2
|
Truong AT, Lee SJ, Hamada K, Kiyomi A, Guo H, Yamada Y, Kikkawa Y, Okamoto CT, Nomizu M, MacKay JA. Synergy between Laminin-Derived Elastin-like Polypeptides (LELPs) Optimizes Cell Spreading. Biomacromolecules 2024; 25:4001-4013. [PMID: 38814168 DOI: 10.1021/acs.biomac.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A major component of the extracellular matrix (ECM), laminins, modulates cells via diverse receptors. Their fragments have emerging utility as components of "ECM-mimetics" optimized to promote cell-based therapies. Recently, we reported that a bioactive laminin peptide known as A99 enhanced cell binding and spreading via fusion to an elastin-like polypeptide (ELP). The ELP "handle" serves as a rapid, noncovalent strategy to concentrate bioactive peptide mixtures onto a surface. We now report that this strategy can be further generalized across an expanded panel of additional laminin-derived elastin-like polypeptides (LELPs). A99 (AGTFALRGDNPQG), A2G80 (VQLRNGFPYFSY), AG73 (RKRLQVQLSIRT), and EF1m (LQLQEGRLHFMFD) all promote cell spreading while showing morphologically distinct F-actin formation. Equimolar mixtures of A99:A2G80-LELPs have synergistic effects on adhesion and spreading. Finally, three of these ECM-mimetics promote the neurite outgrowth of PC-12 cells. The evidence presented here demonstrates the potential of ELPs to deposit ECM-mimetics with applications in regenerative medicine, cell therapy, and tissue engineering.
Collapse
Affiliation(s)
- Anh T Truong
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shin-Jae Lee
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Keisuke Hamada
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Anna Kiyomi
- Department of Drug Safety and Risk Management, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Yuji Yamada
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yamato Kikkawa
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| |
Collapse
|
3
|
Pepe A, Laezza A, Armiento F, Bochicchio B. Chemical Modifications in Hyaluronic Acid-Based Electrospun Scaffolds. Chempluschem 2024; 89:e202300599. [PMID: 38507283 DOI: 10.1002/cplu.202300599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
Hyaluronic acid (HA) is a natural, non-sulfated glycosaminoglycan (GAG) present in ECM. It is involved in different biological functions with appealing properties in cosmetics and pharmaceutical preparations as well as in tissue engineering. Generally, HA has been electrospun in blends with natural or synthetic polymers to produce fibers having diameters in the order of nano and micro-scale whose pores can host cells able to regenerate damaged tissues. In the last decade, a rich literature on electrospun HA-based materials arose. Chemical modifications were generally introduced in HA scaffolds to favour crosslinking or conjugation with bioactive molecules. Considering the high solubility of HA in water, HA-based electrospun scaffolds are cross-linked to increase the stability in biological fluids. Crosslinking is necessary also to avoid the release of HA from the hybrid scaffold when implanted in-vivo. Furthermore, to endow the HA based scaffolds with new chemical or biological properties, conjugation of bioactive molecules to HA was widely reported. Herein, we review the existing research classifying chemical modifications on HA and HA-based electrospun fibers into three categories: i) in-situ crosslinking of electrospun HA-based scaffolds ii) off-site crosslinking of electrospun HA-based scaffolds; iii) conjugation of biofunctional molecules to HA with focus on peptides.
Collapse
Affiliation(s)
- Antonietta Pepe
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Antonio Laezza
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Francesca Armiento
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Brigida Bochicchio
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| |
Collapse
|
4
|
Massimino LC, da Conceição Amaro Martins V, Vulcani VAS, de Oliveira ÉL, Andreeta MB, Bonagamba TJ, Klingbeil MFG, Mathor MB, de Guzzi Plepis AM. Use of collagen and auricular cartilage in bioengineering: scaffolds for tissue regeneration. Cell Tissue Bank 2024; 25:111-122. [PMID: 32880089 DOI: 10.1007/s10561-020-09861-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
The aim of this study was the development of collagen and collagen/auricular cartilage scaffolds for application in dermal regeneration. Collagen was obtained from bovine tendon by a 72 h-long treatment, while bovine auricular cartilage was treated for 24 h and divided into two parts, external (perichondrium, E) and internal (elastic cartilage, I). The scaffolds were prepared by mixing collagen (C) with the internal part (CI) or the external part (CE) in a 3:1 ratio. Differential scanning calorimetry, scanning electron microscopy (SEM) analysis, microcomputed tomography imaging (micro-CT) and swelling degree were used to characterize the scaffolds. Cytotoxicity, cell adhesion, and cell proliferation assays were performed using the cell line NIH/3T3. All samples presented a similar denaturation temperature (Td) around 48 °C, while CE presented a second Td at 51.2 °C. SEM micrographs showed superficial pores in all scaffolds and micro-CT exhibited interconnected pore spaces with porosity above 60% (sizes between 47 and 149 µm). The order of swelling was CE < CI < C and the scaffolds did not present cytotoxicity, showing attachment rates above 75%-all samples showed a similar pattern of proliferation until 168 h, whereas CI tended to decrease after this time. The scaffolds were easily obtained, biocompatible and had adequate morphology for cell growth. All samples showed high adhesion, whereas collagen-only and collagen/external part scaffolds presented a better cell proliferation rate and would be indicated for possible use in dermal regeneration.
Collapse
Affiliation(s)
- Lívia Contini Massimino
- Interunit Graduate Program in Bioengineering, University of São Paulo, São Carlos, SP, Brazil.
| | | | | | | | | | - Tito José Bonagamba
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | | | | | - Ana Maria de Guzzi Plepis
- Interunit Graduate Program in Bioengineering, University of São Paulo, São Carlos, SP, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
5
|
Laezza A, Pepe A, Solimando N, Armiento F, Oszust F, Duca L, Bochicchio B. A Study on Thiol-Michael Addition to Semi-Synthetic Elastin-Hyaluronan Material for Electrospun Scaffolds. Chempluschem 2024; 89:e202300662. [PMID: 38224555 DOI: 10.1002/cplu.202300662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Thiol-Michael addition is a chemical reaction extensively used for conjugating peptides to polysaccharides with applications as biomaterials. In the present study, for designing a bioactive element in electrospun scaffolds as wound dressing material, a chemical strategy for the semi-synthesis of a hyaluronan-elastin conjugate containing an amide linker (ELAHA) was developed in the presence of tris(2-carboxyethyl)phosphine hydrochloride (TCEP ⋅ HCl). The bioconjugate was electrospun with poly-D,L-lactide (PDLLA), obtaining scaffolds with appealing characteristics in terms of morphology and cell viability of dermal fibroblast cells. For comprehending the factors influencing the efficiency of the bioconjugation reaction, thiolated amino acids were also investigated as nucleophiles toward hyaluronan decorated with Michael acceptors in the presence of TCEP ⋅ HCl through the evaluation of byproducts formation.
Collapse
Affiliation(s)
- Antonio Laezza
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Antonietta Pepe
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Nicola Solimando
- Altergon Italia S.r.l. Zona Industriale ASI, Morra De Sanctis, 83040, Italy
| | - Francesca Armiento
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Floriane Oszust
- MEDyC UMR CNRS 7369, "Matrice Extracellulaire et Dynamique Cellulaire", University of Reims Champagne-Ardenne, Team 2 "Matrix Ageing and Vascular Remodelling", 51100, Reims, France
| | - Laurent Duca
- MEDyC UMR CNRS 7369, "Matrice Extracellulaire et Dynamique Cellulaire", University of Reims Champagne-Ardenne, Team 2 "Matrix Ageing and Vascular Remodelling", 51100, Reims, France
| | - Brigida Bochicchio
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| |
Collapse
|
6
|
Laezza A, Pepe A, Bochicchio B. Elastin-Hyaluronan Bioconjugate as Bioactive Component in Electrospun Scaffolds. Chemistry 2022; 28:e202201959. [PMID: 35916026 DOI: 10.1002/chem.202201959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 01/07/2023]
Abstract
Hyaluronic acid or hyaluronan (HA) and elastin-inspired peptides (EL) have been widely recognized as bioinspired materials useful in biomedical applications. The aim of the present work is the production of electrospun scaffolds as wound dressing materials which would benefit from synergic action of the bioactivity of elastin peptides and the regenerative properties of hyaluronic acid. Taking advantage of thiol-ene chemistry, a bioactive elastin peptide was successfully conjugated to methacrylated hyaluronic acid (MAHA) and electrospun together with poly-D,L-lactide (PDLLA). To the best of our knowledge, limited reports on peptide-conjugated hyaluronic acid were described in literature, and none of these was employed for the production of electrospun scaffolds. The conformational studies carried out by Circular Dichroism (CD) on the bioconjugated compound confirmed the preservation of secondary structure of the peptide after conjugation while Scanning Electron Microscopy (SEM) revealed the supramolecular structure of the electrospun scaffolds. Overall, the study demonstrates that the bioconjugation of hyaluronic acid with the elastin peptide improved the electrospinning processability with improved characteristics in terms of morphology of the final scaffolds.
Collapse
Affiliation(s)
- Antonio Laezza
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Antonietta Pepe
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Brigida Bochicchio
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| |
Collapse
|
7
|
Tian DM, Wan HH, Chen JR, Ye YB, He Y, Liu Y, Tang LY, He ZY, Liu KZ, Gao CJ, Li SL, Xu Q, Yang Z, Lai C, Xu XJ, Ruan CS, Xu YS, Zhang C, Luo L, Yan LP. In-situ formed elastin-based hydrogels enhance wound healing via promoting innate immune cells recruitment and angiogenesis. Mater Today Bio 2022; 15:100300. [PMID: 35665231 PMCID: PMC9157562 DOI: 10.1016/j.mtbio.2022.100300] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/03/2022] [Accepted: 05/17/2022] [Indexed: 01/06/2023]
Abstract
Harnessing the inflammation and angiogenesis is extremely important in wound healing. In this study, we developed bioactive elastin-based hydrogels which can recruit and modulate the innate immune cells and accelerate angiogenesis in the wound site and subsequently improve wound regeneration. These hydrogels were formed by visible-light cross-linking of acryloyl-(polyethylene glycol)-N-hydroxysuccinimide ester modified elastin with methacrylated gelatin, in order to mimic dermal microenvironment. These hydrogels showed highly tunable mechanical properties, swelling ratios and enzymatic degradation profiles, with moduli within the range of human skin. To mimic the in vivo degradation of the elastin by elastase from neutrophils, in vitro co-culture of the hydrogels and neutrophils was conducted. The derived conditioned medium containing elastin derived peptides (EDP-conditioned medium) promoted the expression of both M1 and M2 markers in M1 macrophages in vitro. Additionally, the EDP-conditioned medium induced superior tube formation of endothelia cells in Matrigel. In mice wound model, these elastin-based hydrogels attracted abundant neutrophils and predominant M2 macrophages to the wound and supported their infiltration into the hydrogels. The outstanding immunomodulatory effect of the elastin-based hydrogels resulted in superior angiogenesis, collagen deposition and dermal regeneration. Hence, these elastin-based hydrogels can be a promising regenerative platform to accelerate wound repair.
Collapse
|
8
|
Lima LF, Sousa MGDC, Rodrigues GR, de Oliveira KBS, Pereira AM, da Costa A, Machado R, Franco OL, Dias SC. Elastin-like Polypeptides in Development of Nanomaterials for Application in the Medical Field. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.874790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Elastin-like polypeptides (ELPs) are biopolymers formed by amino acid sequences derived from tropoelastin. These biomolecules can be soluble below critical temperatures, forming aggregates at higher temperatures, which makes them an interesting source for the design of different nanobiomaterials. These nanobiomaterials can be obtained from heterologous expression in several organisms such as bacteria, fungi, and plants. Thanks to the many advantages of ELPs, they have been used in the biomedical field to develop nanoparticles, nanofibers, and nanocomposites. These nanostructures can be used in multiple applications such as drug delivery systems, treatments of type 2 diabetes, cardiovascular diseases, tissue repair, and cancer therapy. Thus, this review aims to shed some light on the main advances in elastin-like-based nanomaterials, their possible expression forms, and importance to the medical field.
Collapse
|
9
|
Yang C, Weiss AS, Tarakanova A. Changes in elastin structure and extensibility induced by hypercalcemia and hyperglycemia. Acta Biomater 2022; 163:131-145. [PMID: 35364318 DOI: 10.1016/j.actbio.2022.03.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
Abstract
Elastin is a key elastomeric protein responsible for the elasticity of many organs, including heart, skin, and blood vessels. Due to its intrinsic long life and low turnover rate, damage in elastin induced by pathophysiological conditions, such as hypercalcemia and hyperglycemia, accumulates during biological aging and in aging-associated diseases, such as diabetes mellitus and atherosclerosis. Prior studies have shown that calcification induced by hypercalcemia deteriorates the function of aortic tissues. Glycation of elastin is triggered by hyperglycemia and associated with elastic tissue damage and loss of mechanical functions via the accumulation of advanced glycation end products. To evaluate the effects on elastin's structural conformations and elasticity by hypercalcemia and hyperglycemia at the molecular scale, we perform classical atomistic and steered molecular dynamics simulations on tropoelastin, the soluble precursor of elastin, under different conditions. We characterize the interaction sites of glucose and calcium and associated structural conformational changes. Additionally, we find that elevated levels of calcium ions and glucose hinder the extensibility of tropoelastin by rearranging structural domains and altering hydrogen bonding patterns, respectively. Overall, our investigation helps to reveal the behavior of tropoelastin and the biomechanics of elastin biomaterials in these physiological environments. STATEMENT OF SIGNIFICANCE: Elastin is a key component of elastic fibers which endow many important tissues and organs, from arteries and veins, to skin and heart, with strength and elasticity. During aging and aging-associated diseases, such as diabetes mellitus and atherosclerosis, physicochemical stressors, including hypercalcemia and hyperglycemia, induce accumulated irreversible damage in elastin, and consequently alter mechanical function. Yet, molecular mechanisms associated with these processes are still poorly understood. Here, we present the first study on how these changes in elastin structure and extensibility are induced by hypercalcemia and hyperglycemia at the molecular scale, revealing the essential roles that calcium and glucose play in triggering structural alterations and mechanical stiffness. Our findings yield critical insights into the first steps of hypercalcemia- and hyperglycemia-mediated aging.
Collapse
Affiliation(s)
- Chengeng Yang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Anthony S Weiss
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia; Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| | - Anna Tarakanova
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA; Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
10
|
Roohani I, Yeo GC, Mithieux SM, Weiss AS. Emerging concepts in bone repair and the premise of soft materials. Curr Opin Biotechnol 2021; 74:220-229. [PMID: 34974211 DOI: 10.1016/j.copbio.2021.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 02/07/2023]
Abstract
Human bone has a strong regenerative capacity that allows for restoration of its function and structure after damage. For degenerative bone diseases or large defects, bone regeneration requirements exceed the natural potential for self-healing, so bone grafts or bone substitute materials are required to support the regeneration of bone tissue. Compared to the plethora of endogenous bioactive molecules and cells in native bone grafts, the regenerative capacity of tissue-engineered materials is limited. The modest clinical impact of tissue-engineered strategies in this domain can be attributed to a failure to fully recognize key physical and biological events during bone healing, and to recapitulate the structure and composition of the target tissue to generate truly biomimetic grafts. This limitation has motivated the emergence of new strategies such as immunomodulation, endochondral ossification routes, engineered microtissues and hematoma regulation, and the development of advanced biomaterials including gene-activated matrices, soft microgels and hierarchically designed materials.
Collapse
Affiliation(s)
- Iman Roohani
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia; Charles Perkins Centre D17, University of Sydney, NSW 2006, Australia; Sydney Nano Institute, University of Sydney, NSW 2006, Australia
| | - Giselle C Yeo
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia; Charles Perkins Centre D17, University of Sydney, NSW 2006, Australia
| | - Suzanne M Mithieux
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia; Charles Perkins Centre D17, University of Sydney, NSW 2006, Australia
| | - Anthony S Weiss
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia; Charles Perkins Centre D17, University of Sydney, NSW 2006, Australia; Sydney Nano Institute, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
11
|
Yang J, Wang X, Fan Y, Song X, Wu J, Fu Z, Li T, Huang Y, Tang Z, Meng S, Liu N, Chen J, Liu P, Yang L, Gong X, Chen C. Tropoelastin improves adhesion and migration of intra-articular injected infrapatellar fat pad MSCs and reduces osteoarthritis progression. Bioact Mater 2021; 10:443-459. [PMID: 34901559 PMCID: PMC8636741 DOI: 10.1016/j.bioactmat.2021.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022] Open
Abstract
Intra-articular injection of mesenchymal stem cells (MSCs) is a promising strategy for osteoarthritis (OA) treatment. However, more and more studies reveal that the injected MSCs have poor adhesion, migration, and survival in the joint cavity. A recent study shows that tropoelastin (TE) regulates adhesion, proliferation and phenotypic maintenance of MSCs as a soluble additive, indicating that TE could promote MSCs-homing in regenerative medicine. In this study, we used TE as injection medium, and compared it with classic media in MSCs intra-articular injection such as normal saline (NS), hyaluronic acid (HA), and platelet-rich plasma (PRP). We found that TE could effectively improve adhesion, migration, chondrogenic differentiation of infrapatellar fat pad MSCs (IPFP-MSCs) and enhance matrix synthesis of osteoarthritic chondrocytes (OACs) in indirect-coculture system. Moreover, TE could significantly enhance IPFP-MSCs adhesion via activation of integrin β1, ERK1/2 and vinculin (VCL) in vitro. In addition, intra-articular injection of TE-IPFP MSCs suspension resulted in a short-term increase in survival rate of IPFP-MSCs and better histology scores of rat joint tissues. Inhibition of integrin β1 or ERK1/2 attenuated the protective effect of TE-IPFP MSCs suspension in vivo. In conclusion, TE promotes performance of IPFP-MSCs and protects knee cartilage from damage in OA through enhancement of cell adhesion and activation of integrin β1/ERK/VCL pathway. Our findings may provide new insights in MSCs intra-articular injection for OA treatment.
Collapse
Affiliation(s)
- Junjun Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xin Wang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yahan Fan
- Blood Transfusion Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiangyi Wu
- Department of Sports Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, China
| | - Zhenlan Fu
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Tao Li
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yang Huang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - ZheXiong Tang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Shuo Meng
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Na Liu
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.,Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, 400038, China
| | - Jiajia Chen
- Biomedical Analysis Center, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Pingju Liu
- Department of Orthopedics, Zunyi Traditional Chinese Medicine Hospital, Zunyi, 563099, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Cheng Chen
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
12
|
Bax DV, Nair M, Weiss AS, Farndale RW, Best SM, Cameron RE. Tailoring the biofunctionality of collagen biomaterials via tropoelastin incorporation and EDC-crosslinking. Acta Biomater 2021; 135:150-163. [PMID: 34454082 DOI: 10.1016/j.actbio.2021.08.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022]
Abstract
Recreating the cell niche of virtually all tissues requires composite materials fabricated from multiple extracellular matrix (ECM) macromolecules. Due to their wide tissue distribution, physical attributes and purity, collagen, and more recently, tropoelastin, represent two appealing ECM components for biomaterials development. Here we blend tropoelastin and collagen, harnessing the cell-modulatory properties of each biomolecule. Tropoelastin was stably co-blended into collagen biomaterials and was retained after EDC-crosslinking. We found that human dermal fibroblasts (HDF), rat glial cells (Rugli) and HT1080 fibrosarcoma cells ligate to tropoelastin via EDTA-sensitive and EDTA-insensitive receptors or do not ligate with tropoelastin, respectively. These differing elastin-binding properties allowed us to probe the cellular response to the tropoelastin-collagen composites assigning specific bioactivity to the collagen and tropoelastin component of the composite material. Tropoelastin addition to collagen increased total Rugli cell adhesion, spreading and proliferation. This persisted with EDC-crosslinking of the tropoelastin-collagen composite. Tropoelastin addition did not affect total HDF and HT1080 cell adhesion; however, it increased the contribution of cation-independent adhesion, without affecting the cell morphology or, for HT1080 cells, proliferation. Instead, EDC-crosslinking dictated the HDF and HT1080 cellular response. These data show that a tropoelastin component dominates the response of cells that possess non-integrin based tropoelastin receptors. EDC modification of the collagen component directs cell function when non-integrin tropoelastin receptors are not crucial for cell activity. Using this approach, we have assigned the biological contribution of each component of tropoelastin-collagen composites, allowing informed biomaterial design for directed cell function via more physiologically relevant mechanisms. STATEMENT OF SIGNIFICANCE: Biomaterials fabricated from multiple extracellular matrix (ECM) macromolecules are required to fully recreate the native tissue niche where each ECM macromolecule engages with a specific repertoire of cell-surface receptors. Here we investigate combining tropoelastin with collagen as they interact with cells via different receptors. We identified specific cell lines, which associate with tropoelastin via distinct classes of cell-surface receptor. These showed that tropoelastin, when combined with collagen, altered the cell behaviour in a receptor-usage dependent manner. Integrin-mediated tropoelastin interactions influenced cell proliferation and non-integrin receptors influenced cell spreading and proliferation. These data shed light on the interplay between biomaterial macromolecular composition, cell surface receptors and cell behaviour, advancing bespoke materials design and providing functionality to specific cell populations.
Collapse
Affiliation(s)
- Daniel V Bax
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom; Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, CB2 1QW, United Kingdom.
| | - Malavika Nair
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
| | - Anthony S Weiss
- Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia; Charles Perkins Centre, University of Sydney, NSW, 2006, Australia; Sydney Nano Institute, University of Sydney, NSW, 2006, Australia
| | - Richard W Farndale
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, CB2 1QW, United Kingdom
| | - Serena M Best
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
| | - Ruth E Cameron
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
| |
Collapse
|
13
|
Tropoelastin Promotes the Formation of Dense, Interconnected Endothelial Networks. Biomolecules 2021; 11:biom11091318. [PMID: 34572531 PMCID: PMC8472265 DOI: 10.3390/biom11091318] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
Tropoelastin, the soluble precursor of elastin, has been used for regenerative and wound healing purposes and noted for its ability to accelerate wound repair by enhancing vascularization at the site of implantation. However, it is not clear whether these effects are directly due to the interaction of tropoelastin with endothelial cells or communicated to endothelial cells following interactions between tropoelastin and neighboring cells, such as mesenchymal stem cells (MSCs). We adapted an endothelial tube formation assay to model in vivo vascularization with the goal of exploring the stimulatory mechanism of tropoelastin. In the presence of tropoelastin, endothelial cells formed less tubes, with reduced spreading into capillary-like networks. In contrast, conditioned media from MSCs that had been cultured on tropoelastin enhanced the formation of more dense, complex, and interconnected endothelial tube networks. This pro-angiogenic effect of tropoelastin is mediated indirectly through the action of tropoelastin on co-cultured cells. We conclude that tropoelastin inhibits endothelial tube formation, and that this effect is reversed by pro-angiogenic crosstalk from tropoelastin-treated MSCs. Furthermore, we find that the known in vivo pro-angiogenic effects of tropoelastin can be modeled in vitro, highlighting the value of tropoelastin as an indirect mediator of angiogenesis.
Collapse
|
14
|
Ozsvar J, Wang R, Tarakanova A, Buehler MJ, Weiss AS. Fuzzy binding model of molecular interactions between tropoelastin and integrin alphaVbeta3. Biophys J 2021; 120:3138-3151. [PMID: 34197806 DOI: 10.1016/j.bpj.2021.04.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 12/30/2022] Open
Abstract
Tropoelastin is the highly flexible monomer subunit of elastin, required for the resilience of the extracellular matrix in elastic tissues. To elicit biological signaling, multiple sites on tropoelastin bind to cell surface integrins in a poorly understood multifactorial process. We constructed a full atomistic molecular model of the interactions between tropoelastin and integrin αvβ3 using ensemble-based computational methodologies. Conformational changes of integrin αvβ3 associated with outside-in signaling were more frequently facilitated in an ensemble in which tropoelastin bound the integrin's α1 helix rather than the upstream canonical binding site. Our findings support a model of fuzzy binding, whereby many tropoelastin conformations and defined sites cooperatively interact with multiple αvβ3 regions. This model explains prior experimental binding to distinct tropoelastin regions, domains 17 and 36, and points to the cooperative participation of domain 20. Our study highlights the utility of ensemble-based approaches in helping to understand the interactive mechanisms of functionally significant flexible proteins.
Collapse
Affiliation(s)
- Jazmin Ozsvar
- Charles Perkins Centre, The University of Sydney, Sydney, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Richard Wang
- Charles Perkins Centre, The University of Sydney, Sydney, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Anna Tarakanova
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut; Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Anthony S Weiss
- Charles Perkins Centre, The University of Sydney, Sydney, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia; Sydney Nano Institute, The University of Sydney, Sydney, Australia.
| |
Collapse
|
15
|
Al Halawani A, Wang Z, Liu L, Zhang M, Weiss AS. Applications of Engineering Techniques in Microvasculature Design. Front Cardiovasc Med 2021; 8:660958. [PMID: 33981737 PMCID: PMC8107229 DOI: 10.3389/fcvm.2021.660958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
Achieving successful microcirculation in tissue engineered constructs in vitro and in vivo remains a challenge. Engineered tissue must be vascularized in vitro for successful inosculation post-implantation to allow instantaneous perfusion. To achieve this, most engineering techniques rely on engineering channels or pores for guiding angiogenesis and capillary tube formation. However, the chosen materials should also exhibit properties resembling the native extracellular matrix (ECM) in providing mechanical and molecular cues for endothelial cells. This review addresses techniques that can be used in conjunction with matrix-mimicking materials to further advance microvasculature design. These include electrospinning, micropatterning and bioprinting. Other techniques implemented for vascularizing organoids are also considered for their potential to expand on these approaches.
Collapse
Affiliation(s)
- Aleen Al Halawani
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Ziyu Wang
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Linyang Liu
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Miao Zhang
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, Australia
| | - Anthony S. Weiss
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- Sydney Nano Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
16
|
Ozsvar J, Yang C, Cain SA, Baldock C, Tarakanova A, Weiss AS. Tropoelastin and Elastin Assembly. Front Bioeng Biotechnol 2021; 9:643110. [PMID: 33718344 PMCID: PMC7947355 DOI: 10.3389/fbioe.2021.643110] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Elastic fibers are an important component of the extracellular matrix, providing stretch, resilience, and cell interactivity to a broad range of elastic tissues. Elastin makes up the majority of elastic fibers and is formed by the hierarchical assembly of its monomer, tropoelastin. Our understanding of key aspects of the assembly process have been unclear due to the intrinsic properties of elastin and tropoelastin that render them difficult to study. This review focuses on recent developments that have shaped our current knowledge of elastin assembly through understanding the relationship between tropoelastin’s structure and function.
Collapse
Affiliation(s)
- Jazmin Ozsvar
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Chengeng Yang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Stuart A Cain
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Anna Tarakanova
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States.,Department of Mechanical Engineering, University of Connecticut, Storrs, CT, United States
| | - Anthony S Weiss
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
17
|
Almeida-González FR, González-Vázquez A, Mithieux SM, O'Brien FJ, Weiss AS, Brougham CM. A step closer to elastogenesis on demand; Inducing mature elastic fibre deposition in a natural biomaterial scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111788. [PMID: 33545914 DOI: 10.1016/j.msec.2020.111788] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022]
Abstract
Elastic fibres play a key role in bodily functions where fatigue resistance and elastic recovery are necessary while regulating phenotype, proliferation and migration in cells. While in vivo elastic fibres are created at a late foetal stage, a major obstacle in the development of engineered tissue is that human vascular smooth muscle cells (hVSMCs), one of the principal elastogenic cells, are unable to spontaneously promote elastogenesis in vitro. Therefore, the overall aim of this study was to activate elastogenesis in vitro by hVSMCs seeded in fibrin, collagen, glycosaminoglycan (FCG) scaffolds, following the addition of recombinant human tropoelastin. This combination of scaffold, tropoelastin and cells induced the deposition of elastin and formation of lamellar maturing elastic fibres, similar to those found in skin, blood vessels and heart valves. Furthermore, higher numbers of maturing branched elastic fibres were synthesised when a higher cell density was used and by drop-loading tropoelastin onto cell-seeded FCG scaffolds prior to adding growth medium. The addition of tropoelastin showed no effect on cell proliferation or mechanical properties of the scaffold which remained dimensionally stable throughout. With these results, we have established a natural biomaterial scaffold that can undergo controlled elastogenesis on demand, suitable for tissue engineering applications.
Collapse
Affiliation(s)
- Francisco R Almeida-González
- Biomedical Research Group, School of Mechanical and Design Engineering, Technological University Dublin, Bolton St, Dublin 1, Ireland; Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Arlyng González-Vázquez
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI, Ireland
| | - Suzanne M Mithieux
- Charles Perkins Centre, University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia; Bosch Institute, University of Sydney, NSW 2006, Australia
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI, Ireland
| | - Anthony S Weiss
- Charles Perkins Centre, University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia; Bosch Institute, University of Sydney, NSW 2006, Australia
| | - Claire M Brougham
- Biomedical Research Group, School of Mechanical and Design Engineering, Technological University Dublin, Bolton St, Dublin 1, Ireland; Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
18
|
Bochicchio B, Yeo GC, Lee P, Emul D, Pepe A, Laezza A, Ciarfaglia N, Quaglino D, Weiss AS. Domains 12 to 16 of tropoelastin promote cell attachment and spreading through interactions with glycosaminoglycan and integrins alphaV and alpha5beta1. FEBS J 2021; 288:4024-4038. [DOI: 10.1111/febs.15702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/20/2020] [Accepted: 01/04/2021] [Indexed: 11/27/2022]
Affiliation(s)
| | - Giselle C. Yeo
- Charles Perkins Centre The University of Sydney NSW Australia
- School of Life and Environmental Sciences The University of Sydney NSW Australia
| | - Pearl Lee
- Charles Perkins Centre The University of Sydney NSW Australia
- School of Life and Environmental Sciences The University of Sydney NSW Australia
| | - Deniz Emul
- Charles Perkins Centre The University of Sydney NSW Australia
- School of Life and Environmental Sciences The University of Sydney NSW Australia
| | - Antonietta Pepe
- Department of Science University of Basilicata Potenza Italy
| | - Antonio Laezza
- Department of Science University of Basilicata Potenza Italy
| | | | - Daniela Quaglino
- Department of Life Sciences University of Modena and Reggio Emilia Modena Italy
| | - Anthony S. Weiss
- Charles Perkins Centre The University of Sydney NSW Australia
- School of Life and Environmental Sciences The University of Sydney NSW Australia
- Sydney Nano Institute The University of Sydney NSW Australia
| |
Collapse
|
19
|
Elshishiny F, Mamdouh W. Fabrication of Nanofibrous/Xerogel Layer-by-Layer Biocomposite Scaffolds for Skin Tissue Regeneration: In Vitro Study. ACS OMEGA 2020; 5:2133-2147. [PMID: 32064374 PMCID: PMC7016933 DOI: 10.1021/acsomega.9b02832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Skin burn wounds are a crucial issue that could reduce life quality. Although numerous effective skin products have invaded the biomedical market, most of them still demonstrate some limitations regarding their porosity, swelling and degradation behaviors, antibacterial properties, and cytotoxicity. Thus, the aim of this study is to fabricate novel trilayered asymmetric porous scaffolds that can mimic the natural skin layers. In particular, the fabricated scaffold constitutes an upper electrospun chitosan-poly(vinyl alcohol) layer and a lower xerogel layer, which is made of effective skin extracellular matrix components. Both layers are fixed together using fibrin glue as a middle layer. The results of this study revealed promising scaffold swelling capability suitable for absorbing wound exudates, followed by a constant degradable weight over time, which is appropriate for a burn wound environment. Scanning electron microscopy images revealed an average pore diameter in the range of 138.39-170.18 nm for the cross-linked electrospun mats and an average pore size of 2.29-30.62 μm for the fabricated xerogel layers. This further provided an optimum environment for fibroblast migration and proliferation. The electrospun nanofibrous layer was examined for its antibacterial properties and showed expressive complete bacterial inhibition against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacterial strains (log reduction = 3 and 2.70, respectively). Next, mouse embryonic fibroblast cytotoxicity and migration rate were investigated against the developed asymmetrical composite to assess its biocompatibility. Tissue culture experiments demonstrated significant cell proliferation and migration in the presence of the constructed scaffold (P < 0.0001). A complete wound closure was observed in vitro in the presence of the three scaffold asymmetrical layers against the mouse embryonic fibroblast. The results of this study proved superior biological characteristics of the innovative asymmetrical composite that could further replace the burned or damaged skin layers with promising potential for clinical applications.
Collapse
Affiliation(s)
| | - Wael Mamdouh
- E-mail: . Tel: +202
2615 2555. Fax: +202 2797 4951
| |
Collapse
|
20
|
Vindin H, Mithieux SM, Weiss AS. Elastin architecture. Matrix Biol 2019; 84:4-16. [DOI: 10.1016/j.matbio.2019.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 11/15/2022]
|
21
|
|
22
|
Bax DV, Smalley HE, Farndale RW, Best SM, Cameron RE. Cellular response to collagen-elastin composite materials. Acta Biomater 2019; 86:158-170. [PMID: 30586647 DOI: 10.1016/j.actbio.2018.12.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/03/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
Abstract
Collagen is used extensively in tissue engineering due to its biocompatibility, near-universal tissue distribution, low cost and purity. However, native tissues are composites that include diverse extracellular matrix components, which influence strongly their mechanical and biological properties. Here, we provide important new findings on the differential regulation, by collagen and elastin, of the bio-response to the composite material. Soluble and insoluble elastin had differing effects on the stiffness and failure strength of the composite films. We established that Rugli cells bind elastin via EDTA-sensitive receptors, whilst HT1080 cells do not. These cells allowed us to probe the contribution of collagen alone (HT1080) and collagen plus elastin (Rugli) to the cellular response. In the presence of elastin, Rugli cell attachment, spreading and proliferation increased, presumably through elastin-binding receptors. By comparison, the attachment and spreading of HT1080 cells was modified by elastin inclusion, but without affecting their proliferation, indicating indirect modulation by elastin of the response of cells to collagen. These new insights highlight that access to elastin dominates the cellular response when elastin-binding receptors are present. In the absence of these receptors, modification of the collagen component and/or physical properties dictate the cellular response. Therefore, we can attribute the contribution of each constituent on the ultimate bioactivity of heterogeneous collagen-composite materials, permitting informed, systematic biomaterials design. STATEMENT OF SIGNIFICANCE: In recent years there has been a desire to replicate the complex extracellular matrix composition of tissues more closely, necessitating the need for composite protein-based materials. In this case both the physical and biochemical properties are altered with the addition of each component, with potential consequences on the cell. To date, the different contributions of each component have not been deconvolved, and instead the cell response to the scaffold as a whole has been observed. Instead, here, we have used specific cell lines, that are sensitive to specific components of an elastin-collagen composite, to resolve the bio-activity of each protein. This has shown that elastin-induced alteration of the collagen component can modulate early stage cell behaviour. By comparison the elastin component directly alters the cell response over the short and long term, but only where appropriate receptors are present on the cell. Due to the widespread use of collagen and elastin, we feel that this data permits, for the first time, the ability to systematically design collagen-composite materials to promote desired cell behaviour with associated advantages for biomaterials fabrication.
Collapse
|
23
|
Soluble matrix protein is a potent modulator of mesenchymal stem cell performance. Proc Natl Acad Sci U S A 2019; 116:2042-2051. [PMID: 30659152 DOI: 10.1073/pnas.1812951116] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We challenge the conventional designation of structural matrix proteins primarily as supporting scaffolds for resident cells. The extracellular matrix protein tropoelastin is classically regarded as a structural component that confers mechanical strength and resilience to tissues subject to repetitive elastic deformation. Here we describe how tropoelastin inherently induces a range of biological responses, even in cells not typically associated with elastic tissues and in a manner unexpected of typical substrate-dependent matrix proteins. We show that tropoelastin alone drives mesenchymal stem cell (MSC) proliferation and phenotypic maintenance, akin to the synergistic effects of potent growth factors such as insulin-like growth factor 1 and basic fibroblast growth factor. In addition, tropoelastin functionally surpasses these growth factors, as well as fibronectin, in allowing substantial media serum reduction without loss of proliferative potential. We further demonstrate that tropoelastin elicits strong mitogenic and cell-attractive responses, both as an immobilized substrate and as a soluble additive, via direct interactions with cell surface integrins αvβ3 and αvβ5. This duality of action converges the long-held mechanistic dichotomy between adhesive matrix proteins and soluble growth factors and uncovers the powerful, untapped potential of tropoelastin for clinical MSC expansion and therapeutic MSC recruitment. We propose that the potent, growth factor-like mitogenic and motogenic abilities of tropoelastin are biologically rooted in the need for rapid stem cell homing and proliferation during early development and/or wound repair.
Collapse
|
24
|
Bax DV, Yin Y, Kondyurin A, Diwan AD, Bhargav D, Weiss AS, Bilek MMM, McKenzie DR. Plasma processing of PDMS based spinal implants for covalent protein immobilization, cell attachment and spreading. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:178. [PMID: 30506173 DOI: 10.1007/s10856-018-6181-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/19/2018] [Indexed: 06/09/2023]
Abstract
PDMS is widely used for prosthetic device manufacture. Conventional ion implantation is not a suitable treatment to enhance the biocompatibility of poly dimethyl siloxane (PDMS) due to its propensity to generate a brittle silicon oxide surface layer which cracks and delaminates. To overcome this limitation, we have developed new plasma based processes to balance the etching of carbon with implantation of carbon from the plasma source. When this carbon was implanted from the plasma phase it resulted in a surface that was structurally similar and intermixed with the underlying PDMS material and not susceptible to delamination. The enrichment in surface carbon allowed the formation of carbon based radicals that are not present in conventional plasma ion immersion implantation (PIII) treated PDMS. This imparts the PDMS surfaces with covalent protein binding capacity that is not observed on PIII treated PDMS. The change in surface energy preserved the function of bound biomolecules and enhanced the attachment of MG63 osteosarcoma cells compared to the native surface. The attached cells, an osteoblast interaction model, showed increased spreading on the treated over untreated surfaces. The carbon-dependency for these beneficial covalent protein and cell linkage properties was tested by incorporating carbon from a different source. To this end, a second surface was produced where carbon etching was balanced against implantation from a thin carbon-based polymer coating. This had similar protein and cell-binding properties to the surfaces generated with carbon inclusion in the plasma phase, thus highlighting the importance of balancing carbon etching and deposition. Additionally, the two effects of protein linkage and bioactivity could be combined where the cell response was further enhanced by covalently tethering a biomolecule coating, as exemplified here with the cell adhesive protein tropoelastin. Providing a balanced carbon source in the plasma phase is applicable to prosthetic device fabrication as illustrated using a 3-dimensional PDMS balloon prosthesis for spinal implant applications. Consequently, this study lays the groundwork for effective treatments of PDMS to selectively recruit cells to implantable PDMS fabricated biodevices.
Collapse
Affiliation(s)
- Daniel V Bax
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia.
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
| | - Yongbai Yin
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
| | - Alexey Kondyurin
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
| | - Ashish D Diwan
- Spine Service, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, 2217, Australia
| | - Divya Bhargav
- Spine Service, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, 2217, Australia
| | - Anthony S Weiss
- Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
- Bosch Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Marcela M M Bilek
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
| | - David R McKenzie
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
25
|
Tarakanova A, Yeo GC, Baldock C, Weiss AS, Buehler MJ. Tropoelastin is a Flexible Molecule that Retains its Canonical Shape. Macromol Biosci 2018; 19:e1800250. [DOI: 10.1002/mabi.201800250] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/03/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Anna Tarakanova
- Laboratory for Atomistic and Molecular Mechanics Department of Civil and Environmental Engineering Massachusetts Institute of Technology 02139 Cambridge MA USA
| | - Giselle C. Yeo
- School of Life and Environmental Sciences The University of Sydney 2006 Sydney NSW Australia
- Charles Perkins Centre The University of Sydney 2006 Sydney NSW Australia
| | - Clair Baldock
- Wellcome Trust Centre for Cell‐Matrix Research Division of Cell Matrix Biology and Regenerative Medicine School of Biological Sciences Manchester Academic Health Science Centre The University of Manchester M13 9PL Manchester UK
| | - Anthony S. Weiss
- School of Life and Environmental Sciences The University of Sydney 2006 Sydney NSW Australia
- Charles Perkins Centre The University of Sydney 2006 Sydney NSW Australia
- Bosch Institute The University of Sydney 2006 Sydney NSW Australia
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics Department of Civil and Environmental Engineering Massachusetts Institute of Technology 02139 Cambridge MA USA
| |
Collapse
|
26
|
Townsend JM, Ott LM, Salash JR, Fung KM, Easley JT, Seim HB, Johnson JK, Weatherly RA, Detamore MS. Reinforced Electrospun Polycaprolactone Nanofibers for Tracheal Repair in an In Vivo Ovine Model. Tissue Eng Part A 2018; 24:1301-1308. [PMID: 29580173 PMCID: PMC6150933 DOI: 10.1089/ten.tea.2017.0437] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/01/2018] [Indexed: 01/24/2023] Open
Abstract
Tracheal stenosis caused by congenital anomalies, tumors, trauma, or intubation-related damage can cause severe breathing issues, diminishing the quality of life, and potentially becoming fatal. Current treatment methods include laryngotracheal reconstruction or slide tracheoplasty. Laryngotracheal reconstruction utilizes rib cartilage harvested from the patient, requiring a second surgical site. Slide tracheoplasty involves a complex surgical procedure to splay open the trachea and reconnect both segments to widen the lumen. A clear need exists for new and innovative approaches that can be easily adopted by surgeons, and to avoid harvesting autologous tissue from the patient. This study evaluated the use of an electrospun patch, consisting of randomly layered polycaprolactone (PCL) nanofibers enveloping 3D-printed PCL rings, to create a mechanically robust, suturable, air-tight, and bioresorbable graft for the treatment of tracheal defects. The study design incorporated two distinct uses of PCL: electrospun fibers to promote tissue integration, while remaining air-tight when wet, and 3D-printed rings to hold the airway open and provide external support and protection during the healing process. Electrospun, reinforced tracheal patches were evaluated in an ovine model, in which all sheep survived for 10 weeks, although an overgrowth of fibrous tissue surrounding the patch was observed to significantly narrow the airway. Minimal tissue integration of the surrounding tissue and the electrospun fibers suggested the need for further improvement. Potential areas for further improvement include a faster degradation rate, agents to increase cellular adhesion, and/or an antibacterial coating to reduce the initial bacterial load.
Collapse
Affiliation(s)
- Jakob M. Townsend
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma
| | | | | | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jeremiah T. Easley
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado
| | - Howard B. Seim
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado
| | | | - Robert A. Weatherly
- Section of Otolaryngology, Department of Surgery, Children's Mercy Hospital, Kansas City, Missouri
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
27
|
Sarkar B, Nguyen PK, Gao W, Dondapati A, Siddiqui Z, Kumar VA. Angiogenic Self-Assembling Peptide Scaffolds for Functional Tissue Regeneration. Biomacromolecules 2018; 19:3597-3611. [PMID: 30132656 DOI: 10.1021/acs.biomac.8b01137] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Implantation of acellular biomimetic scaffolds with proangiogenic motifs may have exciting clinical utility for the treatment of ischemic pathologies such as myocardial infarction. Although direct delivery of angiogenic proteins is a possible treatment option, smaller synthetic peptide-based nanostructured alternatives are being investigated due to favorable factors, such as sustained efficacy and high-density epitope presentation of functional moieties. These peptides may be implanted in vivo at the site of ischemia, bypassing the first-pass metabolism and enabling long-term retention and sustained efficacy. Mimics of angiogenic proteins show tremendous potential for clinical use. We discuss possible approaches to integrate the functionality of such angiogenic peptide mimics into self-assembled peptide scaffolds for application in functional tissue regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | - Vivek A Kumar
- Rutgers School of Dental Medicine , Newark , New Jersey 07101 , United States
| |
Collapse
|
28
|
Mithieux SM, Aghaei-Ghareh-Bolagh B, Yan L, Kuppan KV, Wang Y, Garces-Suarez F, Li Z, Maitz PK, Carter EA, Limantoro C, Chrzanowski W, Cookson D, Riboldi-Tunnicliffe A, Baldock C, Ohgo K, Kumashiro KK, Edwards G, Weiss AS. Tropoelastin Implants That Accelerate Wound Repair. Adv Healthc Mater 2018; 7:e1701206. [PMID: 29450975 DOI: 10.1002/adhm.201701206] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/14/2018] [Indexed: 11/12/2022]
Abstract
A novel, pure, synthetic material is presented that promotes the repair of full-thickness skin wounds. The active component is tropoelastin and leverages its ability to promote new blood vessel formation and its cell recruiting properties to accelerate wound repair. Key to the technology is the use of a novel heat-based, stabilized form of human tropoelastin which allows for tunable resorption. This implantable material contributes a tailored insert that can be shaped to the wound bed, where it hydrates to form a conformable protein hydrogel. Significant benefits in the extent of wound healing, dermal repair, and regeneration of mature epithelium in healthy pigs are demonstrated. The implant is compatible with initial co-treatment with full- and split-thickness skin grafts. The implant's superiority to sterile bandaging, commercial hydrogel and dermal regeneration template products is shown. On this basis, a new concept for a prefabricated tissue repair material for point-of-care treatment of open wounds is provided.
Collapse
Affiliation(s)
- Suzanne M. Mithieux
- School of Life and Environmental Sciences; University of Sydney; NSW 2006 Australia
- Charles Perkins Centre; University of Sydney; NSW 2006 Australia
| | - Behnaz Aghaei-Ghareh-Bolagh
- School of Life and Environmental Sciences; University of Sydney; NSW 2006 Australia
- Charles Perkins Centre; University of Sydney; NSW 2006 Australia
| | - Leping Yan
- School of Life and Environmental Sciences; University of Sydney; NSW 2006 Australia
- Charles Perkins Centre; University of Sydney; NSW 2006 Australia
| | - Kekini V. Kuppan
- School of Life and Environmental Sciences; University of Sydney; NSW 2006 Australia
- Charles Perkins Centre; University of Sydney; NSW 2006 Australia
- Heart Research Institute; University of Sydney; NSW 2006 Australia
| | - Yiwei Wang
- Burns Research Group; ANZAC Research Institute; University of Sydney; Concord NSW 2139 Australia
| | - Francia Garces-Suarez
- Burns Research Group; ANZAC Research Institute; University of Sydney; Concord NSW 2139 Australia
| | - Zhe Li
- Burns Research Group; ANZAC Research Institute; University of Sydney; Concord NSW 2139 Australia
| | - Peter K. Maitz
- Burns Research Group; ANZAC Research Institute; University of Sydney; Concord NSW 2139 Australia
| | - Elizabeth A. Carter
- Vibrational Spectroscopy Core Facility and Faculty of Chemistry; University of Sydney; NSW 2006 Australia
| | - Christina Limantoro
- Faculty of Pharmacy; University of Sydney; NSW 2006 Australia
- Australian Institute for Nanoscale Science and Technology; University of Sydney; NSW 2006 Australia
| | - Wojciech Chrzanowski
- Faculty of Pharmacy; University of Sydney; NSW 2006 Australia
- Australian Institute for Nanoscale Science and Technology; University of Sydney; NSW 2006 Australia
| | | | | | - Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research; Division of Cell Matrix Biology and Regenerative Medicine; School of Biological Sciences; Manchester Academic Health Centre; University of Manchester; Manchester M13 9PT UK
| | - Kosuke Ohgo
- Department of Chemistry; University of Hawaii; Honolulu HI 96822 USA
| | | | - Glenn Edwards
- School of Animal and Veterinary Sciences; Charles Sturt University; NSW 2678 Australia
| | - Anthony S. Weiss
- School of Life and Environmental Sciences; University of Sydney; NSW 2006 Australia
- Charles Perkins Centre; University of Sydney; NSW 2006 Australia
- Bosch Institute; University of Sydney; NSW 2006 Australia
| |
Collapse
|
29
|
Pesqueira T, Costa-Almeida R, Mithieux SM, Babo PS, Franco AR, Mendes BB, Domingues RMA, Freitas P, Reis RL, Gomes ME, Weiss AS. Engineering magnetically responsive tropoelastin spongy-like hydrogels for soft tissue regeneration. J Mater Chem B 2018; 6:1066-1075. [DOI: 10.1039/c7tb02035j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Magnetic biomaterials are a key focus in medical research.
Collapse
|