1
|
Schwartz PJ, Crotti L, Nyegaard M, Overgaard MT. Role of Calmodulin in Cardiac Disease: Insights on Genotype and Phenotype. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004542. [PMID: 39247953 DOI: 10.1161/circgen.124.004542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Calmodulin, a protein critically important for the regulation of all major cardiac ion channels, is the quintessential cellular calcium sensor and plays a key role in preserving cardiac electrical stability. Its unique importance is highlighted by the presence of 3 genes in 3 different chromosomes encoding for the same protein and by their extreme conservation. Indeed, all 3 calmodulin (CALM) genes are among the most constrained genes in the human genome, that is, the observed variants are much less than expected by chance. Not surprisingly, CALM variants are poorly tolerated and accompany significant clinical phenotypes, of which the most important are those associated with increased risk for life-threatening arrhythmias. Here, we review the current knowledge about calmodulin, its specific physiological, structural, and functional characteristics, and its importance for cardiovascular disease. Given our role in the development of this knowledge, we also share some of our views about currently unanswered questions, including the rational approaches to the clinical management of the affected patients. Specifically, we present some of the most critical information emerging from the International Calmodulinopathy Registry, which we established 10 years ago. Further progress clearly requires deep phenotypic information on as many carriers as possible through international contributions to the registry, in order to expand our knowledge about Calmodulinopathies and guide clinical management.
Collapse
Affiliation(s)
- Peter J Schwartz
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (P.J.S., L.C.)
| | - Lia Crotti
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (P.J.S., L.C.)
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (L.C.)
| | - Mette Nyegaard
- Department of Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark (M.N.)
- Department of Health Science and Technology (M.N.), Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
2
|
Thanassoulas A, Theodoridou M, Barrak L, Riguene E, Alyaarabi T, Elrayess MA, Lai FA, Nomikos M. Arrhythmia-Associated Calmodulin E105A Mutation Alters the Binding Affinity of CaM to a Ryanodine Receptor 2 CaM-Binding Pocket. Int J Mol Sci 2023; 24:15630. [PMID: 37958614 PMCID: PMC10649572 DOI: 10.3390/ijms242115630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Calmodulin (CaM) is a small, multifunctional calcium (Ca2+)-binding sensor that binds and regulates the open probability of cardiac ryanodine receptor 2 (RyR2) at both low and high cytosolic Ca2+ concentrations. Recent isothermal titration calorimetry (ITC) studies of a number of peptides that correspond to different regions of human RyR2 showed that two regions of human RyR2 (3584-3602aa and 4255-4271aa) bind with high affinity to CaM, suggesting that these two regions might contribute to a putative RyR2 intra-subunit CaM-binding pocket. Moreover, a previously characterized de novo long QT syndrome (LQTS)-associated missense CaM mutation (E105A) which was identified in a 6-year-old boy, who experienced an aborted first episode of cardiac arrest revealed that this mutation dysregulates normal cardiac function in zebrafish by a complex mechanism that involves alterations in both CaM-Ca2+ and CaM-RyR2 interactions. Herein, to gain further insight into how the CaM E105A mutation leads to severe cardiac arrhythmia, we generated large quantities of recombinant CaMWT and CaME105A proteins. We then performed ITC experiments to investigate and compare the interactions of CaMWT and CaME105A mutant protein with two synthetic peptides that correspond to the two aforementioned human RyR2 regions, which we have proposed to contribute to the RyR2 CaM-binding pocket. Our data reveal that the E105A mutation has a significant negative effect on the interaction of CaM with both RyR2 regions in the presence and absence of Ca2+, highlighting the potential contribution of these two human RyR2 regions to an RyR2 CaM-binding pocket, which may be essential for physiological CaM/RyR2 association and thus channel regulation.
Collapse
Affiliation(s)
- Angelos Thanassoulas
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Maria Theodoridou
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Laila Barrak
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Emna Riguene
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Tamader Alyaarabi
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Mohamed A. Elrayess
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - F. Anthony Lai
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| |
Collapse
|
3
|
Brohus M, Busuioc AO, Wimmer R, Nyegaard M, Overgaard MT. Calmodulin mutations affecting Gly114 impair binding to the Na V1.5 IQ-domain. Front Pharmacol 2023; 14:1210140. [PMID: 37663247 PMCID: PMC10469309 DOI: 10.3389/fphar.2023.1210140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Missense variants in CALM genes encoding the Ca2+-binding protein calmodulin (CaM) cause severe cardiac arrhythmias. The disease mechanisms have been attributed to dysregulation of RyR2, for Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) and/or CaV1.2, for Long-QT Syndrome (LQTS). Recently, a novel CALM2 variant, G114R, was identified in a mother and two of her four children, all of whom died suddenly while asleep at a young age. The G114R variant impairs closure of CaV1.2 and RyR2, consistent with a CPVT and/or mild LQTS phenotype. However, the children carrying the CALM2 G114R variant displayed a phenotype commonly observed with variants in NaV1.5, i.e., Brugada Syndrome (BrS) or LQT3, where death while asleep is a common feature. We therefore hypothesized that the G114R variant specifically would interfere with NaV1.5 binding. Here, we demonstrate that CaM binding to the NaV1.5 IQ-domain is severely impaired for two CaM variants G114R and G114W. The impact was most severe at low and intermediate Ca2+ concentrations (up to 4 µM) resulting in more than a 50-fold reduction in NaV1.5 binding affinity, and a smaller 1.5 to 11-fold reduction at high Ca2+ concentrations (25-400 µM). In contrast, the arrhythmogenic CaM-N98S variant only induced a 1.5-fold reduction in NaV1.5 binding and only at 4 µM Ca2+. A non-arrhythmogenic I10T variant in CaM did not impair NaV1.5 IQ binding. These data suggest that the interaction between NaV1.5 and CaM is decreased with certain CaM variants, which may alter the cardiac sodium current, INa. Overall, these results suggest that the phenotypic spectrum of calmodulinopathies may likely expand to include BrS- and/or LQT3-like traits.
Collapse
Affiliation(s)
- Malene Brohus
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Ana-Octavia Busuioc
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Mette Nyegaard
- Department of Health Science and Technology, Aalborg University, Gistrup, Denmark
| | | |
Collapse
|
4
|
Marino V, Cortivo GD, Dell'Orco D. Ionic displacement of Ca 2+ by Pb 2+ in calmodulin is affected by arrhythmia-associated mutations. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119490. [PMID: 37201768 DOI: 10.1016/j.bbamcr.2023.119490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/14/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Lead is a highly toxic metal that severely perturbs physiological processes even at sub-micromolar levels, often by disrupting the Ca2+ signaling pathways. Recently, Pb2+-associated cardiac toxicity has emerged, with potential involvement of both the ubiquitous Ca2+ sensor protein calmodulin (CaM) and ryanodine receptors. In this work, we explored the hypothesis that Pb2+ contributes to the pathological phenotype of CaM variants associated with congenital arrhythmias. We performed a thorough spectroscopic and computational characterization of CaM conformational switches in the co-presence of Pb2+ and four missense mutations associated with congenital arrhythmias, namely N53I, N97S, E104A and F141L, and analyzed their effects on the recognition of a target peptide of RyR2. When bound to any of the CaM variants, Pb2+ is difficult to displace even under equimolar Ca2+ concentrations, thus locking all CaM variants in a specific conformation, which exhibits characteristics of coiled-coil assemblies. All arrhythmia-associated variants appear to be more susceptible to Pb2+ than WT CaM, as the conformational transition towards the coiled-coil conformation occurs at lower Pb2+, regardless of the presence of Ca2+, with altered cooperativity. The presence of arrhythmia-associated mutations specifically alters the cation coordination of CaM variants, in some cases involving allosteric communication between the EF-hands in the two domains. Finally, while wild type CaM increases the affinity for the RyR2 target in the presence of Pb2+, no specific pattern could be detected for all other variants, ruling out a synergistic effect of Pb2+ and mutations in the recognition process.
Collapse
Affiliation(s)
- Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, I-37134 Verona, Italy
| | - Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, I-37134 Verona, Italy
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, I-37134 Verona, Italy.
| |
Collapse
|
5
|
Life-threatening arrhythmogenic CaM mutations disrupt CaM binding to a distinct RyR2 CaM-binding pocket. Biochim Biophys Acta Gen Subj 2023; 1867:130313. [PMID: 36693454 DOI: 10.1016/j.bbagen.2023.130313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Calmodulin (CaM) modulates the activity of several proteins that play a key role in excitation-contraction coupling (ECC). In cardiac muscle, the major binding partner of CaM is the type-2 ryanodine receptor (RyR2) and altered CaM binding contributes to defects in sarcoplasmic reticulum (SR) calcium (Ca2+) release. Many genetic studies have reported a series of CaM missense mutations in patients with a history of severe arrhythmogenic cardiac disorders. In the present study, we generated four missense CaM mutants (CaMN98I, CaMD132E, CaMD134H and CaMQ136P) and we used a CaM-RyR2 co-immunoprecipitation and a [3H]ryanodine binding assay to directly compare the relative RyR2-binding of wild type and mutant CaM proteins and to investigate the functional effects of these CaM mutations on RyR2 activity. Furthermore, isothermal titration calorimetry (ITC) experiments were performed to investigate and compare the interactions of the wild-type and mutant CaM proteins with various synthetic peptides located in the well-established RyR2 CaM-binding region (3584-3602aa), as well as another CaM-binding region (4255-4271aa) of human RyR2. Our data revealed that all four CaM mutants displayed dramatically reduced RyR2 interaction and defective modulation of [3H]ryanodine binding to RyR2, regardless of LQTS or CPVT association. Moreover, our isothermal titration calorimetry ITC data suggest that RyR2 3584-3602aa and 4255-4271aa regions interact with significant affinity with wild-type CaM, in the presence and absence of Ca2+, two regions that might contribute to a putative intra-subunit CaM-binding pocket. In contrast, screening the interaction of the four arrhythmogenic CaM mutants with two synthetic peptides that correspond to these RyR2 regions, revealed disparate binding properties and signifying differential mechanisms that contribute to reduced RyR2 association.
Collapse
|
6
|
Dal Cortivo G, Marino V, Bianconi S, Dell'Orco D. Calmodulin variants associated with congenital arrhythmia impair selectivity for ryanodine receptors. Front Mol Biosci 2023; 9:1100992. [PMID: 36685279 PMCID: PMC9849693 DOI: 10.3389/fmolb.2022.1100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Among its many molecular targets, the ubiquitous calcium sensor protein calmodulin (CaM) recognizes and regulates the activity of ryanodine receptors type 1 (RyR1) and 2 (RyR2), mainly expressed in skeletal and cardiac muscle, respectively. Such regulation is essential to achieve controlled contraction of muscle cells. To unravel the molecular mechanisms underlying the target recognition process, we conducted a comprehensive biophysical investigation of the interaction between two calmodulin variants associated with congenital arrhythmia, namely N97I and Q135P, and a highly conserved calmodulin-binding region in RyR1 and RyR2. The structural, thermodynamic, and kinetic properties of protein-peptide interactions were assessed together with an in-depth structural and topological investigation based on molecular dynamics simulations. This integrated approach allowed us to identify amino acids that are crucial in mediating allosteric processes, which enable high selectivity in molecular target recognition. Our results suggest that the ability of calmodulin to discriminate between RyR1 an RyR2 targets depends on kinetic discrimination and robust allosteric communication between Ca2+-binding sites (EF1-EF3 and EF3-EF4 pairs), which is perturbed in both N97I and Q135P arrhythmia-associated variants.
Collapse
|
7
|
Zhong H, Kong X, Zhang Y, Su Y, Zhang B, Zhu L, Chen H, Gou X, Zhang H. Microevolutionary mechanism of high-altitude adaptation in Tibetan chicken populations from an elevation gradient. Evol Appl 2022; 15:2100-2112. [PMID: 36540645 PMCID: PMC9753841 DOI: 10.1111/eva.13503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 12/23/2022] Open
Abstract
As an indigenous breed, the Tibetan chicken is found in highland regions and shows physiological adaptations to high altitude; however, the genetic changes that determine these adaptations remain elusive. We assumed that the microevolution of the Tibetan chicken occurred from lowland to highland regions with a continuous elevation range. In this study, we analyzed the genome of 188 chickens from lowland areas to the high-altitude regions of the Tibetan plateau with four altitudinal levels. Phylogenetic analysis revealed that Tibetan chickens are significantly different from other altitude chicken populations. Reconstruction of the demographic history showed that the migration and admixture events of the Tibetan chicken occurred at different times. The genome of the Tibetan chicken was also used to analyze positive selection pressure that is associated with high-altitude adaptation, revealing the well-known candidate gene that participates in oxygen binding (HBAD), as well as other novel potential genes (e.g., HRG and ANK2) that are related to blood coagulation and cardiovascular efficiency. Our study provides novel insights regarding the evolutionary history and microevolution mechanisms of the high-altitude adaptation in the Tibetan chicken.
Collapse
Affiliation(s)
- Hai‐An Zhong
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Xiao‐Yan Kong
- School of Life Science and EngineeringFoshan UniversityGuangdongChina
- College of Animal Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Ya‐Wen Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yan‐Kai Su
- Center for Computational GenomicsBeijing Institute of Genomics, Chinese Academy of SciencesBeijingChina
| | - Bo Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Li Zhu
- College of Animal Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Hua Chen
- Center for Computational GenomicsBeijing Institute of Genomics, Chinese Academy of SciencesBeijingChina
| | - Xiao Gou
- School of Life Science and EngineeringFoshan UniversityGuangdongChina
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
8
|
Dal Cortivo G, Barracchia CG, Marino V, D'Onofrio M, Dell'Orco D. Alterations in calmodulin-cardiac ryanodine receptor molecular recognition in congenital arrhythmias. Cell Mol Life Sci 2022; 79:127. [PMID: 35133504 PMCID: PMC8825638 DOI: 10.1007/s00018-022-04165-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/27/2021] [Accepted: 01/23/2022] [Indexed: 12/03/2022]
Abstract
Calmodulin (CaM), a ubiquitous and highly conserved Ca2+-sensor protein involved in the regulation of over 300 molecular targets, has been recently associated with severe forms of lethal arrhythmia. Here, we investigated how arrhythmia-associated mutations in CaM localized at the C-terminal lobe alter the molecular recognition with Ryanodine receptor 2 (RyR2), specifically expressed in cardiomyocytes. We performed an extensive structural, thermodynamic, and kinetic characterization of the variants D95V/H in the EF3 Ca2+-binding motif and of the D129V and D131H/E variants in the EF4 motif, and probed their interaction with RyR2. Our results show that the specific structural changes observed for individual CaM variants do not extend to the complex with the RyR2 target. Indeed, some common alterations emerge at the protein–protein interaction level, suggesting the existence of general features shared by the arrhythmia-associated variants. All mutants showed a faster rate of dissociation from the target peptide than wild-type CaM. Integration of spectroscopic data with exhaustive molecular dynamics simulations suggests that, in the presence of Ca2+, functional recognition involves allosteric interactions initiated by the N-terminal lobe of CaM, which shows a lower affinity for Ca2+ compared to the C-terminal lobe in the isolated protein.
Collapse
Affiliation(s)
- Giuditta Dal Cortivo
- Department of Neurosciences Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | | | - Valerio Marino
- Department of Neurosciences Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Mariapina D'Onofrio
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.
| | - Daniele Dell'Orco
- Department of Neurosciences Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada le Grazie 8, 37134, Verona, Italy.
| |
Collapse
|
9
|
Woll KA, Van Petegem F. Calcium Release Channels: Structure and Function of IP3 Receptors and Ryanodine Receptors. Physiol Rev 2021; 102:209-268. [PMID: 34280054 DOI: 10.1152/physrev.00033.2020] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ca2+-release channels are giant membrane proteins that control the release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. The two members, ryanodine receptors (RyRs) and inositol-1,4,5-trisphosphate Receptors (IP3Rs), are evolutionarily related and are both activated by cytosolic Ca2+. They share a common architecture, but RyRs have evolved additional modules in the cytosolic region. Their massive size allows for the regulation by tens of proteins and small molecules, which can affect the opening and closing of the channels. In addition to Ca2+, other major triggers include IP3 for the IP3Rs, and depolarization of the plasma membrane for a particular RyR subtype. Their size has made them popular targets for study via electron microscopic methods, with current structures culminating near 3Å. The available structures have provided many new mechanistic insights int the binding of auxiliary proteins and small molecules, how these can regulate channel opening, and the mechanisms of disease-associated mutations. They also help scrutinize previously proposed binding sites, as some of these are now incompatible with the structures. Many questions remain around the structural effects of post-translational modifications, additional binding partners, and the higher-order complexes these channels can make in situ. This review summarizes our current knowledge about the structures of Ca2+-release channels and how this informs on their function.
Collapse
Affiliation(s)
- Kellie A Woll
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Yu Q, Anderson DE, Kaur R, Fisher AJ, Ames JB. The Crystal Structure of Calmodulin Bound to the Cardiac Ryanodine Receptor (RyR2) at Residues Phe4246-Val4271 Reveals a Fifth Calcium Binding Site. Biochemistry 2021; 60:1088-1096. [PMID: 33754699 PMCID: PMC8211408 DOI: 10.1021/acs.biochem.1c00152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calmodulin (CaM) regulates the activity of a Ca2+ channel known as the cardiac ryanodine receptor (RyR2), which facilitates the release of Ca2+ from the sarcoplasmic reticulum during excitation-contraction coupling in cardiomyocytes. Mutations that disrupt this CaM-dependent channel inactivation result in cardiac arrhythmias. RyR2 contains three different CaM binding sites: CaMBD1 (residues 1940-1965), CaMBD2 (residues 3580-3611), and CaMBD3 (residues 4246-4275). Here, we report a crystal structure of Ca2+-bound CaM bound to RyR2 CaMBD3. The structure reveals Ca2+ bound to the four EF-hands of CaM as well as a fifth Ca2+ bound to CaM in the interdomain linker region involving Asp81 and Glu85. The CaM mutant E85A abolishes the binding of the fifth Ca2+ and weakens the binding of CaMBD3 to Ca2+-bound CaM. Thus, the binding of the fifth Ca2+ is important for stabilizing the complex in solution and is not a crystalline artifact. The CaMBD3 peptide in the complex adopts an α-helix (between Phe4246 and Val4271) that interacts with both lobes of CaM. Hydrophobic residues in the CaMBD3 helix (Leu4255 and Leu4259) form intermolecular contacts with the CaM N-lobe, and the CaMBD3 mutations (L4255A and L4259A) each weaken the binding of CaM to RyR2. Aromatic residues on the opposite side of the CaMBD3 helix (Phe4246 and Tyr4250) interact with the CaM C-lobe, but the mutants (F4246A and Y4250A) have no detectable effect on CaM binding in solution. We suggest that the binding of CaM to CaMBD3 and the binding of a fifth Ca2+ to CaM may contribute to the regulation of RyR2 channel function.
Collapse
Affiliation(s)
- Qinhong Yu
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - David E Anderson
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Ramanjeet Kaur
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Andrew J Fisher
- Department of Chemistry, University of California, Davis, California 95616, United States
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, United States
| | - James B Ames
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
11
|
Gong D, Yan N, Ledford HA. Structural Basis for the Modulation of Ryanodine Receptors. Trends Biochem Sci 2020; 46:489-501. [PMID: 33353849 DOI: 10.1016/j.tibs.2020.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022]
Abstract
Historically, ryanodine receptors (RyRs) have presented unique challenges for high-resolution structural determination despite long-standing interest in their role in excitation-contraction coupling. Owing to their large size (nearly 2.2 MDa), high-resolution structures remained elusive until the advent of cryogenic electron microscopy (cryo-EM) techniques. In recent years, structures for both RyR1 and RyR2 have been solved at near-atomic resolution. Furthermore, recent reports have delved into their more complex structural associations with key modulators - proteins such as the dihydropyridine receptor (DHPR), FKBP12/12.6, and calmodulin (CaM), as well as ions and small molecules including Ca2+, ATP, caffeine, and PCB95. This review addresses the modulation of RyR1 and RyR2, in addition to the impact of such discoveries on intracellular Ca2+ dynamics and biophysical properties.
Collapse
Affiliation(s)
- Deshun Gong
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province/Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China.
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Hannah A Ledford
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
12
|
Holt C, Hamborg L, Lau K, Brohus M, Sørensen AB, Larsen KT, Sommer C, Van Petegem F, Overgaard MT, Wimmer R. The arrhythmogenic N53I variant subtly changes the structure and dynamics in the calmodulin N-terminal domain, altering its interaction with the cardiac ryanodine receptor. J Biol Chem 2020; 295:7620-7634. [PMID: 32317284 DOI: 10.1074/jbc.ra120.013430] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/18/2020] [Indexed: 12/11/2022] Open
Abstract
Mutations in the genes encoding the highly conserved Ca2+-sensing protein calmodulin (CaM) cause severe cardiac arrhythmias, including catecholaminergic polymorphic ventricular tachycardia or long QT syndrome and sudden cardiac death. Most of the identified arrhythmogenic mutations reside in the C-terminal domain of CaM and mostly affect Ca2+-coordinating residues. One exception is the catecholaminergic polymorphic ventricular tachycardia-causing N53I substitution, which resides in the N-terminal domain (N-domain). It does not affect Ca2+ coordination and has only a minor impact on binding affinity toward Ca2+ and on other biophysical properties. Nevertheless, the N53I substitution dramatically affects CaM's ability to reduce the open probability of the cardiac ryanodine receptor (RyR2) while having no effect on the regulation of the plasmalemmal voltage-gated Ca2+ channel, Cav1.2. To gain more insight into the molecular disease mechanism of this mutant, we used NMR to investigate the structures and dynamics of both apo- and Ca2+-bound CaM-N53I in solution. We also solved the crystal structures of WT and N53I CaM in complex with the primary calmodulin-binding domain (CaMBD2) from RyR2 at 1.84-2.13 Å resolutions. We found that all structures of the arrhythmogenic CaM-N53I variant are highly similar to those of WT CaM. However, we noted that the N53I substitution exposes an additional hydrophobic surface and that the intramolecular dynamics of the protein are significantly altered such that they destabilize the CaM N-domain. We conclude that the N53I-induced changes alter the interaction of the CaM N-domain with RyR2 and thereby likely cause the arrhythmogenic phenotype of this mutation.
Collapse
Affiliation(s)
- Christian Holt
- Aalborg University, Department of Chemistry and Bioscience, 9220 Aalborg, Denmark
| | - Louise Hamborg
- Aalborg University, Department of Chemistry and Bioscience, 9220 Aalborg, Denmark
| | - Kelvin Lau
- University of British Columbia, Department of Biochemistry and Molecular Biology, V6T 1Z3 Vancouver, British Columbia, Canada
| | - Malene Brohus
- Aalborg University, Department of Chemistry and Bioscience, 9220 Aalborg, Denmark
| | | | | | - Cordula Sommer
- Aalborg University, Department of Chemistry and Bioscience, 9220 Aalborg, Denmark
| | - Filip Van Petegem
- University of British Columbia, Department of Biochemistry and Molecular Biology, V6T 1Z3 Vancouver, British Columbia, Canada
| | | | - Reinhard Wimmer
- Aalborg University, Department of Chemistry and Bioscience, 9220 Aalborg, Denmark
| |
Collapse
|