1
|
Liu Y, Jiang N, Zuo S, Feng Y, Chen R, Zhang Y, Zhang N, Sang X, Chen Q. Graphene quantum dots disrupt the mitochondrial potential of Trypanosoma brucei by interacting with the p18 subunit of ATP synthase F 1 after endocytosis via the VSG recycling pathway. J Colloid Interface Sci 2025; 679:975-986. [PMID: 39418900 DOI: 10.1016/j.jcis.2024.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
HYPOTHESIS Trypanosomiasis is one of the main threats to human and animal health in African countries. Trypanosoma brucei can evade the host immune recognition by rapidly altering its variant surface glycoprotein (VSG). The ATP synthase F1 subunit of the parasite exhibits extremely low similarity to that of its mammalian hosts, hypothetically making it an ideal target for the development of novel therapeutics. EXPERIMENTS Graphene quantum dots (GQDs) were synthesized, and their adhesion to T. brucei surface and internalization was observed microscopically. The activity of ATP synthase and mitochondrial membrane potential of T. brucei were measured after exposure to GQDs. Proteomics, biolayer interferometry, and molecular dynamic simulations were utilized to evaluate the interaction between GQDs with the target proteins. FINDINGS GQDs specifically adhered to the VSG of T. brucei and were conveyed inside the parasite via the VSG internalization pathway. The GQDs promoted intracellular ROS production, interacted with, and inhibited the activity of the p18 subunit of ATP synthase, disrupted parasite mitochondrial membrane potential. Additionally, the GQDs caused a decrease in aminoacyl - tRNA biosynthesis, and upregulated RNA and protein degradation pathways. The findings of this study offer a novel avenue for the target-oriented discovery of anti-trypanosome drugs.
Collapse
Affiliation(s)
- Yize Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Si Zuo
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Yiwei Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Naiwen Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China.
| |
Collapse
|
2
|
Prokopchuk G, Butenko A, Dacks JB, Speijer D, Field MC, Lukeš J. Lessons from the deep: mechanisms behind diversification of eukaryotic protein complexes. Biol Rev Camb Philos Soc 2023; 98:1910-1927. [PMID: 37336550 PMCID: PMC10952624 DOI: 10.1111/brv.12988] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Genetic variation is the major mechanism behind adaptation and evolutionary change. As most proteins operate through interactions with other proteins, changes in protein complex composition and subunit sequence provide potentially new functions. Comparative genomics can reveal expansions, losses and sequence divergence within protein-coding genes, but in silico analysis cannot detect subunit substitutions or replacements of entire protein complexes. Insights into these fundamental evolutionary processes require broad and extensive comparative analyses, from both in silico and experimental evidence. Here, we combine data from both approaches and consider the gamut of possible protein complex compositional changes that arise during evolution, citing examples of complete conservation to partial and total replacement by functional analogues. We focus in part on complexes in trypanosomes as they represent one of the better studied non-animal/non-fungal lineages, but extend insights across the eukaryotes by extensive comparative genomic analysis. We argue that gene loss plays an important role in diversification of protein complexes and hence enhancement of eukaryotic diversity.
Collapse
Affiliation(s)
- Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
| | - Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
- Life Science Research Centre, Faculty of ScienceUniversity of OstravaChittussiho 983/10Ostrava71000Czech Republic
| | - Joel B. Dacks
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Division of Infectious Diseases, Department of MedicineUniversity of Alberta1‐124 Clinical Sciences Building, 11350‐83 AvenueEdmontonT6G 2R3AlbertaCanada
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and the EnvironmentUniversity College LondonDarwin Building, Gower StreetLondonWC1E 6BTUK
| | - Dave Speijer
- Medical Biochemistry, Amsterdam UMCUniversity of AmsterdamMeibergdreef 15Amsterdam1105 AZThe Netherlands
| | - Mark C. Field
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- School of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHScotlandUK
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
| |
Collapse
|
3
|
Gahura O, Mühleip A, Hierro-Yap C, Panicucci B, Jain M, Hollaus D, Slapničková M, Zíková A, Amunts A. An ancestral interaction module promotes oligomerization in divergent mitochondrial ATP synthases. Nat Commun 2022; 13:5989. [PMID: 36220811 PMCID: PMC9553925 DOI: 10.1038/s41467-022-33588-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial ATP synthase forms stable dimers arranged into oligomeric assemblies that generate the inner-membrane curvature essential for efficient energy conversion. Here, we report cryo-EM structures of the intact ATP synthase dimer from Trypanosoma brucei in ten different rotational states. The model consists of 25 subunits, including nine lineage-specific, as well as 36 lipids. The rotary mechanism is influenced by the divergent peripheral stalk, conferring a greater conformational flexibility. Proton transfer in the lumenal half-channel occurs via a chain of five ordered water molecules. The dimerization interface is formed by subunit-g that is critical for interactions but not for the catalytic activity. Although overall dimer architecture varies among eukaryotes, we find that subunit-g together with subunit-e form an ancestral oligomerization motif, which is shared between the trypanosomal and mammalian lineages. Therefore, our data defines the subunit-g/e module as a structural component determining ATP synthase oligomeric assemblies.
Collapse
Affiliation(s)
- Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Alexander Mühleip
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
| | - Carolina Hierro-Yap
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, 37005, České Budějovice, Czech Republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Minal Jain
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, 37005, České Budějovice, Czech Republic
| | - David Hollaus
- Faculty of Science, University of South Bohemia, 37005, České Budějovice, Czech Republic
| | - Martina Slapničková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, 37005, České Budějovice, Czech Republic.
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden.
| |
Collapse
|
4
|
Dewar CE, Oeljeklaus S, Wenger C, Warscheid B, Schneider A. Characterization of a highly diverged mitochondrial ATP synthase F o subunit in Trypanosoma brucei. J Biol Chem 2022; 298:101829. [PMID: 35293314 PMCID: PMC9034290 DOI: 10.1016/j.jbc.2022.101829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
The mitochondrial F1Fo ATP synthase of the parasite Trypanosoma brucei has been previously studied in detail. This unusual enzyme switches direction in functionality during the life cycle of the parasite, acting as an ATP synthase in the insect stages, and as an ATPase to generate mitochondrial membrane potential in the mammalian bloodstream stages. Whereas the trypanosome F1 moiety is relatively highly conserved in structure and composition, the Fo subcomplex and the peripheral stalk have been shown to be more variable. Interestingly, a core subunit of the latter, the normally conserved subunit b, has been resistant to identification by sequence alignment or biochemical methods. Here, we identified a 17 kDa mitochondrial protein of the inner membrane, Tb927.8.3070, that is essential for normal growth, efficient oxidative phosphorylation, and membrane potential maintenance. Pull-down experiments and native PAGE analysis indicated that the protein is both associated with the F1Fo ATP synthase and integral to its assembly. In addition, its knockdown reduced the levels of Fo subunits, but not those of F1, and disturbed the cell cycle. Finally, analysis of structural homology using the HHpred algorithm showed that this protein has structural similarities to Fo subunit b of other species, indicating that this subunit may be a highly diverged form of the elusive subunit b.
Collapse
Affiliation(s)
- Caroline E Dewar
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Silke Oeljeklaus
- Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Christoph Wenger
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Bettina Warscheid
- Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Gahura O, Hierro-Yap C, Zíková A. Redesigned and reversed: architectural and functional oddities of the trypanosomal ATP synthase. Parasitology 2021; 148:1151-1160. [PMID: 33551002 PMCID: PMC8311965 DOI: 10.1017/s0031182021000202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/23/2022]
Abstract
Mitochondrial F-type adenosine triphosphate (ATP) synthases are commonly introduced as highly conserved membrane-embedded rotary machines generating the majority of cellular ATP. This simplified view neglects recently revealed striking compositional diversity of the enzyme and the fact that in specific life stages of some parasites, the physiological role of the enzyme is to maintain the mitochondrial membrane potential at the expense of ATP rather than to produce ATP. In addition, mitochondrial ATP synthases contribute indirectly to the organelle's other functions because they belong to major determinants of submitochondrial morphology. Here, we review current knowledge about the trypanosomal ATP synthase composition and architecture in the context of recent advances in the structural characterization of counterpart enzymes from several eukaryotic supergroups. We also discuss the physiological function of mitochondrial ATP synthases in three trypanosomatid parasites, Trypanosoma cruzi, Trypanosoma brucei and Leishmania, with a focus on their disease-causing life cycle stages. We highlight the reversed proton-pumping role of the ATP synthase in the T. brucei bloodstream form, the enzyme's potential link to the regulation of parasite's glycolysis and its role in generating mitochondrial membrane potential in the absence of mitochondrial DNA.
Collapse
Affiliation(s)
- Ondřej Gahura
- Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic
| | - Carolina Hierro-Yap
- Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 37005, Czech Republic
| | - Alena Zíková
- Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 37005, Czech Republic
| |
Collapse
|
6
|
Cadena LR, Gahura O, Panicucci B, Zíková A, Hashimi H. Mitochondrial Contact Site and Cristae Organization System and F 1F O-ATP Synthase Crosstalk Is a Fundamental Property of Mitochondrial Cristae. mSphere 2021; 6:e0032721. [PMID: 34133204 PMCID: PMC8265648 DOI: 10.1128/msphere.00327-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial cristae are polymorphic invaginations of the inner membrane that are the fabric of cellular respiration. Both the mitochondrial contact site and cristae organization system (MICOS) and the F1FO-ATP synthase are vital for sculpting cristae by opposing membrane-bending forces. While MICOS promotes negative curvature at crista junctions, dimeric F1FO-ATP synthase is crucial for positive curvature at crista rims. Crosstalk between these two complexes has been observed in baker's yeast, the model organism of the Opisthokonta supergroup. Here, we report that this property is conserved in Trypanosoma brucei, a member of the Discoba clade that separated from the Opisthokonta ∼2 billion years ago. Specifically, one of the paralogs of the core MICOS subunit Mic10 interacts with dimeric F1FO-ATP synthase, whereas the other core Mic60 subunit has a counteractive effect on F1FO-ATP synthase oligomerization. This is evocative of the nature of MICOS-F1FO-ATP synthase crosstalk in yeast, which is remarkable given the diversification that these two complexes have undergone during almost 2 eons of independent evolution. Furthermore, we identified a highly diverged, putative homolog of subunit e, which is essential for the stability of F1FO-ATP synthase dimers in yeast. Just like subunit e, it is preferentially associated with dimers and interacts with Mic10, and its silencing results in severe defects to cristae and the disintegration of F1FO-ATP synthase dimers. Our findings indicate that crosstalk between MICOS and dimeric F1FO-ATP synthase is a fundamental property impacting crista shape throughout eukaryotes. IMPORTANCE Mitochondria have undergone profound diversification in separate lineages that have radiated since the last common ancestor of eukaryotes some eons ago. Most eukaryotes are unicellular protists, including etiological agents of infectious diseases, like Trypanosoma brucei. Thus, the study of a broad range of protists can reveal fundamental features shared by all eukaryotes and lineage-specific innovations. Here, we report that two different protein complexes, MICOS and F1FO-ATP synthase, known to affect mitochondrial architecture, undergo crosstalk in T. brucei, just as in baker's yeast. This is remarkable considering that these complexes have otherwise undergone many changes during their almost 2 billion years of independent evolution. Thus, this crosstalk is a fundamental property needed to maintain proper mitochondrial structure even if the constituent players considerably diverged.
Collapse
Affiliation(s)
- Lawrence Rudy Cadena
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Ondřej Gahura
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
7
|
Aphasizheva I, Aphasizhev R. Mitochondrial RNA quality control in trypanosomes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1638. [PMID: 33331073 PMCID: PMC9805618 DOI: 10.1002/wrna.1638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 01/04/2023]
Abstract
Unicellular parasites Trypanosoma brucei spp. cause African human and animal trypanosomiasis, a spectrum of diseases that jeopardize public health and afflict the economy in sub-Saharan Africa. These hemoflagellates are distinguished by a single mitochondrion, which contains a kinetoplast nucleoid composed of DNA and histone-like proteins. Kinetoplast DNA (kDNA) represents a densely packed network of interlinked relaxed circular molecules: a few ~23-kb maxicircles encoding ribosomal RNAs (rRNAs) and proteins, and approximately 5,000 1-kb minicircles bearing guide RNA (gRNA) genes. The transcription start site defines the mRNA's 5' terminus while the primary RNA is remodeled into a monocistronic messenger by 3'-5' exonucleolytic trimming, 5' and 3' end modifications, and, in most cases, by internal U-insertion/deletion editing. Ribosomal and guide RNA precursors are also trimmed, and the processed molecules are uridylated. For 35 years, mRNA editing has attracted a major effort, but more recently the essential pre- and postediting processing and turnover events have been discovered and the key effectors have been identified. Among these, pentatricopeptide repeat (PPR) RNA binding proteins emerged as conduits coupling modifications of mRNA termini with internal sequence changes introduced by editing. Among 39 annotated PPRs, 20 belong to ribosomal subunits or assembly intermediates, four function as polyadenylation factors, a single factor directs 5' mRNA modification, and one protein is found in F1-ATPase. Nuclear and mitochondrial RNases P consist of a single PPR polypeptide, PRORP1 and PROP2, respectively. Here, we review PPR-mediated mitochondrial processes and discuss their potential roles in mRNA maturation, quality control, translational activation, and decay. This article is categorized under: RNA Processing > Capping and 5' End Modifications RNA Processing > 3' End Processing RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, Massachusetts
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, Massachusetts,Department of Biochemistry, Boston University Medical Campus, Boston, Massachusetts
| |
Collapse
|
8
|
Hierro-Yap C, Šubrtová K, Gahura O, Panicucci B, Dewar C, Chinopoulos C, Schnaufer A, Zíková A. Bioenergetic consequences of F oF 1-ATP synthase/ATPase deficiency in two life cycle stages of Trypanosoma brucei. J Biol Chem 2021; 296:100357. [PMID: 33539923 PMCID: PMC7949148 DOI: 10.1016/j.jbc.2021.100357] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/23/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial ATP synthase is a reversible nanomotor synthesizing or hydrolyzing ATP depending on the potential across the membrane in which it is embedded. In the unicellular parasite Trypanosoma brucei, the direction of the complex depends on the life cycle stage of this digenetic parasite: in the midgut of the tsetse fly vector (procyclic form), the FoF1–ATP synthase generates ATP by oxidative phosphorylation, whereas in the mammalian bloodstream form, this complex hydrolyzes ATP and maintains mitochondrial membrane potential (ΔΨm). The trypanosome FoF1–ATP synthase contains numerous lineage-specific subunits whose roles remain unknown. Here, we seek to elucidate the function of the lineage-specific protein Tb1, the largest membrane-bound subunit. In procyclic form cells, Tb1 silencing resulted in a decrease of FoF1–ATP synthase monomers and dimers, rerouting of mitochondrial electron transfer to the alternative oxidase, reduced growth rate and cellular ATP levels, and elevated ΔΨm and total cellular reactive oxygen species levels. In bloodstream form parasites, RNAi silencing of Tb1 by ∼90% resulted in decreased FoF1–ATPase monomers and dimers, but it had no apparent effect on growth. The same findings were obtained by silencing of the oligomycin sensitivity-conferring protein, a conserved subunit in T. brucei FoF1–ATP synthase. However, as expected, nearly complete Tb1 or oligomycin sensitivity-conferring protein suppression was lethal because of the inability to sustain ΔΨm. The diminishment of FoF1–ATPase complexes was further accompanied by a decreased ADP/ATP ratio and reduced oxygen consumption via the alternative oxidase. Our data illuminate the often diametrically opposed bioenergetic consequences of FoF1–ATP synthase loss in insect versus mammalian forms of the parasite.
Collapse
Affiliation(s)
- Carolina Hierro-Yap
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Karolína Šubrtová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Institute of Immunology and Infection Research, University of Edinburgh, United Kingdom
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Caroline Dewar
- Institute of Immunology and Infection Research, University of Edinburgh, United Kingdom
| | | | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, United Kingdom
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.
| |
Collapse
|
9
|
Serricchio M, Hierro-Yap C, Schädeli D, Ben Hamidane H, Hemphill A, Graumann J, Zíková A, Bütikofer P. Depletion of cardiolipin induces major changes in energy metabolism in Trypanosoma brucei bloodstream forms. FASEB J 2020; 35:e21176. [PMID: 33184899 DOI: 10.1096/fj.202001579rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023]
Abstract
The mitochondrial inner membrane glycerophospholipid cardiolipin (CL) associates with mitochondrial proteins to regulate their activities and facilitate protein complex and supercomplex formation. Loss of CL leads to destabilized respiratory complexes and mitochondrial dysfunction. The role of CL in an organism lacking a conventional electron transport chain (ETC) has not been elucidated. Trypanosoma brucei bloodstream forms use an unconventional ETC composed of glycerol-3-phosphate dehydrogenase and alternative oxidase (AOX), while the mitochondrial membrane potential (ΔΨm) is generated by the hydrolytic action of the Fo F1 -ATP synthase (aka Fo F1 -ATPase). We now report that the inducible depletion of cardiolipin synthase (TbCls) is essential for survival of T brucei bloodstream forms. Loss of CL caused a rapid drop in ATP levels and a decline in the ΔΨm. Unbiased proteomic analyses revealed a reduction in the levels of many mitochondrial proteins, most notably of Fo F1 -ATPase subunits and AOX, resulting in a strong decline of glycerol-3-phosphate-stimulated oxygen consumption. The changes in cellular respiration preceded the observed decrease in Fo F1 -ATPase stability, suggesting that the AOX-mediated ETC is the first pathway responding to the decline in CL. Select proteins and pathways involved in glucose and amino acid metabolism were upregulated to counteract the CL depletion-induced drop in cellular ATP.
Collapse
Affiliation(s)
- Mauro Serricchio
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Carolina Hierro-Yap
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - David Schädeli
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Johannes Graumann
- Weill Cornell Medicine - Qatar, Doha, State of Qatar.,Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alena Zíková
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Doleželová E, Kunzová M, Dejung M, Levin M, Panicucci B, Regnault C, Janzen CJ, Barrett MP, Butter F, Zíková A. Cell-based and multi-omics profiling reveals dynamic metabolic repurposing of mitochondria to drive developmental progression of Trypanosoma brucei. PLoS Biol 2020; 18:e3000741. [PMID: 32520929 PMCID: PMC7307792 DOI: 10.1371/journal.pbio.3000741] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/22/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial metabolic remodeling is a hallmark of the Trypanosoma brucei digenetic life cycle because the insect stage utilizes a cost-effective oxidative phosphorylation (OxPhos) to generate ATP, while bloodstream cells switch to aerobic glycolysis. Due to difficulties in acquiring enough parasites from the tsetse fly vector, the dynamics of the parasite's metabolic rewiring in the vector have remained obscure. Here, we took advantage of in vitro-induced differentiation to follow changes at the RNA, protein, and metabolite levels. This multi-omics and cell-based profiling showed an immediate redirection of electron flow from the cytochrome-mediated pathway to an alternative oxidase (AOX), an increase in proline consumption, elevated activity of complex II, and certain tricarboxylic acid (TCA) cycle enzymes, which led to mitochondrial membrane hyperpolarization and increased reactive oxygen species (ROS) levels. Interestingly, these ROS molecules appear to act as signaling molecules driving developmental progression because ectopic expression of catalase, a ROS scavenger, halted the in vitro-induced differentiation. Our results provide insights into the mechanisms of the parasite's mitochondrial rewiring and reinforce the emerging concept that mitochondria act as signaling organelles through release of ROS to drive cellular differentiation.
Collapse
Affiliation(s)
- Eva Doleželová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Michaela Kunzová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Mario Dejung
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Michal Levin
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Clément Regnault
- Welcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christian J. Janzen
- Welcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michael P. Barrett
- Department of Cell and Developmental Biology, Biocenter, University Wuerzburg, Wuerzburg, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- * E-mail:
| |
Collapse
|
11
|
Huang G, Docampo R. The Mitochondrial Calcium Uniporter Interacts with Subunit c of the ATP Synthase of Trypanosomes and Humans. mBio 2020; 11:e00268-20. [PMID: 32184243 PMCID: PMC7078472 DOI: 10.1128/mbio.00268-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial Ca2+ transport mediated by the uniporter complex (MCUC) plays a key role in the regulation of cell bioenergetics in both trypanosomes and mammals. Here we report that Trypanosoma brucei MCU (TbMCU) subunits interact with subunit c of the mitochondrial ATP synthase (ATPc), as determined by coimmunoprecipitation and split-ubiquitin membrane-based yeast two-hybrid (MYTH) assays. Mutagenesis analysis in combination with MYTH assays suggested that transmembrane helices (TMHs) are determinants of this specific interaction. In situ tagging, followed by immunoprecipitation and immunofluorescence microscopy, revealed that T. brucei ATPc (TbATPc) coimmunoprecipitates with TbMCUC subunits and colocalizes with them to the mitochondria. Blue native PAGE and immunodetection analyses indicated that the TbMCUC is present together with the ATP synthase in a large protein complex with a molecular weight of approximately 900 kDa. Ablation of the TbMCUC subunits by RNA interference (RNAi) significantly increased the AMP/ATP ratio, revealing the downregulation of ATP production in the cells. Interestingly, the direct physical MCU-ATPc interaction is conserved in Trypanosoma cruzi and human cells. Specific interaction between human MCU (HsMCU) and human ATPc (HsATPc) was confirmed in vitro by mutagenesis and MYTH assays and in vivo by coimmunoprecipitation. In summary, our study has identified that MCU complex physically interacts with mitochondrial ATP synthase, possibly forming an MCUC-ATP megacomplex that couples ADP and Pi transport with ATP synthesis, a process that is stimulated by Ca2+ in trypanosomes and human cells.IMPORTANCE The mitochondrial calcium uniporter (MCU) is essential for the regulation of oxidative phosphorylation in mammalian cells, and we have shown that in Trypanosoma brucei, the etiologic agent of sleeping sickness, this channel is essential for its survival and infectivity. Here we reveal that that Trypanosoma brucei MCU subunits interact with subunit c of the mitochondrial ATP synthase (ATPc). Interestingly, the direct physical MCU-ATPc interaction is conserved in T. cruzi and human cells.
Collapse
Affiliation(s)
- Guozhong Huang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
12
|
Mühleip A, McComas SE, Amunts A. Structure of a mitochondrial ATP synthase with bound native cardiolipin. eLife 2019; 8:51179. [PMID: 31738165 PMCID: PMC6930080 DOI: 10.7554/elife.51179] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/16/2019] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial ATP synthase fuels eukaryotic cells with chemical energy. Here we report the cryo-EM structure of a divergent ATP synthase dimer from mitochondria of Euglena gracilis, a member of the phylum Euglenozoa that also includes human parasites. It features 29 different subunits, 8 of which are newly identified. The membrane region was determined to 2.8 Å resolution, enabling the identification of 37 associated lipids, including 25 cardiolipins, which provides insight into protein-lipid interactions and their functional roles. The rotor-stator interface comprises four membrane-embedded horizontal helices, including a distinct subunit a. The dimer interface is formed entirely by phylum-specific components, and a peripherally associated subcomplex contributes to the membrane curvature. The central and peripheral stalks directly interact with each other. Last, the ATPase inhibitory factor 1 (IF1) binds in a mode that is different from human, but conserved in Trypanosomatids. Every living thing uses the energy-rich molecule called adenosine triphosphate, or ATP, as fuel. It is the universal molecular currency for transferring energy. Cells trade it, mitochondria make it, and the energy extracted from it is used to drive chemical reactions, transport molecules across cell membranes, energize nerve impulses and contract muscles. ATP synthase is the enzyme that makes ATP molecules. It is a multi-part complex that straddles the inner membrane of mitochondria, the energy factories in cells. The enzyme complex interacts with fatty molecules in the mitochondrial inner membrane, creating a curvature that is required to produce ATP more efficiently. The mitochondrial ATP synthase has been studied in many different organisms, including yeast, algae, plants, pigs, cows and humans. These studies show that most of these ATP synthases are similar to each other, but obtaining a high resolution structure has been a challenge. Some single-cell organisms have unusual ATP synthases, which provide clues about how the enzyme evolved in pursuit of the most energy efficient arrangement. One such organism is the photosynthetic Euglena gracilis, which is closely related to the human parasites that cause sleeping sickness and Chagas disease. Now, Mü̈hleip et al. have extracted ATP synthase from E. gracilis and reconstructed its structure using electron cryo-microscopy. The high resolution of this reconstruction allowed for the first time to examine the fatty molecules associated with ATP synthase, called cardiolipins. This is important, because cardiolipins are thought to modulate the rotating motor of the enzyme and affect how the complex sits in the membrane. The analysis revealed that the ATP synthase in E. gracilis has 29 different protein subunits, 13 of which are only found in organisms of the same family. Some of the newly discovered subunits are glued together by fatty molecules and extend into the surrounding mitochondrial membrane. This distinctive structure suggests an adaptation which likely evolved independently in E. gracilis for efficiency. These results represent an important advance in the field, and provide direct evidence for the functional roles of cardiolipin. This information will be used to reconstruct the evolution of this mighty molecule and to further study the roles of cardiolipin in energy conversion. Moreover, the analysis identified similarities between the ATP synthase in E. gracilis and human parasites, which could provide new therapeutic targets in disease-causing parasites.
Collapse
Affiliation(s)
- Alexander Mühleip
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sarah E McComas
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Gahura O, Panicucci B, Váchová H, Walker JE, Zíková A. Inhibition of F 1 -ATPase from Trypanosoma brucei by its regulatory protein inhibitor TbIF 1. FEBS J 2018; 285:4413-4423. [PMID: 30288927 DOI: 10.1111/febs.14672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/19/2018] [Accepted: 10/01/2018] [Indexed: 12/30/2022]
Abstract
Hydrolysis of ATP by the mitochondrial F-ATPase is inhibited by a protein called IF1 . In the parasitic flagellate, Trypanosoma brucei, this protein, known as TbIF1 , is expressed exclusively in the procyclic stage, where the F-ATPase is synthesizing ATP. In the bloodstream stage, where TbIF1 is absent, the F-ATPase hydrolyzes ATP made by glycolysis and compensates for the absence of a proton pumping respiratory chain by translocating protons into the intermembrane space, thereby maintaining the essential mitochondrial membrane potential. We have defined regions and amino acid residues of TbIF1 that are required for its inhibitory activity by analyzing the binding of several modified recombinant inhibitors to F1 -ATPase isolated from the procyclic stage of T. brucei. Kinetic measurements revealed that the C-terminal portion of TbIF1 facilitates homodimerization, but it is not required for the inhibitory activity, similar to the bovine and yeast orthologs. However, in contrast to bovine IF1 , the inhibitory capacity of the C-terminally truncated TbIF1 diminishes with decreasing pH, similar to full length TbIF1 . This effect does not involve the dimerization of active dimers to form inactive tetramers. Over a wide pH range, the full length and C-terminally truncated TbIF1 form dimers and monomers, respectively. TbIF1 has no effect on bovine F1 -ATPase, and this difference in the mechanism of regulation of the F-ATPase between the host and the parasite could be exploited in the design of drugs to combat human and animal African trypanosomiases.
Collapse
Affiliation(s)
- Ondřej Gahura
- Institute of Parasitology, Biology Centre Czech Academy of Science, České Budějovice, Czech Republic
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, UK
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre Czech Academy of Science, České Budějovice, Czech Republic
| | - Hana Váchová
- Institute of Parasitology, Biology Centre Czech Academy of Science, České Budějovice, Czech Republic
| | - John E Walker
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, UK
| | - Alena Zíková
- Institute of Parasitology, Biology Centre Czech Academy of Science, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
14
|
Cultured bloodstream Trypanosoma brucei adapt to life without mitochondrial translation release factor 1. Sci Rep 2018; 8:5135. [PMID: 29572512 PMCID: PMC5865105 DOI: 10.1038/s41598-018-23472-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/13/2018] [Indexed: 01/07/2023] Open
Abstract
Trypanosoma brucei is an extracellular parasite that alternates between an insect vector (procyclic form) and the bloodstream of a mammalian host (bloodstream form). While it was previously reported that mitochondrial release factor 1 (TbMrf1) is essential in cultured procyclic form cells, we demonstrate here that in vitro bloodstream form cells can tolerate the elimination of TbMrf1. Therefore, we explored if this discrepancy is due to the unique bioenergetics of the parasite since procyclic form cells rely on oxidative phosphorylation; whereas bloodstream form cells utilize glycolysis for ATP production and FoF1-ATPase to maintain the essential mitochondrial membrane potential. The observed disruption of intact bloodstream form FoF1-ATPases serves as a proxy to indicate that the translation of its mitochondrially encoded subunit A6 is impaired without TbMrf1. While these null mutants have a decreased mitochondrial membrane potential, they have adapted by increasing their dependence on the electrogenic contributions of the ADP/ATP carrier to maintain the mitochondrial membrane potential above the minimum threshold required for T. brucei viability in vitro. However, this inefficient compensatory mechanism results in avirulent mutants in mice. Finally, the depletion of the codon-independent release factor TbPth4 in the TbMrf1 knockouts further exacerbates the characterized mitchondrial phenotypes.
Collapse
|
15
|
ATP synthase from Trypanosoma brucei has an elaborated canonical F 1-domain and conventional catalytic sites. Proc Natl Acad Sci U S A 2018; 115:2102-2107. [PMID: 29440423 DOI: 10.1073/pnas.1720940115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structures and functions of the components of ATP synthases, especially those subunits involved directly in the catalytic formation of ATP, are widely conserved in metazoans, fungi, eubacteria, and plant chloroplasts. On the basis of a map at 32.5-Å resolution determined in situ in the mitochondria of Trypanosoma brucei by electron cryotomography, it has been proposed that the ATP synthase in this species has a noncanonical structure and different catalytic sites in which the catalytically essential arginine finger is provided not by the α-subunit adjacent to the catalytic nucleotide-binding site as in all species investigated to date, but rather by a protein, p18, found only in the euglenozoa. A crystal structure at 3.2-Å resolution of the catalytic domain of the same enzyme demonstrates that this proposal is incorrect. In many respects, the structure is similar to the structures of F1-ATPases determined previously. The α3β3-spherical portion of the catalytic domain in which the three catalytic sites are found, plus the central stalk, are highly conserved, and the arginine finger is provided conventionally by the α-subunits adjacent to each of the three catalytic sites found in the β-subunits. Thus, the enzyme has a conventional catalytic mechanism. The structure differs from previous described structures by the presence of a p18 subunit, identified only in the euglenozoa, associated with the external surface of each of the three α-subunits, thereby elaborating the F1-domain. Subunit p18 is a pentatricopeptide repeat (PPR) protein with three PPRs and appears to have no function in the catalytic mechanism of the enzyme.
Collapse
|