1
|
Kim YH, Park C, Nguyen HD, V Ngo H, Lee BJ. Self-assembled nanonization of fatty acid-conjugated vaccine antigen for enhanced thermal stability. Int J Pharm 2024; 658:124176. [PMID: 38688427 DOI: 10.1016/j.ijpharm.2024.124176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 05/02/2024]
Abstract
The aim of this study was to evaluate the enhanced thermal stability and physicochemical properties of fattigated vaccine antigens. High molecular weight influenza hemagglutinin (Heg) was used as a model antigen because of low heat stability requiring cold chamber. Heg was conjugated with long-chain oleic acid (C18) and short-chain 3-decenoic acid (C10) to prepare fattigated Heg. Circular dichroism analysis revealed no significant changes in the three-dimensional structure post-conjugation. In the liquid state, the fattigated Heg was self-assembled into nanoparticles (NPs) due to its amphiphilic nature, with sizes of 136.27 ± 12.78 nm for oleic acid-conjugated Heg (HOC) and 88.73 ± 3.27 nm for 3-decenoic acid-conjugated Heg (HDC). Accelerated thermal stability studies at 60 °C for 7 days demonstrated that fattigated Heg exhibited higher thermal stability than Heg in various liquid or solid states. The longer-chained HOC showed better thermal stability than HDC in the liquid state, attributed to increased hydrophobic interactions during self-assembly. In bio-mimicking liquid states at 37 °C, HOC exhibited higher thermal stability than Heg. Furthermore, solid-state HOC with cryoprotectants (trehalose, mannitol, and Tween® 80) had significantly increased thermal stability due to reduced exposure of protein surface area via nanonization behavior. The current fattigation platform could be a promising strategy for developing thermostable nano vaccines of heat-labile vaccine antigens.
Collapse
Affiliation(s)
- Yeon-Ho Kim
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Chulhun Park
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Hy D Nguyen
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Hai V Ngo
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Beom-Jin Lee
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
2
|
Sompiyachoke K, Elias MH. Engineering quorum quenching acylases with improved kinetic and biochemical properties. Protein Sci 2024; 33:e4954. [PMID: 38520282 PMCID: PMC10960309 DOI: 10.1002/pro.4954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/03/2024] [Accepted: 02/21/2024] [Indexed: 03/25/2024]
Abstract
Many Gram-negative bacteria use N-acyl-L-homoserine lactone (AHL) signals to coordinate phenotypes such as biofilm formation and virulence factor production. Quorum-quenching enzymes, such as AHL acylases, chemically degrade these molecules which prevents signal reception by bacteria and inhibits undesirable biofilm-related traits. These capabilities make acylases appealing candidates for controlling microbes, yet candidates with high activity levels and substrate specificity and that are capable of being formulated into materials are needed. In this work, we undertook engineering efforts against two AHL acylases, PvdQ and MacQ, to generate these improved properties using the Protein One-Stop Shop Server. The engineering of acylases is complicated by low-throughput enzymatic assays. Alleviating this challenge, we report a time-course kinetic assay for AHL acylases that monitors the real-time production of homoserine lactone. Using the assay, we identified variants of PvdQ that were significantly stabilized, with melting point increases of up to 13.2°C, which translated into high resistance against organic solvents and increased compatibility with material coatings. While the MacQ mutants were unexpectedly destabilized, they had considerably improved kinetic properties, with >10-fold increases against N-butyryl-L-homoserine lactone and N-hexanoyl-L-homoserine lactone. Accordingly, these changes resulted in increased quenching abilities using a biosensor model and greater inhibition of virulence factor production of Pseudomonas aeruginosa PA14. While the crystal structure of one of the MacQ variants, M1, did not reveal obvious structural determinants explaining the observed changes in kinetics, it allowed for the capture of an acyl-enzyme intermediate that confirms a previously hypothesized catalytic mechanism of AHL acylases.
Collapse
Affiliation(s)
- Kitty Sompiyachoke
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Mikael H. Elias
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaSt. PaulMinnesotaUSA
- Biotechnology InstituteSt. PaulMinnesotaUSA
| |
Collapse
|
3
|
Yan J, Zhao S, Xu X, Liu F. Enhancing pea protein isolate functionality: A comparative study of high-pressure homogenization, ultrasonic treatment, and combined processing techniques. Curr Res Food Sci 2023; 8:100653. [PMID: 38204878 PMCID: PMC10776415 DOI: 10.1016/j.crfs.2023.100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/13/2023] [Accepted: 12/03/2023] [Indexed: 01/12/2024] Open
Abstract
Pea protein has attracted widespread attention due to its high nutritional value, low allergenicity, non-GMO status, and broad availability. However, compared to animal proteins, pea protein has inferior functional properties, which limits its application in the food industry. This study used pea protein isolate (PPI) as the main raw material and investigated the effects of high-pressure homogenization (HPH), ultrasonic treatment (US), and the combination of the two in different orders on the structure and function of PPI. The results showed that HPH or US promoted the transformation of PPI insoluble suspension into a uniform protein dispersion, significantly reducing particle size, unfolding the spatial structure, exposing more amino acid residues. These structural changes resulted in a substantial increase in the solubility, foaming capacity and emulsifying activity of PPI. Moreover, the combined treatments further impacted the properties of PPI, largely depending on the order of the processing steps; the combination of HPH-US exhibited the best functional characteristics.
Collapse
Affiliation(s)
- Jun Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Sheliang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| |
Collapse
|
4
|
Isfahani MB, Mahnam K, Seyedhosseini-Ghaheh H, Sadeghi HMM, Khanahmad H, Akbari V, Varshosaz J. Computational design of newly engineered DARPins as HER2 receptor inhibitors for breast cancer treatment. Res Pharm Sci 2023; 18:626-637. [PMID: 39005564 PMCID: PMC11246109 DOI: 10.4103/1735-5362.389950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/12/2023] [Accepted: 08/26/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Human epidermal growth factor receptor 2 (HER2) is overexpressed in approximately 25% of breast cancer patients; therefore, its inhibition is a therapeutic target in cancer treatment. Experimental approach In this study, two new variants of designed ankyrin repeat proteins (DARPins), designated EG3-1 and EG3-2, were designed to increase their affinity for HER2 receptors. To this end, DARPin G3 was selected as a template, and six-point mutations comprising Q26E, I32V, T49A, L53H, K101R, and G124V were created on its structure. Furthermore, the 3D structures were formed through homology modeling and evaluated using molecular dynamic simulation. Then, both structures were docked to the HER2 receptor using the HADDOCK web tool, followed by 100 ns of molecular dynamics simulation for both DARPins / HER2 complexes. Findings/Results The theoretical result confirmed both structures' stability. Molecular dynamics simulations reveal that the applied mutations on DARPin EG3-2 significantly improve the receptor binding affinity of DARPin. Conclusion and implications The computationally engineered DARPin EG3-2 in this study could provide a hit compound for the design of promising anticancer agents targeting HER2 receptors.
Collapse
Affiliation(s)
- Maryam Beheshti Isfahani
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Karim Mahnam
- Faculty of Science, Department of Biology, Shahrekord University, Shahrekord, Iran
| | | | - Hamid Mir Mohammad Sadeghi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Sompiyachoke K, Elias MH. Engineering Quorum Quenching Acylases with Improved Kinetic and Biochemical Properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555929. [PMID: 37693529 PMCID: PMC10491313 DOI: 10.1101/2023.09.01.555929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Many Gram-negative bacteria respond to N-acyl-L-homoserine lactone (AHL) signals to coordinate phenotypes such as biofilm formation and virulence factor production. Quorum-quenching enzymes, such as acylases, chemically degrade AHL signals, prevent signal reception by bacteria, and inhibit undesirable traits related to biofilm. These capabilities make these enzymes appealing candidates for controlling microbes. Yet, enzyme candidates with high activity levels, high substrate specificity for specific interference, and that are capable of being formulated into materials are needed. In this work, we undertook engineering efforts against two AHL acylases, PvdQ and MacQ, to obtain improved acylase variants. The engineering of acylase is complicated by low-throughput enzymatic assays. To alleviate this challenge, we report a time-course kinetic assay for AHL acylase that tracks the real-time production of homoserine lactone. Using the protein one-stop shop server (PROSS), we identified variants of PvdQ that were significantly stabilized, with melting point increases of up to 13.2 °C, which translated into high resistance against organic solvents and increased compatibility with material coatings. We also generated mutants of MacQ with considerably improved kinetic properties, with >10-fold increases against N-butyryl-L-homoserine lactone and N-hexanoyl-L-homoserine lactone. In fact, the variants presented here exhibit unique combinations of stability and activity levels. Accordingly, these changes resulted in increased quenching abilities using a biosensor model and greater inhibition of virulence factor production of Pseudomonas aeruginosa PA14. While the crystal structure of one of the MacQ variants, M1, did not reveal obvious structural determinants explaining the observed changes in kinetics, it allowed for the capture of an acyl-enzyme intermediate that confirms a previously hypothesized catalytic mechanism of AHL acylases.
Collapse
Affiliation(s)
- Kitty Sompiyachoke
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, St. Paul, MN, 55108, USA
| | - Mikael H. Elias
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, St. Paul, MN, 55108, USA
- University of Minnesota, Biotechnology Institute, St. Paul, MN, 55108, USA
| |
Collapse
|
6
|
Tran TV, Hoang T, Jang SH, Lee C. Unraveling the roles of aromatic cluster side-chain interactions on the structural stability and functional significance of psychrophilic Sphingomonas sp. glutaredoxin 3. PLoS One 2023; 18:e0290686. [PMID: 37651358 PMCID: PMC10470887 DOI: 10.1371/journal.pone.0290686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023] Open
Abstract
This study investigates the impact of aromatic cluster side-chain interactions in Grx3 (SpGrx3) from the psychrophilic Arctic bacterium Sphingomonas sp. Grx3 is a class I oxidoreductase with a unique parallel arrangement of aromatic residues in its aromatic cluster, unlike the tetrahedral geometry observed in Trxs. Hydrophilic-to-hydrophobic substitutions were made in the aromatic cluster, in β1 (E5V and Y7F), adjacent β2 (Y32F and Y32L), both β1 and β2 (E5V/Y32L), and short α2 (R47F). The hydrophobic substitutions, particularly those at or near Tyr7 (E5V, Y7F, Y32F, and R47F), increased melting temperatures and conformational stability, whereas disrupting β1-β2 interactions (Y32L and E5V/Y32L) led to structural instability of SpGrx3. However, excessive hydrophobic interactions (Y7F and E5V/Y32L) caused protein aggregation at elevated temperatures. All mutations resulted in a reduction in α-helical content and an increase in β-strand content. The R47F mutant, which formed dimers and exhibited the highest β-strand content, showed increased conformational flexibility and a significant decrease in catalytic rate due to the disturbance of β1-α2 interactions. In summary, the configuration of the aromatic cluster, especially Tyr7 in the buried β1 and Arg47 in the short α2, played crucial roles in maintaining the active conformation of SpGrx3 and preventing its protein aggregation. These modifications, reducing hydrophobicity in the central β-sheet, distinguish Grx3 from other Trx-fold proteins, highlighting evolutionary divergence within the Trx-fold superfamily and its functional versatility.
Collapse
Affiliation(s)
- Trang Van Tran
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| | - Trang Hoang
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| | - Sei-Heon Jang
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| | - ChangWoo Lee
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| |
Collapse
|
7
|
Hishida M, Kaneko A, Yamamura Y, Saito K. Contrasting Changes in Strongly and Weakly Bound Hydration Water of a Protein upon Denaturation. J Phys Chem B 2023; 127:6296-6305. [PMID: 37417885 PMCID: PMC10364084 DOI: 10.1021/acs.jpcb.3c02970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Indexed: 07/08/2023]
Abstract
Water is considered integral for the stabilization and function of proteins, which has recently attracted significant attention. However, the microscopic aspects of water ranging up to the second hydration shell, including strongly and weakly bound water at the sub-nanometer scale, are not yet well understood. Here, we combined terahertz spectroscopy, thermal measurements, and infrared spectroscopy to clarify how the strongly and weakly bound hydration water changes upon protein denaturation. With denaturation, that is, the exposure of hydrophobic groups in water and entanglement of hydrophilic groups, the number of strongly bound hydration water decreased, while the number of weakly bound hydration water increased. Even though the constraint of water due to hydrophobic hydration is weak, it extends to the second hydration shell as it is caused by the strengthening of hydrogen bonds between water molecules, which is likely the key microscopic mechanism for the destabilization of the native state due to hydration.
Collapse
Affiliation(s)
- Mafumi Hishida
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Ayumi Kaneko
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yasuhisa Yamamura
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Kazuya Saito
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
8
|
Yang A, Zhou Y, Hardy J, Fu S, Wang Y, Zhang L, Wu Z, Zhang X, Wu C, Ma J, Zhou Z, Yang X, Yang S. Isolation of biofluids from tissues using a vacuum-assisted filtration biomedical device. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2181-2190. [PMID: 37039091 DOI: 10.1039/d3ay00090g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A biopsy is usually used to remove a piece of tissue from a patient for laboratory testing. The interstitial fluid is taken out at the same time as the tissue sample. Since interstitial fluid flows between cells and capillaries in tissues, similar to blood plasma, it is necessary to separate interstitial fluid from tissues in order to study them separately. Vacuum blood sampling has been used to draw blood into vacuum-sealed tubes, while interstitial fluid can be removed directly from the skin using microneedles with standard pumps. However, no methods are available to separate blood or interstitial fluid from the tissue itself for molecular characterization. In this study, we designed a biomedical device that can separate interstitial fluid from tissue using a vacuum-assisted filtration method. The device has a chamber that collects fluid extracted from the tissue that remains on top of the filter. We characterized the weight change and glycan profiles of tissues before and after vacuum-assisted filtration. The results demonstrate that the biomedical device can remove interstitial fluid and facilitate the analysis of tissue-specific molecules while minimizing information from the interstitial fluid.
Collapse
Affiliation(s)
- Arthur Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu 215123, China.
- Xcision Medical Systems, Columbia, MD 21045, USA
- Marriotts Ridge High School, Marriottsville, MD 21104, USA
| | - Yufeng Zhou
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu 215123, China.
| | - John Hardy
- Xcision Medical Systems, Columbia, MD 21045, USA
| | - Shiqing Fu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu 215123, China.
| | - Yuan Wang
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Li Zhang
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Zhen Wu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20007, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20007, USA
| | - Zeyang Zhou
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| | - Xiaodong Yang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu 215123, China.
| |
Collapse
|
9
|
Spectroscopic investigations on fungal aspartic protease as target of gallic acid. Int J Biol Macromol 2023; 228:333-345. [PMID: 36565834 DOI: 10.1016/j.ijbiomac.2022.12.218] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Proteases are a major virulence factor in pathogenic fungi and can serve as a potential therapeutic target. The interaction of gallic acid (GA) with Aspartic fungal protease (PepA) was investigated using biophysical and in silico approaches. UV-Vis and fluorescence spectroscopy showed complex formation and static quenching of PepA by GA with Ka of 7.4 × 105 M-1 and stoichiometric binding site (n) of 1.67. CD-spectroscopy showed marked changes in helical content and synchronous fluorescence spectra measurements indicated significant changes in the microenvironment around tryptophan residues in the GA-PepA complex. Outcomes of Isothermal Titration Calorimetry (ITC) measurement and molecular modelling studies validated the spectroscopic results. The binding of GA to Human Serum albumin (HSA) was moderate (Ka = 1.9 × 103 M-1) and did not cause structural disruption of HSA. To conclude, gallic acid is strongly bound to fungal protease leading to structural disruption and inhibition whereas HSA structure was largely conserved. Gallic acid thus appears to be a potential therapeutic agent against fungal proteases.
Collapse
|
10
|
Arabidopsis LSH10 transcription factor and OTLD1 histone deubiquitinase interact and transcriptionally regulate the same target genes. Commun Biol 2023; 6:58. [PMID: 36650214 PMCID: PMC9845307 DOI: 10.1038/s42003-023-04424-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Histone ubiquitylation/deubiquitylation plays a major role in the epigenetic regulation of gene expression. In plants, OTLD1, a member of the ovarian tumor (OTU) deubiquitinase family, deubiquitylates histone 2B and represses the expression of genes involved in growth, cell expansion, and hormone signaling. OTLD1 lacks the intrinsic ability to bind DNA. How OTLD1, as well as most other known plant histone deubiquitinases, recognizes its target genes remains unknown. Here, we show that Arabidopsis transcription factor LSH10, a member of the ALOG protein family, interacts with OTLD1 in living plant cells. Loss-of-function LSH10 mutations relieve the OTLD1-promoted transcriptional repression of the target genes, resulting in their elevated expression, whereas recovery of the LSH10 function results in down-regulated transcription of the same genes. We show that LSH10 associates with the target gene chromatin as well as with DNA sequences in the promoter regions of the target genes. Furthermore, without LSH10, the degree of H2B monoubiquitylation in the target promoter chromatin increases. Hence, our data suggest that OTLD1-LSH10 acts as a co-repressor complex potentially representing a general mechanism for the specific function of plant histone deubiquitinases at their target chromatin.
Collapse
|
11
|
China H, Ogino H. Effect of attaching hydrophilic oligopeptides to the C-terminus of organic solvent-tolerant metal-free bromoperoxidase BPO-A1 from Streptomyces aureofaciens on organic solvent-stability. Biochem Biophys Res Commun 2023; 640:142-149. [PMID: 36508927 DOI: 10.1016/j.bbrc.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Metal-free bromoperoxidase BPO-A1 from Streptomyces aureofacience was selected among several similar enzymes exhibiting brominating activity as the most stable haloperoxidase against 70%(v/v) methanol. A comparison of the BPO-A1 and octahistidine-tagged BPO-A1 at the C-terminus (BPO-A1-His8) revealed that the His-tag enhanced the organic solvent-stability of BPO-A1 with pH- and heat-stabilities. Additionally, the contribution of the hydrophilicity at the C-terminal of BPO-A1 to the organic solvent-stability was confirmed employing several mutants bearing hydrophilic oligopeptides. Fortunately, two excellent mutants, BPO-A1-Lys8 and BPO-A1-Arg8, with high stabilities against various water-miscible organic solvents were obtained. In conclusion, the enhancing effect of the hydrophilic oligopeptides on the organic solvent-stability was associated with a decrease in the hydrophobic surface area near the C-terminus.
Collapse
Affiliation(s)
- Hideyasu China
- Department of Medical Bioscience, Nagahama Institute of Bio-Science and Technology, 1266, Tamuracho Nagahama-shi, Shiga, 526-0829, Japan.
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
12
|
Kaugarenia N, Beaubier S, Durand E, Aymes A, Villeneuve P, Lesage F, Kapel R. Optimization of Selective Hydrolysis of Cruciferins for Production of Potent Mineral Chelating Peptides and Napins Purification to Valorize Total Rapeseed Meal Proteins. Foods 2022; 11:2618. [PMID: 36076804 PMCID: PMC9455892 DOI: 10.3390/foods11172618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Preventing oxidation and microbial spoilage are both major concerns in food industries. In this context, this study aimed to valorize the total rapeseed meal proteins with controlled enzymatic proteolysis to generate potent mineral-chelating peptides from cruciferins while keeping intact the antimicrobial napins. Implementation of proteolysis of total rapeseed protein isolate with the Prolyve® enzyme highlighted an interesting selective hydrolysis of the cruciferins. Hence, the mechanism of this particular hydrolysis was investigated through a Design of Experiments method to obtain a model for the prediction of kinetics (cruciferin degradation and napin purity) according to the operating conditions applied. Then, multicriteria optimization was implemented to maximize the napin purity and yield while minimizing both enzymatic cost and reaction time. Antioxidant assays of the peptide fraction obtained under the optimal conditions proved the high metal-chelating activity preservation (EC50 = 247 ± 27 µg) for more than three times faster production. This fraction might counteract lipid oxidation or serve as preventing agents for micronutrient deficiencies, and the resulting purified napins may have applications in food safety against microbial contamination. These results can greatly help the development of rapeseed meal applications in food industries.
Collapse
Affiliation(s)
- Nastassia Kaugarenia
- Laboratoire Réactions et Génie des Procédés, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 7274, F-54500 Vandœuvre-lès-Nancy, France
| | - Sophie Beaubier
- Laboratoire Réactions et Génie des Procédés, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 7274, F-54500 Vandœuvre-lès-Nancy, France
| | - Erwann Durand
- CIRAD, UMR QualiSud, F-34398 Montpellier, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de la Réunion, F-34398 Montpellier, France
| | - Arnaud Aymes
- Laboratoire Réactions et Génie des Procédés, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 7274, F-54500 Vandœuvre-lès-Nancy, France
| | - Pierre Villeneuve
- CIRAD, UMR QualiSud, F-34398 Montpellier, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de la Réunion, F-34398 Montpellier, France
| | - François Lesage
- Laboratoire Réactions et Génie des Procédés, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 7274, F-54500 Vandœuvre-lès-Nancy, France
| | - Romain Kapel
- Laboratoire Réactions et Génie des Procédés, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 7274, F-54500 Vandœuvre-lès-Nancy, France
| |
Collapse
|
13
|
Qu Y, Davey K, Sun Y, Middelberg A, Bi J. Engineered Design of the E-Helix Structure on Ferritin Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:3167-3179. [PMID: 35770389 DOI: 10.1021/acsabm.2c00154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Insertion of an immunogenic epitope at the C-terminus of ferritin has shown the potential to produce a stable and efficacious vaccine. There is however limited understanding of how C-terminus insertion affects ferritin protein stability. The E-helix at the C-terminus has attracted interest because there are contradictory reports as to whether it has a role in protein stabilization. Here, we report, for the first time, combining molecular dynamics simulation (MDS) with experiment to engineer the design of the E-helix at the C-terminus of engineered human ferritin heavy chain (F1) inserted with Epstein-Barr nuclear antigen 1 (EBNA1, E1) and flexible linker (L3) residues (to afford F1L3E1). Hot spots on the E-helix of the C-terminus were predicted by MDS at aa 167 (Glu) and aa 171 (Asp). Five (5) variants of F1L3E1 were constructed by considering hot spots and alteration of electrostatic or hydrophobic interfaces, namely, (1) C1, hot spots substituted with noncharged residue Gln; (2) C2, hot spots substituted with positively charged residue Arg; (3) C3, hydrophobic residues substituted with the most hydrophobic residues Val and Ile; (4) C4, hydrophobic residues substituted with the most hydrophilic residues Gln and Asn; and (5) C5, a heptad repeat structure in the E-helix disrupted by substituting "a" and "d" heptad residues with noncharged polar residue Gln. It was found that the E-helix is essential to maintain integrated protein stability and that changing the hydrophobic interface (C3 and C4) had more significant effects on protein folding and stability than changing the electrostatic interface (C1 and C2). It was confirmed by both MDS and experiment that variants C1, C2, and C5 were able to fold to form stable conformational structures with protein surface hydrophobicity similar to that of F1L3E1. However, they are less thermally stable than F1L3E1. Significant changes in hydrophobicity drove significant protein aggregation for variants C3 and C4. It is concluded that the molecular design of the C-terminus in engineered ferritin, especially the E-helix, is important to ensure the epitope-based chimeric vaccine is safe (aggregate free) and efficacious.
Collapse
Affiliation(s)
- Yiran Qu
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Kenneth Davey
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Anton Middelberg
- Division of Research and Innovation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jingxiu Bi
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
14
|
Muneeswari R, Iyappan S, Swathi KV, Vinu R, Ramani K, Sekaran G. Biocatalytic lipoprotein bioamphiphile induced treatment of recalcitrant hydrocarbons in petroleum refinery oil sludge through transposon technology. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128520. [PMID: 35228072 DOI: 10.1016/j.jhazmat.2022.128520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/04/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The present investigation employed transposon technology to enhance the degradation of recalcitrant petroleum hydrocarbons present in petroleum oil sludge by using biosurfactant hyper-producing strain Enterobacter xiangfangensis STP-3. Out of 2500 transposon induced mutants, mutants M257E.xiangfangensis and M916E.xiangfangensis hyper-produce biocatalytic lipoprotein biosurfactant by1.98 and 2.34 fold higher than wild-type strain. Transposon induced mutation also modified the amino acid composition which improved the hydrophobicity and thermal stability of the biosurfactants produced by mutants, compared to the wild-type biosurfactant. GC-MS and LC-MS-MS revealed that biosurfactants have pentameric lipid moiety and esterase as protein moiety. Increased biosurfactant hydrophobicity and yield by the mutants resulted in the enhanced bioavailability of petroleum hydrocarbons, thereby mutants M257E.xiangfangensis and M916E.xiangfangensis demonstrated better petroleum oil sludge degradation by 82% and 88% respectively, than wild-type (72%). Disrupted genes vgr G and pgm M in M257E.xiangfangensis and M916E.xiangfangensis respectively hyper-produce biosurfactant by competitive pathway inhibition and increased precursor availability mechanism. Hyper-production of biosurfactant was also validated by comparing the expression of biosynthetic genes ent E, ent F and est using qPCR. This is the first report on the application of transposon technology to hyper-produce biosurfactant for the effective bioremediation of hydrocarbon contaminated environments.
Collapse
Affiliation(s)
- R Muneeswari
- Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kancheepuram District, Kattankulathur 603203, Tamil Nadu, India
| | - S Iyappan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kancheepuram District, Kattankulathur 603203, Tamil Nadu, India
| | - K V Swathi
- Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kancheepuram District, Kattankulathur 603203, Tamil Nadu, India
| | - R Vinu
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - K Ramani
- Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kancheepuram District, Kattankulathur 603203, Tamil Nadu, India.
| | - G Sekaran
- SRM Institute of Science and Technology, Ramapuram 600089, Tamil Nadu, India
| |
Collapse
|
15
|
Kordes S, Romero-Romero S, Lutz L, Höcker B. A newly introduced salt bridge cluster improves structural and biophysical properties of de novo TIM barrels. Protein Sci 2021; 31:513-527. [PMID: 34865275 PMCID: PMC8820119 DOI: 10.1002/pro.4249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 01/18/2023]
Abstract
Protein stability can be fine‐tuned by modifying different structural features such as hydrogen‐bond networks, salt bridges, hydrophobic cores, or disulfide bridges. Among these, stabilization by salt bridges is a major challenge in protein design and engineering since their stabilizing effects show a high dependence on the structural environment in the protein, and therefore are difficult to predict and model. In this work, we explore the effects on structure and stability of an introduced salt bridge cluster in the context of three different de novo TIM barrels. The salt bridge variants exhibit similar thermostability in comparison with their parental designs but important differences in the conformational stability at 25°C can be observed such as a highly stabilizing effect for two of the proteins but a destabilizing effect to the third. Analysis of the formed geometries of the salt bridge cluster in the crystal structures show either highly ordered salt bridge clusters or only single salt bridges. Rosetta modeling of the salt bridge clusters results in a good prediction of the tendency on stability changes but not the geometries observed in the three‐dimensional structures. The results show that despite the similarities in protein fold, the salt bridge clusters differently influence the structural and stability properties of the de novo TIM barrel variants depending on the structural background where they are introduced. PDB Code(s): 7OSU, 7OT7, 7OSV, 7OT8 and 7P12;
Collapse
Affiliation(s)
- Sina Kordes
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | | | - Leonie Lutz
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
16
|
Strofaldi A, Khan AR, McManus JJ. Surface Exposed Free Cysteine Suppresses Crystallization of Human γD-Crystallin. J Mol Biol 2021; 433:167252. [PMID: 34537240 DOI: 10.1016/j.jmb.2021.167252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022]
Abstract
Human γD-crystallin (HGD) has remarkable stability against condensation in the human lens, sometimes over a whole lifetime. The native protein has a surface exposed free cysteine that forms dimers (Benedek, 1997; Ramkumar et al., 1864)1,2 without specific biological function and leads to further protein association and/or aggregation, which creates a paradox for understanding its stability. Previous work has demonstrated that chemical modification of the protein at the free cysteine (C110), increases the temperature at which liquid-liquid phase separation occurs (LLPS), lowers protein solubility and suggests an important role for this amino acid in maintaining its long-term resistance to condensation. Here we demonstrate that mutation of the cysteine does not alter the structure or solubility (liquidus) line for the protein, but dramatically increases the protein crystal nucleation rate following LLPS, suggesting that the free cysteine has a vital role in suppressing crystallization in the human lens.
Collapse
Affiliation(s)
- Alessandro Strofaldi
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; H. H Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Amir R Khan
- Division of Newborn Medicine, Boston Children's Hospital, Boston, USA; School of Biochemistry, Trinity College Dublin, Ireland
| | - Jennifer J McManus
- H. H Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom.
| |
Collapse
|
17
|
Zhao VY, Rodrigues JV, Lozovsky ER, Hartl DL, Shakhnovich EI. Switching an active site helix in dihydrofolate reductase reveals limits to subdomain modularity. Biophys J 2021; 120:4738-4750. [PMID: 34571014 PMCID: PMC8595743 DOI: 10.1016/j.bpj.2021.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022] Open
Abstract
To what degree are individual structural elements within proteins modular such that similar structures from unrelated proteins can be interchanged? We study subdomain modularity by creating 20 chimeras of an enzyme, Escherichia coli dihydrofolate reductase (DHFR), in which a catalytically important, 10-residue α-helical sequence is replaced by α-helical sequences from a diverse set of proteins. The chimeras stably fold but have a range of diminished thermal stabilities and catalytic activities. Evolutionary coupling analysis indicates that the residues of this α-helix are under selection pressure to maintain catalytic activity in DHFR. Reversion to phenylalanine at key position 31 was found to partially restore catalytic activity, which could be explained by evolutionary coupling values. We performed molecular dynamics simulations using replica exchange with solute tempering. Chimeras with low catalytic activity exhibit nonhelical conformations that block the binding site and disrupt the positioning of the catalytically essential residue D27. Simulation observables and in vitro measurements of thermal stability and substrate-binding affinity are strongly correlated. Several E. coli strains with chromosomally integrated chimeric DHFRs can grow, with growth rates that follow predictions from a kinetic flux model that depends on the intracellular abundance and catalytic activity of DHFR. Our findings show that although α-helices are not universally substitutable, the molecular and fitness effects of modular segments can be predicted by the biophysical compatibility of the replacement segment.
Collapse
Affiliation(s)
- Victor Y Zhao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - João V Rodrigues
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Elena R Lozovsky
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts.
| |
Collapse
|
18
|
Romero-Romero S, Costas M, Silva Manzano DA, Kordes S, Rojas-Ortega E, Tapia C, Guerra Y, Shanmugaratnam S, Rodríguez-Romero A, Baker D, Höcker B, Fernández-Velasco DA. The Stability Landscape of de novo TIM Barrels Explored by a Modular Design Approach. J Mol Biol 2021; 433:167153. [PMID: 34271011 PMCID: PMC8404036 DOI: 10.1016/j.jmb.2021.167153] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022]
Abstract
The TIM barrel is a versatile fold to understand structure-stability relationships. A collection of de novo TIM barrels with improved hydrophobic cores was designed. DeNovoTIMs are reversible in chemical and thermal unfolding, which is uncommon in TIM barrels. Epistatic effects play a central role in DeNovoTIMs stabilization. DeNovoTIMs navigate a previously uncharted region of the stability landscape.
The ability to design stable proteins with custom-made functions is a major goal in biochemistry with practical relevance for our environment and society. Understanding and manipulating protein stability provide crucial information on the molecular determinants that modulate structure and stability, and expand the applications of de novo proteins. Since the (β/⍺)8-barrel or TIM-barrel fold is one of the most common functional scaffolds, in this work we designed a collection of stable de novo TIM barrels (DeNovoTIMs), using a computational fixed-backbone and modular approach based on improved hydrophobic packing of sTIM11, the first validated de novo TIM barrel, and subjected them to a thorough folding analysis. DeNovoTIMs navigate a region of the stability landscape previously uncharted by natural TIM barrels, with variations spanning 60 degrees in melting temperature and 22 kcal per mol in conformational stability throughout the designs. Significant non-additive or epistatic effects were observed when stabilizing mutations from different regions of the barrel were combined. The molecular basis of epistasis in DeNovoTIMs appears to be related to the extension of the hydrophobic cores. This study is an important step towards the fine-tuned modulation of protein stability by design.
Collapse
Affiliation(s)
- Sergio Romero-Romero
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico; Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Daniel-Adriano Silva Manzano
- Department of Biochemistry, University of Washington, 98195 Seattle, USA; Institute for Protein Design, University of Washington, 98195 Seattle, USA
| | - Sina Kordes
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Erendira Rojas-Ortega
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Cinthya Tapia
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Yasel Guerra
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | | | - Adela Rodríguez-Romero
- Instituto de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - David Baker
- Department of Biochemistry, University of Washington, 98195 Seattle, USA; Institute for Protein Design, University of Washington, 98195 Seattle, USA.
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany.
| | - D Alejandro Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
| |
Collapse
|
19
|
Wang S, Meng K, Su X, Hakulinen N, Wang Y, Zhang J, Luo H, Yao B, Huang H, Tu T. Cysteine Engineering of an Endo-polygalacturonase from Talaromyces leycettanus JCM 12802 to Improve Its Thermostability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6351-6359. [PMID: 34043362 DOI: 10.1021/acs.jafc.1c01618] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thermostable enzymes have many advantages for industrial applications. Therefore, in this study, computer-aided design technology was used to improve the thermostability of a highly active endo-polygalacturonase from Talaromyces leycettanus JCM12802 at an optimal temperature of 70 °C. The melting temperature and specific activity of the obtained mutant T316C/G344C were increased by 10 °C and 36.5%, respectively, compared with the wild-type enzyme. The crystal structure of the T316C/G344C mutant showed no formation of a disulfide bond between the introduced cysteines, indicating a different mechanism than the conventional mechanism underlying improved enzyme thermostability. The cysteine substitutions directly formed a new alkyl hydrophobic interaction and caused conformational changes in the side chains of the adjacent residues Asn315 and Thr343, which in turn caused a local reconstruction of hydrogen bonds. This method greatly improved the thermostability of the enzyme without affecting its activity; thus, our findings are of great significance for both theoretical research and practical applications.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kun Meng
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nina Hakulinen
- Department of Chemistry, University of Eastern Finland, Joensuu 80130, Finland
| | - Yaru Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
20
|
Raveendran A, L DLK, M V A, S N, V V A, P AP, K A, Philip R, Antony SP. β-Defensin from the Asian Sea Bass, Lates calcarifer: Molecular Prediction and Phylogenetic Analysis. Probiotics Antimicrob Proteins 2021; 13:1798-1807. [PMID: 34043156 DOI: 10.1007/s12602-021-09804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Antimicrobial peptides (AMPs) are an important element of the innate immune system of all living organisms and serve as a barrier that safeguards the organisms against a wide range of pathogens. Fishes are proven to be a prospective source of AMPs, and β-defensins form an important family of AMPs with potent antimicrobial, chemotactic and immunomodulatory activities. The present study reports a β-defensin AMP sequence (Lc-BD) from the Asian sea bass, Lates calcarifer, a commercially important fish species in tropical and subtropical regions of Asia and the Pacific. A 202-bp cDNA fragment with an open reading frame encoding 63 amino acids (aa) was obtained from the mRNA of gill tissue by RT-PCR. The deduced aa sequence of Lc-BD possessed a signal and a mature peptide region with 20 and 43 aa residues, respectively. Lc-BD was characterized at the molecular level, and a molecular weight of 5.24 kDa and a net charge of +4.5 was predicted for the mature peptide. The molecular characterization of Lc-BD revealed the presence of three intramolecular disulphide bonds involving the six conserved cysteine residues in the sequence, and the phylogenetic analysis of Lc-BD showed a close relationship with β-defensins from fishes like Siniperca chuatsi, Argyrosomus regius, Trachinotus ovatus and Oplegnathus fasciatus.
Collapse
Affiliation(s)
- Athira Raveendran
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India
| | - Dhanya Lenin K L
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India
| | - Anju M V
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India
| | - Neelima S
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India
| | - Anooja V V
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India
| | - Athira P P
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India
| | - Archana K
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India
| | - Swapna P Antony
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India.
| |
Collapse
|
21
|
Biochemical characterization of an E. coli cell division factor FtsE shows ATPase cycles similar to the NBDs of ABC-transporters. Biosci Rep 2021; 41:227313. [PMID: 33320186 PMCID: PMC7791547 DOI: 10.1042/bsr20203034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 11/17/2022] Open
Abstract
The peptidoglycan (PG) layer is an intricate and dynamic component of the bacterial cell wall, which requires a constant balance between its synthesis and hydrolysis. FtsEX complex present on the inner membrane is shown to transduce signals to induce PG hydrolysis. FtsE has sequence similarity with the nucleotide-binding domains (NBDs) of ABC transporters. The NBDs in most of the ABC transporters couple ATP hydrolysis to transport molecules inside or outside the cell. Also, this reaction cycle is driven by the dimerization of NBDs. Though extensive studies have been carried out on the Escherchia coli FtsEX complex, it remains elusive regarding how FtsEX complex helps in signal transduction or transportation of molecules. Also, very little is known about the biochemical properties and ATPase activities of FtsE. Because of its strong interaction with the membrane-bound protein FtsX, FtsE stays insoluble upon overexpression in E. coli, and thus, most studies on E. coli FtsE (FtsEEc) in the past have used refolded FtsE. Here in the present paper, for the first time, we report the soluble expression, purification, and biochemical characterization of FtsE from E. coli. The purified soluble FtsE exhibits high thermal stability, exhibits ATPase activity and has more than one ATP-binding site. We have also demonstrated a direct interaction between FtsE and the cytoplasmic loop of FtsX. Together, our findings suggest that during bacterial division, the ATPase cycle of FtsE and its interaction with the FtsX cytoplasmic loop may help to regulate the PG hydrolysis at the mid cell.
Collapse
|
22
|
Pi H, Chu ML, Ivan SJ, Latario CJ, Toth AM, Carlin SM, Hillebrand GH, Lin HK, Reppart JD, Stauff DL, Skaar EP. Directed evolution reveals the mechanism of HitRS signaling transduction in Bacillus anthracis. PLoS Pathog 2020; 16:e1009148. [PMID: 33362282 PMCID: PMC7790381 DOI: 10.1371/journal.ppat.1009148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/07/2021] [Accepted: 11/11/2020] [Indexed: 12/03/2022] Open
Abstract
Two component systems (TCSs) are a primary mechanism of signal sensing and response in bacteria. Systematic characterization of an entire TCS could provide a mechanistic understanding of these important signal transduction systems. Here, genetic selections were employed to dissect the molecular basis of signal transduction by the HitRS system that detects cell envelope stress in the pathogen Bacillus anthracis. Numerous point mutations were isolated within HitRS, 17 of which were in a 50-residue HAMP domain. Mutational analysis revealed the importance of hydrophobic interactions within the HAMP domain and highlighted its essentiality in TCS signaling. In addition, these data defined residues critical for activities intrinsic to HitRS, uncovered specific interactions among individual domains and between the two signaling proteins, and revealed that phosphotransfer is the rate-limiting step for signal transduction. Furthermore, this study establishes the use of unbiased genetic selections to study TCS signaling and provides a comprehensive mechanistic understanding of an entire TCS. Bacterial TCSs are a primary strategy for stress sensing and niche adaptation. Although individual domains and proteins of these systems have been extensively studied, systematic characterization of an entire TCS is rare. In this study, through unbiased genetic selections and rigorous biochemical analysis, we provide a detailed characterization and structure-function analysis of an entire TCS and extend our understanding of the molecular basis of signal transduction through TCSs. Moreover, this study provides a comprehensive map of point-mutations in these well-conserved signaling proteins, which will be broadly useful for studying other TCSs. The described genetic selection strategies are applicable to any TCS, providing a powerful tool for researchers interested in microbial signal transduction.
Collapse
Affiliation(s)
- Hualiang Pi
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, & Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Michelle L. Chu
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Samuel J. Ivan
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Casey J. Latario
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Allen M. Toth
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Sophia M. Carlin
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Gideon H. Hillebrand
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Hannah K. Lin
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Jared D. Reppart
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Devin L. Stauff
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Eric P. Skaar
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, & Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
23
|
The Role of Surface Exposed Lysine in Conformational Stability and Functional Properties of Lipase from Staphylococcus Family. Molecules 2020; 25:molecules25173858. [PMID: 32854267 PMCID: PMC7504586 DOI: 10.3390/molecules25173858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022] Open
Abstract
Surface charge residues have been recognized as one of the stability determinants in protein. In this study, we sought to compare and analyse the stability and conformational dynamics of staphylococcal lipase mutants with surface lysine mutation using computational and experimental methods. Three highly mutable and exposed lysine residues (Lys91, Lys177, Lys325) were targeted to generate six mutant lipases in silico. The model structures were simulated in water environment at 25 °C. Our simulations showed that the stability was compromised when Lys177 was substituted while mutation at position 91 and 325 improved the stability. To illustrate the putative alterations of enzyme stability in the stabilising mutants, we characterized single mutant K325G and double mutant K91A/K325G. Both mutants showed a 5 °C change in optimal temperature compared to their wild type. Single mutant K325G rendered a longer half-life at 25 °C (T1/2 = 21 h) while double mutant K91A/K325G retained only 40% of relative activity after 12 h incubation. The optimal pH for mutant K325G was shifted from 8 to 9 and similar substrate preference was observed for the wild type and two mutants. Our findings indicate that surface lysine mutation alters the enzymatic behaviour and, thus, rationalizes the functional effects of surface exposed lysine in conformational stability and activity of this lipase.
Collapse
|
24
|
Effects of high-pressure homogenization and ultrasonic treatment on the structure and characteristics of casein. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109560] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Monroe J, Barry M, DeStefano A, Aydogan Gokturk P, Jiao S, Robinson-Brown D, Webber T, Crumlin EJ, Han S, Shell MS. Water Structure and Properties at Hydrophilic and Hydrophobic Surfaces. Annu Rev Chem Biomol Eng 2020; 11:523-557. [PMID: 32169001 DOI: 10.1146/annurev-chembioeng-120919-114657] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The properties of water on both molecular and macroscopic surfaces critically influence a wide range of physical behaviors, with applications spanning from membrane science to catalysis to protein engineering. Yet, our current understanding of water interfacing molecular and material surfaces is incomplete, in part because measurement of water structure and molecular-scale properties challenges even the most advanced experimental characterization techniques and computational approaches. This review highlights progress in the ongoing development of tools working to answer fundamental questions on the principles that govern the interactions between water and surfaces. One outstanding and critical question is what universal molecular signatures capture the hydrophobicity of different surfaces in an operationally meaningful way, since traditional macroscopic hydrophobicity measures like contact angles fail to capture even basic properties of molecular or extended surfaces with any heterogeneity at the nanometer length scale. Resolving this grand challenge will require close interactions between state-of-the-art experiments, simulations, and theory, spanning research groups and using agreed-upon model systems, to synthesize an integrated knowledge of solvation water structure, dynamics, and thermodynamics.
Collapse
Affiliation(s)
- Jacob Monroe
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Mikayla Barry
- Department of Materials, University of California, Santa Barbara, California 93106, USA
| | - Audra DeStefano
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Pinar Aydogan Gokturk
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Sally Jiao
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Dennis Robinson-Brown
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Thomas Webber
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Ethan J Crumlin
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; .,Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| |
Collapse
|
26
|
Pinzan F, Artzner F, Ghoufi A. Anomalous dynamics of water at the octopeptide lanreotide surface. RSC Adv 2020; 10:33903-33910. [PMID: 35519054 PMCID: PMC9056749 DOI: 10.1039/d0ra06237e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/25/2020] [Indexed: 11/21/2022] Open
Abstract
This work reports the study of water dynamics close to the cyclic octapeptide lanreotide from atomistic simulations of hydrated lanreotide, a cyclic octapeptide. Calculation of the hydrogen bonds between water molecules allows mapping of the hydrophilic regions of lanreotide. Whereas a super-diffusivity of the interfacial water molecules is established, a slowdown in rotational dynamics is observed, involving a decoupling between both processes. Acceleration in translation dynamics is connected to the hopping process between hydrophilic zones. Microscopically, this is correlated with the weakness of the interfacial hydrogen bonding network due to a hydrophobic interface at the origin of the interfacial sliding of water molecules. Heterogeneous rotational dynamics of water molecules close the lanreotide surface is evidenced and connected to heterogeneous hydration. Molecular dynamics simulations of a hydrated mutated lanreotide, a cyclic octapeptide, were carried out to characterize its hydration state. We studied the water dynamics close to the peptide using atomistic simulations.![]()
Collapse
Affiliation(s)
- Florian Pinzan
- Institut de Physique de Rennes
- UMR CNRS 6251
- Université Rennes 1
- 35042 Rennes
- France
| | - Franck Artzner
- Institut de Physique de Rennes
- UMR CNRS 6251
- Université Rennes 1
- 35042 Rennes
- France
| | - Aziz Ghoufi
- Institut de Physique de Rennes
- UMR CNRS 6251
- Université Rennes 1
- 35042 Rennes
- France
| |
Collapse
|