1
|
Fan Z, Yuan X, Yuan Y. Circular RNAs in coronary heart disease: From molecular mechanism to promising clinical application (Review). Int J Mol Med 2025; 55:11. [PMID: 39513584 PMCID: PMC11573316 DOI: 10.3892/ijmm.2024.5452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Coronary heart disease (CHD) remains a leading cause of morbidity and mortality worldwide, posing a substantial public health burden. Despite advancements in treatment, the complex etiology of CHD necessitates ongoing exploration of novel diagnostic markers and therapeutic targets. Circular RNAs (circRNAs), a distinct class of non‑coding RNAs with a covalently closed loop structure, have emerged as significant regulators in various diseases, including CHD. Their high stability, tissue‑specific expression and evolutionary conservation underscore their potential as biomarkers and therapeutic agents in CHD. This review discusses the current knowledge on circRNAs in the context of CHD and explores the molecular mechanisms by which circRNAs influence the pathophysiology of CHD, including cardiomyocyte death, endothelial injury, vascular dysfunction and inflammation. It also summarizes the emerging evidence highlighting the differential expression of circRNAs in patients with CHD and their potential utilities as non‑invasive diagnostic and prognostic biomarkers and therapeutic targets for this disease.
Collapse
Affiliation(s)
- Zengguang Fan
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China
| | - Xingxing Yuan
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150006, P.R. China
| | - Ye Yuan
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
2
|
Shao R, Chen R, Zheng Q, Yao M, Li K, Cao Y, Jiang L. Oxidative stress disrupts vascular microenvironmental homeostasis affecting the development of atherosclerosis. Cell Biol Int 2024; 48:1781-1801. [PMID: 39370593 DOI: 10.1002/cbin.12239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 10/08/2024]
Abstract
Atherosclerosis is primarily an inflammatory reaction of the cardiovascular system caused by endothelial damage, leading to progressive thickening and hardening of the vessel walls, as well as extensive necrosis and fibrosis of the surrounding tissues, the most necessary pathological process causing cardiovascular disease. When the body responds to harmful internal and external stimuli, excess oxygen free radicals are produced causing oxidative stress to occur in cells and tissues. Simultaneously, the activation of inflammatory immunological processes is followed by an elevation in oxygen free radicals, which directly initiates the release of cytokines and chemokines, resulting in a detrimental cycle of vascular homeostasis abnormalities. Oxidative stress contributes to the harm inflicted upon vascular endothelial cells and the decrease in nitric oxide levels. Nitric oxide is crucial for maintaining vascular homeostasis and is implicated in the development of atherosclerosis. This study examines the influence of oxidative stress on the formation of atherosclerosis, which is facilitated by the vascular milieu. It also provides an overview of the pertinent targets and pharmaceutical approaches for treating this condition.
Collapse
Affiliation(s)
- Ruifei Shao
- Medical School, Center for Translational Research in Clinical Medicine, Kunming University of Science and Technology, Kunming, China
| | - Rui Chen
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Qiang Zheng
- Medical School, Center for Translational Research in Clinical Medicine, Kunming University of Science and Technology, Kunming, China
| | - Mengyu Yao
- Medical School, Center for Translational Research in Clinical Medicine, Kunming University of Science and Technology, Kunming, China
| | - Kunlin Li
- Department of General Surgery II, The First People's Hospital of Yunnan Province, Kunming, China
| | - Yu Cao
- Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Lihong Jiang
- Medical School, Center for Translational Research in Clinical Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
3
|
Zhang X, Fan Z, Zhao P, Ye X, Deng X, Guidoin R, Liu M. Elucidating the hemodynamic impact of residual stenosis post-carotid artery stenting: A numerical study. Med Phys 2024; 51:9303-9317. [PMID: 39255333 DOI: 10.1002/mp.17386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/24/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Residual stenosis (RS) and hemodynamics demonstrate a significant correlation with postoperative in-stent restenosis/thrombosis following carotid artery stenting (CAS). PURPOSE This study endeavors to elucidate the potential associations between RS and adverse postoperative hemodynamic factors. METHODS This study utilized 46 patient-specific carotid artery models post-stenting, which were categorized into two groups based on the presence of RS: the normal group (N, n = 23) and the RS group (RS, n = 23). A comparative analysis was conducted to evaluate the discrepancies in geometry and adverse hemodynamic parameters, alongside investigating the potential correlation between hemodynamic and geometric parameters. RESULTS The results reveal that a higher reflux flow volume is discernible in the RS group during low-velocity phases of the cardiac cycle, concomitant with an augmented extent of areas exposed to oscillatory shear stress and extended particle residence time. Moreover, the adverse hemodynamic parameters exhibit a positive correlation with the degree of stent expansion, stent length in the common carotid artery (CCA), and the distal slope of the RS. CONCLUSION The distal slope and tortuosity of RS significantly influence the development of adverse hemodynamic conditions post-stenting, exacerbating the hemodynamic environment near the stenosis. Interestingly, while an extended stent length in the internal carotid artery (ICA) region improves hemodynamics by reducing flow disturbance, a longer stent in the CCA significantly worsens these conditions. Hence, it is prudent to analyze the characteristics of the local lesion regions to optimize the strategy for stent implantation.
Collapse
Affiliation(s)
- Xianghao Zhang
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhenmin Fan
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xia Ye
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, China
| | - Xiaoyan Deng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Robert Guidoin
- Department of Surgery, Universit´e Laval and Division of Regenerative Medicine, CHU de Qu´ebec Research Centre, Québec City, Quebec, Canada
| | - Mingyuan Liu
- Department of Vascular Surgery, Beijing Friendship Hospital, Beijing Center for Vascular Surgery, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Gou Y, Zhao A, Qin T, Yang B. Identification of the Neointimal Hyperplasia-Related LncRNA-mRNA-Immune Cell Regulatory Network in a Rat Carotid Artery Balloon Injury Model. Int Heart J 2024; 65:945-955. [PMID: 39261031 DOI: 10.1536/ihj.24-062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Excessive neointimal hyperplasia (NIH) of coronary vessels in patients is the main cause of restenosis (RS) after percutaneous coronary intervention (PCI). This study aimed to identify the regulatory genes related to NIH in a rat carotid artery balloon injury model.We established a rat model and performed RNA sequencing to identify differentially expressed long non-coding RNAs (DElncRNAs) and differentially expressed message RNAs (DEmRNAs). Immune cells were analyzed using a murine Microenvironment Cell Population counter. The Pearson correlation between DEmRNAs, DElncRNAs, and immune cells was analyzed, followed by function enrichment analysis. Core DEmRNA was identified using Cytoscape. Next, a core lncRNAs-mRNAs-immune cell regulatory network was constructed. NIH-related gene sets from the Gene Expression Omnibus and GeneCards databases were used for validation.A total of 2,165 DEmRNAs and 705 DElncRNAs were identified in rat carotid artery tissue. Four key immune cells were screened out, including mast cells, vessels, endothelial cells, and fibroblasts. Based on the Pearson correlation between DEmRNAs, DElncRNAs and 4 key immune cells, 246 DEmRNAs and 93 DElncRNAs were obtained. DEmRNAs that interact with lncRNAs were mainly involved in the cell cycle, MAPK signaling pathway, and PI3K-Akt signaling pathway. A core lncRNA-mRNA-immune cell regulatory network was constructed, including 9 mRNAs, 4 lncRNAs, and fibroblasts. External datasets validation confirmed the significant correlation of both these mRNAs and lncRNAs with NIH.In this study, an lncRNA-mRNA-immune cell regulatory network related to NIH was constructed, which provided clues for exploring the potential mechanism of RS in cardiovascular diseases.
Collapse
Affiliation(s)
- Yuan Gou
- Department of Vascular Surgery, Jining Medical University Affiliated Jining No. 1 People's Hospital
| | - Anli Zhao
- Department of Cardiovascular Medicine, Affiliated Hospital of Jining Medical University
| | - Tao Qin
- Department of Vascular Surgery, Jining Medical University Affiliated Jining No. 1 People's Hospital
| | - Bin Yang
- Department of Vascular Surgery, Jining No. 1 People's Hospital
| |
Collapse
|
5
|
Zheng F, Ye C, Lei JZ, Ge R, Li N, Bo JH, Chen AD, Zhang F, Zhou H, Wang JJ, Chen Q, Li YH, Zhu GQ, Han Y. Intervention of Asprosin Attenuates Oxidative Stress and Neointima Formation in Vascular Injury. Antioxid Redox Signal 2024; 41:488-504. [PMID: 38814824 DOI: 10.1089/ars.2023.0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Aims: Asprosin, a newly discovered hormone, is linked to insulin resistance. This study shows the roles of asprosin in vascular smooth muscle cell (VSMC) proliferation, migration, oxidative stress, and neointima formation of vascular injury. Methods: Mouse aortic VSMCs were cultured, and platelet-derived growth factor-BB (PDGF-BB) was used to induce oxidative stress, proliferation, and migration in VSMCs. Vascular injury was induced by repeatedly moving a guidewire in the lumen of the carotid artery in mice. Results: Asprosin overexpression promoted VSMC oxidative stress, proliferation, and migration, which were attenuated by toll-like receptor 4 (TLR4) knockdown, antioxidant (N-Acetylcysteine, NAC), NADPH oxidase 1 (NOX1) inhibitor ML171, or NOX2 inhibitor GSK2795039. Asprosin overexpression increased NOX1/2 expressions, whereas asprosin knockdown increased heme oxygenase-1 (HO-1) and NADPH quinone oxidoreductase-1 (NQO-1) expressions. Asprosin inhibited nuclear factor E2-related factor 2 (Nrf2) nuclear translocation. Nrf2 activator sulforaphane increased HO-1 and NQO-1 expressions and prevented asprosin-induced NOX1/2 upregulation, oxidative stress, proliferation, and migration. Exogenous asprosin protein had similar roles to asprosin overexpression. PDGF-BB increased asprosin expressions. PDGF-BB-induced oxidative stress, proliferation, and migration were enhanced by Nrf2 inhibitor ML385 but attenuated by asprosin knockdown. Vascular injury increased asprosin expression. Local asprosin knockdown in the injured carotid artery promoted HO-1 and NQO-1 expressions but attenuated the NOX1 and NOX2 upregulation, oxidative stress, neointima formation, and vascular remodeling in mice. Innovation and Conclusion: Asprosin promotes oxidative stress, proliferation, and migration of VSMCs via TLR4-Nrf2-mediated redox imbalance. Inhibition of asprosin expression attenuates VSMC proliferation and migration, oxidative stress, and neointima formation in the injured artery. Asprosin might be a promising therapeutic target for vascular injury. Antioxid. Redox Signal. 41, 488-504.
Collapse
Affiliation(s)
- Fen Zheng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jian-Zhen Lei
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Rui Ge
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Na Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jin-Hua Bo
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ai-Dong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hong Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jue-Jin Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, People's Republic China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, People's Republic China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ying Han
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Tong Y, Wang DD, Zhang YL, He S, Chen D, Wu YX, Pang QF. MiR-196a-5p hinders vascular smooth muscle cell proliferation and vascular remodeling via repressing BACH1 expression. Sci Rep 2024; 14:16904. [PMID: 39043832 PMCID: PMC11266626 DOI: 10.1038/s41598-024-68122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024] Open
Abstract
Hyperproliferation of vascular smooth muscle cells (VSMCs) is a driver of hypertensive vascular remodeling. This study aimed to uncover the mechanism of BTB and CNC homology 1 (BACH1) and microRNAs (miRNAs) in VSMC growth and hypertensive vascular remodeling. With the help of TargetScan, miRWalk, miRDB, and miRTarBase online database, we identified that BACH1 might be targeted by miR-196a-5p, and overexpressed in VSMCs and aortic tissues from spontaneously hypertensive rats (SHRs). Gain- and loss-of-function experiments demonstrated that miR-196a-5p suppressed VSMC proliferation, oxidative stress and hypertensive vascular remodeling. Double luciferase reporter gene assay and functional verification showed that miR-196a-5p cracked down the transcription and translation of BACH1 in both Wistar Kyoto rats (WKYs) and SHRs. Silencing BACH1 mimicked the actions of miR-196a-5p overexpression on attenuating the proliferation and oxidative damage of VSMCs derived from SHRs. Importantly, miR-196a-5p overexpression and BACH1 knockdown cooperatively inhibited VSMC proliferation and oxidative stress in SHRs. Furthermore, miR-196a-5p, if knocked down in SHRs, aggravated hypertension, upregulated BACH1 and promoted VSMC proliferation, all contributing to vascular remodeling. Taken together, targeting miR-196a-5p to downregulate BACH1 may be a promising strategy for retarding VSMC proliferation and hypertensive vascular remodeling.
Collapse
Affiliation(s)
- Ying Tong
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Dan-Dan Wang
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Yan-Li Zhang
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Shuai He
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Dan Chen
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Ya-Xian Wu
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Qing-Feng Pang
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
7
|
Li Q, Chao T, Wang Y, Xuan R, Guo Y, He P, Zhang L, Wang J. Transcriptome analysis revealed the characteristics and functions of long non-coding RNAs in the hypothalamus during sexual maturation in goats. Front Vet Sci 2024; 11:1404681. [PMID: 38938911 PMCID: PMC11210318 DOI: 10.3389/fvets.2024.1404681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/30/2024] [Indexed: 06/29/2024] Open
Abstract
The hypothalamus is an essential neuroendocrine area in animals that regulates sexual development. Long non-coding RNAs (lncRNAs) are hypothesized to regulate physiological processes related to animal reproduction. However, the regulatory mechanism by which lncRNAs participate in sexual maturity in goats is poorly known, particularly from birth to sexual maturation. In this study, RNAseq analysis was conducted on the hypothalamus of four developmental stages (1day (D1, n = 5), 2 months (M2, n = 5), 4 months (M4, n = 5), and 6 months (M6, n = 5)) of Jining grey goats. The results showed that a total of 237 differentially expressed lncRNAs (DELs) were identified in the hypothalamus. Among these, 221 DELs exhibited cis-regulatory effects on 693 target genes, while 24 DELs demonstrated trans-regulatory effects on 63 target genes. The target genes of these DELs are mainly involved in biological processes related to energy metabolism, signal transduction and hormone secretion, such as sphingolipid signaling pathway, adipocytokine signaling pathway, neurotrophic signaling pathway, glutamatergic synapse, P53 signaling pathway and GnRH signaling pathway. In addition, XR_001918477.1, TCONS_00077463, XR_001918760.1, and TCONS_00029048 and their potential target genes may play a crucial role in the process of goat sexual maturation. This study advances our understanding of lncRNA in hypothalamic tissue during sexual maturation in goats and will give a theoretical foundation for improving goat reproductive features.
Collapse
Affiliation(s)
- Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an, China
| | - Yanyan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an, China
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an, China
| | - Yanfei Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an, China
| | - Peipei He
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an, China
| | - Lu Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
8
|
Niu K, Zhang C, Yang M, Maguire EM, Shi Z, Sun S, Wu J, Liu C, An W, Wang X, Gao S, Ge S, Xiao Q. Small nucleolar RNA host gene 18 controls vascular smooth muscle cell contractile phenotype and neointimal hyperplasia. Cardiovasc Res 2024; 120:796-810. [PMID: 38498586 PMCID: PMC11135647 DOI: 10.1093/cvr/cvae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/27/2023] [Indexed: 03/20/2024] Open
Abstract
AIMS Long non-coding RNA (LncRNA) small nucleolar RNA host gene 18 (SNHG18) has been widely implicated in cancers. However, little is known about its functional involvement in vascular diseases. Herein, we attempted to explore a role for SNHG18 in modulating vascular smooth muscle cell (VSMC) contractile phenotype and injury-induced neointima formation. METHODS AND RESULTS Analysis of single-cell RNA sequencing and transcriptomic datasets showed decreased levels of SNHG18 in injured and atherosclerotic murine and human arteries, which is positively associated with VSMC contractile genes. SNHG18 was upregulated in VSMCs by TGFβ1 through transcription factors Sp1 and SMAD3. SNHG18 gene gain/loss-of-function studies revealed that VSMC contractile phenotype was positively regulated by SNHG18. Mechanistic studies showed that SNHG18 promotes a contractile VSMC phenotype by up-regulating miR-22-3p. SNHG18 up-regulates miR-22 biogenesis and miR-22-3p production by competitive binding with the A-to-I RNA editing enzyme, adenosine deaminase acting on RNA-2 (ADAR2). Surprisingly, we observed that ADAR2 inhibited miR-22 biogenesis not through increasing A-to-I editing within primary miR-22, but by interfering with the binding of microprocessor complex subunit DGCR8 to primary miR-22. Importantly, perivascular SNHG18 overexpression in the injured vessels dramatically up-regulated the expression levels of miR-22-3p and VSMC contractile genes, and prevented injury-induced neointimal hyperplasia. Such modulatory effects were reverted by miR-22-3p inhibition in the injured arteries. Finally, we observed a similar regulator role for SNHG18 in human VSMCs and a decreased expression level of both SNHG18 and miR-22-3p in diseased human arteries; and we found that the expression level of SNHG18 was positively associated with that of miR-22-3p in both healthy and diseased human arteries. CONCLUSION We demonstrate that SNHG18 is a novel regulator in governing VSMC contractile phenotype and preventing injury-induced neointimal hyperplasia. Our findings have important implications for therapeutic targeting snhg18/miR-22-3p signalling in vascular diseases.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/metabolism
- Cells, Cultured
- Disease Models, Animal
- Gene Expression Regulation
- Hyperplasia
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima
- Phenotype
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Kaiyuan Niu
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
- Department of Otorhinolaryngology, Third Affiliated Hospital of Anhui Medical University, No. 390, Huaihe Road, LuYang District, Hefei, Anhui, 230061, PR China
| | - Chengxin Zhang
- Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, Anhui, 230022, PR China
| | - Mei Yang
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Eithne Margaret Maguire
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Zhenning Shi
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Shasha Sun
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianping Wu
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Chenxin Liu
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Weiwei An
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Xinxin Wang
- Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, Anhui, 230022, PR China
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, No. 81, Meishan Road, Shushan District, Hefei, Anhui, 230032, PR China
| | - Shenglin Ge
- Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, Anhui, 230022, PR China
| | - Qingzhong Xiao
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
- Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, Anhui, 230022, PR China
- Department of Pharmacology, Basic Medical College, Anhui Medical University, No. 81, Meishan Road, Shushan District, Hefei, Anhui, 230032, PR China
| |
Collapse
|
9
|
Xu C, Zhang N, Yuan H, Wang L, Li Y. Sacubitril/valsartan inhibits the proliferation of vascular smooth muscle cells through notch signaling and ERK1/2 pathway. BMC Cardiovasc Disord 2024; 24:106. [PMID: 38355423 PMCID: PMC10865611 DOI: 10.1186/s12872-024-03764-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/03/2024] [Indexed: 02/16/2024] Open
Abstract
AIMS To explore the role and mechanism of Notch signaling and ERK1/2 pathway in the inhibitory effect of sacubitril/valsartan on the proliferation of vascular smooth muscle cells (VSMCs). MAIN METHODS Human aortic vascular smooth muscle cells (HA-VSMCs) were cultured in vitro. The proliferating VSMCs were divided into three groups as control group, Ang II group and Ang II + sacubitril/valsartan group. Cell proliferation and migration were detected by CCK8 and scratch test respectively. The mRNA and protein expression of PCNA, MMP-9, Notch1 and Jagged-1 were detected by qRT-PCR and Western blot respectively. The p-ERK1/2 expression was detected by Western blot. KEY FINDINGS Compared with the control group, proliferation and migration of VSMCs and the expression of PCNA, MMP-9, Notch1, Jagged-1 and p-ERK1/2 was increased in Ang II group. Sacubitril/valsartan significantly reduced the proliferation and migration. Additionally, pretreatment with sacubitril/valsartan reduced the PCNA, MMP-9, Notch1, Jagged-1 and p-ERK1/2 expression.
Collapse
Affiliation(s)
- Congfeng Xu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266000, China
| | - Ning Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266000, China
| | - Hong Yuan
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266000, China
| | - Liren Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266000, China
| | - Yonghong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266000, China.
| |
Collapse
|
10
|
Qiao Y, Wang D, Yan G, Yang Z, Tang C. MiR-411-5p Promotes Vascular Smooth Muscle Cell Phenotype Switch by Inhibiting Expression of Calmodulin Regulated Spectrin-Associated Protein-1. Int Heart J 2024; 65:557-565. [PMID: 38825498 DOI: 10.1536/ihj.23-590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
When stimulated, vascular smooth muscle cells (VSMCs) change from a differentiated to a dedifferentiated phenotype. Dedifferentiated VSMCs have a key activity in cardiovascular diseases such as in-stent restenosis. MicroRNAs (miRNAs) have crucial functions in conversion of differentiated VSMCs to a dedifferentiated phenotype. We investigated the activity of miR-411-5p in the proliferation, migration, and phenotype switch of rat VSMCs.Based on a microRNA array assay, miR-411-5p expression was found to be significantly increased in cultured VSMCs stimulated by platelet-derived growth factor-BB (PDGF-BB). A CCK-8 assay, transwell assay, and scratch test were performed to measure the effect of miR-411-5p on the proliferation and migration of PDGF-BB-treated VSMCs. MiR-411-5p promoted expression of dedifferentiated phenotype markers such as osteopontin and tropomyosin 4 in PDGF-BB-treated VSMCs. Using mimics and inhibitors, we identified the target of miR-411-5p in PDGF-BB-treated VSMCs and found that calmodulin-regulated spectrin-associated protein-1 (CAMSAP1) was involved in the phenotypic switch mediated by PDGF-BB.By inhibiting expression of CAMSAP1, miR-411-5p enhanced the proliferation, migration, and phenotype switch of VSMCs.Blockade of miR-411-5p interaction with CAMSAP1 is a promising approach to treat in-stent restenosis.
Collapse
MESH Headings
- Animals
- Male
- Rats
- Becaplermin/pharmacology
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Osteopontin/metabolism
- Osteopontin/genetics
- Phenotype
- Rats, Sprague-Dawley
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
Collapse
Affiliation(s)
- Yong Qiao
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School
| | - Gaoliang Yan
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School
| | | | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School
- Medical School of Southeast University
| |
Collapse
|
11
|
Rodríguez-Esparragón F, Torres-Mata LB, Cazorla-Rivero SE, Serna Gómez JA, González Martín JM, Cánovas-Molina Á, Medina-Suárez JA, González-Hernández AN, Estupiñán-Quintana L, Bartolomé-Durán MC, Rodríguez-Pérez JC, Varas BC. Analysis of ANRIL Isoforms and Key Genes in Patients with Severe Coronary Artery Disease. Int J Mol Sci 2023; 24:16127. [PMID: 38003316 PMCID: PMC10671206 DOI: 10.3390/ijms242216127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
ANRIL (Antisense Noncoding RNA in the INK4 Locus), also named CDKN2B-AS1, is a long non-coding RNA with outstanding functions that regulates genes involved in atherosclerosis development. ANRIL genotypes and the expression of linear and circular isoforms have been associated with coronary artery disease (CAD). The CDKN2A and the CDKN2B genes at the CDKN2A/B locus encode the Cyclin-Dependent Kinase inhibitor protein (CDKI) p16INK4a and the p53 regulatory protein p14ARF, which are involved in cell cycle regulation, aging, senescence, and apoptosis. Abnormal ANRIL expression regulates vascular endothelial growth factor (VEGF) gene expression, and upregulated Vascular Endothelial Growth Factor (VEGF) promotes angiogenesis by activating the NF-κB signaling pathway. Here, we explored associations between determinations of the linear, circular, and linear-to-circular ANRIL gene expression ratio, CDKN2A, VEGF and its receptor kinase insert domain-containing receptor (KDR) and cardiovascular risk factors and all-cause mortality in high-risk coronary patients before they undergo coronary artery bypass grafting surgery (CABG). We found that the expression of ANRIL isoforms may help in the prediction of CAD outcomes. Linear isoforms were correlated with a worse cardiovascular risk profile while the expression of circular isoforms of ANRIL correlated with a decrease in oxidative stress. However, the determination of the linear versus circular ratio of ANRIL did not report additional information to that determined by the evaluation of individual isoforms. Although the expressions of the VEFG and KDR genes correlated with a decrease in oxidative stress, in binary logistic regression analysis it was observed that only the expression of linear isoforms of ANRIL and VEGF significantly contributed to the prediction of the number of surgical revascularizations.
Collapse
Affiliation(s)
- Francisco Rodríguez-Esparragón
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias de la Universidad de La Laguna, 38296 San Cristobal de La Laguna, Tenerife, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura B. Torres-Mata
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Department of Specific Didactics, University of Las Palmas de Gran Canaria, 35004 Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Sara E. Cazorla-Rivero
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Department of Internal Medicine, University of La Laguna, 38200 La Laguna, Tenerife, Spain
| | - Jaime A. Serna Gómez
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Deparment of Cardiovascular Surgery, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Jesús M. González Martín
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ángeles Cánovas-Molina
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Chronic Pain Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - José A. Medina-Suárez
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Department of Specific Didactics, University of Las Palmas de Gran Canaria, 35004 Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Ayose N. González-Hernández
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Deparment of Neurology and Clinical Neurophysiology, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Lidia Estupiñán-Quintana
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - María C. Bartolomé-Durán
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - José C. Rodríguez-Pérez
- Vice Chancellor of Research, Universidad Fernando Pessoa Canarias, 35002 Santa María de Guía de Gran Canaria, Gran Canaria, Spain;
| | - Bernardino Clavo Varas
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias de la Universidad de La Laguna, 38296 San Cristobal de La Laguna, Tenerife, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Chronic Pain Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Radiation Oncology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Universitary Institute for Research in Biomedicine and Health (iUIBS), Molecular and Translational Pharmacology Group, University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Spanish Group of Clinical Research in Radiation Oncology (GICOR), 28290 Madrid, Spain
| |
Collapse
|
12
|
Kurata A, Harada Y, Fujita K, Ohno SI, Takanashi M, Yoshizawa S, Nagashima Y, Nagao T, Yamaguchi J, Kuroda M. Smooth muscle differentiation of coronary intima in autopsy tissues after sirolimus-eluting stent implantation. Cardiovasc Pathol 2023; 66:107554. [PMID: 37321466 DOI: 10.1016/j.carpath.2023.107554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND In coronary atherosclerotic disease, the proliferation of intimal smooth muscle cells (SMCs) is regarded as beneficial with respect to stable and unstable plaques, but is thought detrimental in discussions on coronary stent restenosis. To resolve this discrepancy, we focused on the quality, not quantity, of intimal SMCs in coronary atherosclerotic disease. METHODS Autopsied coronary artery specimens from seven patients implanted with bare metal stents (BMS), three with paclitaxel-eluting stents (PES), and 10 with sirolimus (rapamycin)-eluting stents (SES) were immunostained for SMC markers. Cultured human coronary artery SMCs were also treated with sirolimus and paclitaxel. RESULTS Intimal SMC differentiation, estimated by the ratio of h-caldesmon+ cells to α-smooth muscle actin+ (α-SMA+) cells, was significantly increased whereas dedifferentiation, estimated from the ratio of fibroblast activation protein alpha (FAPα)+ cells to α-SMA+ cells, was significantly decreased, in tissues of SES compared with BMS cases. No difference in the degree of differentiation was found between PES and BMS cases or between the three groups in nonstented arteries used as controls. Correlation analyses for each field of view revealed a significant positive correlation between h-caldesmon and calponin staining but significant negative correlations with FAPα staining in α-SMA+ cells. Cultured SMCs were shorter (dedifferentiated) and showed an increased FAPα/α-SMA protein when treated with paclitaxel, whereas they became elongated (differentiated) and showed increased calponin/α-SMA proteins with sirolimus. CONCLUSIONS The SMCs of the coronary intima may differentiate after SES implantation. SMC differentiation may explain both the plaque stabilization and reduced risk of reintervention associated with SES.
Collapse
Affiliation(s)
- Atsushi Kurata
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan.
| | - Yuichiro Harada
- Department of Molecular Pathology, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Koji Fujita
- Department of Molecular Pathology, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Shin-Ichiro Ohno
- Department of Molecular Pathology, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Masakatsu Takanashi
- Department of Molecular Pathology, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Saeko Yoshizawa
- Department of Surgical Pathology, Tokyo Women's Medical University Hospital, Shinjuku, Tokyo, Japan
| | - Yoji Nagashima
- Department of Surgical Pathology, Tokyo Women's Medical University Hospital, Shinjuku, Tokyo, Japan
| | - Toshitaka Nagao
- Department of Anatomic Pathology, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Junichi Yamaguchi
- Department of Cardiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Shinjuku, Tokyo, Japan
| |
Collapse
|
13
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
14
|
Rong Z, Li F, Zhang R, Niu S, Di X, Ni L, Liu C. Inhibition of tiRNA-Gly-GCC ameliorates neointimal formation via CBX3-mediated VSMCs phenotypic switching. Front Cardiovasc Med 2023; 10:1030635. [PMID: 36818350 PMCID: PMC9937027 DOI: 10.3389/fcvm.2023.1030635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Background and aim tRNA-derived fragments (tRFs) are a new class of non-coding RNAs involved in a variety of pathological processes, but their biological functions and mechanisms in human aortic smooth muscle cells (HASMCs) phenotype transition and vascular intimal hyperplasia are unclear. Methods/results tiRNA-Gly-GCC is upregulated in synthetic HASMCs, atherosclerotic arteries, plasma, and the balloon injured carotid artery of rats. Functionally, the inhibition of tiRNA-Gly-GCC represses HASMCs proliferation, migration, and reversed dedifferentiation, whereas the overexpression of tiRNA- Gly-GCC have contrary effects. Mechanistically, tiRNA-Gly-GCC performs these functions on HASMCs via downregulating chromobox protein homolog 3 (CBX3). Finally, the inhibition of tiRNA-Gly-GCC could ameliorate neointimal formation after vascular injury in vivo. Conclusions tiRNA-Gly-GCC is a mediator of HASMCs phenotypic switching by targeting CBX3 and inhibition of tiRNA-Gly-GCC suppresses neointimal formation.
Collapse
|
15
|
Déglise S, Bechelli C, Allagnat F. Vascular smooth muscle cells in intimal hyperplasia, an update. Front Physiol 2023; 13:1081881. [PMID: 36685215 PMCID: PMC9845604 DOI: 10.3389/fphys.2022.1081881] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Arterial occlusive disease is the leading cause of death in Western countries. Core contemporary therapies for this disease include angioplasties, stents, endarterectomies and bypass surgery. However, these treatments suffer from high failure rates due to re-occlusive vascular wall adaptations and restenosis. Restenosis following vascular surgery is largely due to intimal hyperplasia. Intimal hyperplasia develops in response to vessel injury, leading to inflammation, vascular smooth muscle cells dedifferentiation, migration, proliferation and secretion of extra-cellular matrix into the vessel's innermost layer or intima. In this review, we describe the current state of knowledge on the origin and mechanisms underlying the dysregulated proliferation of vascular smooth muscle cells in intimal hyperplasia, and we present the new avenues of research targeting VSMC phenotype and proliferation.
Collapse
Affiliation(s)
| | | | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
16
|
Zou X, Liao Y, Liu Z, Xu X, Sun W, Qin H, Wang H, Liu J, Jing T. Exosomes Derived from AT2R-Overexpressing BMSC Prevent Restenosis After Carotid Artery Injury by Attenuating the Injury-Induced Neointimal Hyperplasia. J Cardiovasc Transl Res 2023; 16:112-126. [PMID: 35900670 PMCID: PMC9944384 DOI: 10.1007/s12265-022-10293-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
Restenosis is a severe complication after percutaneous transluminal coronary angioplasty which limits the long-term efficacy of the intervention. In this study, we investigated the efficiency of exosomes derived from AT2R-overexpressing bone mesenchymal stem cells on the prevention of restenosis after carotid artery injury. Our data showed that AT2R-EXO promoted the proliferation and migration of vascular endothelial cells and maintained the ratio of eNOS/iNOS. On the contrary, AT2R-EXO inhibited the proliferation and migration of vascular smooth muscle cells. In vivo study proved that AT2R-Exo were more effectively accumulated in the injured carotid artery than EXO and Vehicle-EXO controls. AT2R-EXO treatment could improve blood flow of the injured carotid artery site more effectively. Further analysis revealed that AT2REXO prevents restenosis after carotid artery injury by attenuating the injury-induced neointimal hyperplasia. Our study provides a novel and more efficient exosome for the treatment of restenosis diseases after intervention.
Collapse
Affiliation(s)
- Xinliang Zou
- Department of Cardiology, Southwest Hospital, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Yi Liao
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Zhihui Liu
- Department of Cardiology, Southwest Hospital, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Xiang Xu
- Department of Cardiology, Southwest Hospital, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Weiwei Sun
- Department of Cardiology, Southwest Hospital, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Haoran Qin
- Department of Cardiology, Southwest Hospital, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Haidong Wang
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Jianping Liu
- Department of Cardiology, Southwest Hospital, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Tao Jing
- Department of Cardiology, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
17
|
Efovi D, Xiao Q. Noncoding RNAs in Vascular Cell Biology and Restenosis. BIOLOGY 2022; 12:24. [PMID: 36671717 PMCID: PMC9855655 DOI: 10.3390/biology12010024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
In-stent restenosis (ISR), characterised by ≥50% re-narrowing of the target vessel, is a common complication following stent implantation and remains a significant challenge to the long-term success of angioplasty procedures. Considering the global burden of cardiovascular diseases, improving angioplasty patient outcomes remains a key priority. Noncoding RNAs (ncRNAs) including microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA) have been extensively implicated in vascular cell biology and ISR through multiple, both distinct and overlapping, mechanisms. Vascular smooth muscle cells, endothelial cells and macrophages constitute the main cell types involved in the multifactorial pathophysiology of ISR. The identification of critical regulators exemplified by ncRNAs in all these cell types and processes makes them an exciting therapeutic target in the field of restenosis. In this review, we will comprehensively explore the potential functions and underlying molecular mechanisms of ncRNAs in vascular cell biology in the context of restenosis, with an in-depth focus on vascular cell dysfunction during restenosis development and progression. We will also discuss the diagnostic biomarker and therapeutic target potential of ncRNAs in ISR. Finally, we will discuss the current shortcomings, challenges, and perspectives toward the clinical application of ncRNAs.
Collapse
Affiliation(s)
- Denis Efovi
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Qingzhong Xiao
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
18
|
Liu YZ, Li ZX, Zhang LL, Wang D, Liu YP. Phenotypic plasticity of vascular smooth muscle cells in vascular calcification: Role of mitochondria. Front Cardiovasc Med 2022; 9:972836. [PMID: 36312244 PMCID: PMC9597684 DOI: 10.3389/fcvm.2022.972836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Vascular calcification (VC) is an important hallmark of cardiovascular disease, the osteo-/chondrocyte phenotype differentiation of vascular smooth muscle cells (VSMCs) is the main cause of vascular calcification. Accumulating evidence shows that mitochondrial dysfunction may ultimately be more detrimental in the VSMCs calcification. Mitochondrial participate in essential cellular functions, including energy production, metabolism, redox homeostasis regulation, intracellular calcium homeostasis, apoptosis, and signal transduction. Mitochondrial dysfunction under pathological conditions results in mitochondrial reactive oxygen species (ROS) generation and metabolic disorders, which further lead to abnormal phenotypic differentiation of VSMCs. In this review, we summarize existing studies targeting mitochondria as a treatment for VC, and focus on VSMCs, highlighting recent progress in determining the roles of mitochondrial processes in regulating the phenotype transition of VSMCs, including mitochondrial biogenesis, mitochondrial dynamics, mitophagy, mitochondrial energy metabolism, and mitochondria/ER interactions. Along these lines, the impact of mitochondrial homeostasis on VC is discussed.
Collapse
|
19
|
Chen Y, Gu Y, Xiong X, Zheng Y, Liu X, Wang W, Meng G. Roles of the adaptor protein tumor necrosis factor receptor type 1-associated death domain protein (TRADD) in human diseases. Biomed Pharmacother 2022; 153:113467. [DOI: 10.1016/j.biopha.2022.113467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022] Open
|
20
|
Xu H, Fang B, Bao C, Mao X, Zhu C, Ye L, Liu Q, Li Y, Du C, Qi H, Zhang X, Guan Y. The Prostaglandin E2 Receptor EP4 Promotes Vascular Neointimal Hyperplasia through Translational Control of Tenascin C via the cAPM/PKA/mTORC1/rpS6 Pathway. Cells 2022; 11:cells11172720. [PMID: 36078128 PMCID: PMC9454981 DOI: 10.3390/cells11172720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
Prostaglandin E2 (PGE2) is an important metabolite of arachidonic acid which plays a crucial role in vascular physiology and pathophysiology via its four receptors (EP1-4). However, the role of vascular smooth muscle cell (VSMC) EP4 in neointimal hyperplasia is largely unknown. Here we showed that VSMC-specific deletion of EP4 (VSMC-EP4) ameliorated, while VSMC-specific overexpression of human EP4 promoted, neointimal hyperplasia in mice subjected to femoral artery wire injury or carotid artery ligation. In vitro studies revealed that pharmacological activation of EP4 promoted, whereas inhibition of EP4 suppressed, proliferation and migration of primary-cultured VSMCs. Mechanically, EP4 significantly increased the protein expression of tenascin C (TN-C), a pro-proliferative and pro-migratory extracellular matrix protein, at the translational level. Knockdown of TN-C markedly suppressed EP4 agonist-induced VSMC proliferation and migration. Further studies uncovered that EP4 upregulated TN-C protein expression via the PKA/mTORC1/Ribosomal protein S6 (rpS6) pathway. Together, our findings demonstrate that VSMC EP4 increases TN-C protein expression to promote neointimal hyperplasia via the PKA-mTORC1-rpS6 pathway. Therefore, VSMC EP4 may represent a potential therapeutic target for vascular restenosis.
Collapse
Affiliation(s)
- Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Bingying Fang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Chengzhen Bao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Xiuhui Mao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Chunhua Zhu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Lan Ye
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Qian Liu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Yaqing Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Chunxiu Du
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Hang Qi
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Xiaoyan Zhang
- Health Science Center, East China Normal University, Shanghai 200241, China
- Correspondence: (X.Z.); (Y.G.)
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
- Correspondence: (X.Z.); (Y.G.)
| |
Collapse
|
21
|
Liu H, Ning F, Lash GE. Contribution of vascular smooth muscle cell apoptosis to spiral artery remodeling in early human pregnancy. Placenta 2022; 120:10-17. [DOI: 10.1016/j.placenta.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/02/2021] [Accepted: 02/07/2022] [Indexed: 11/15/2022]
|
22
|
Icariside II attenuates vascular remodeling via Wnt7b/CCND1 axis. J Cardiovasc Pharmacol 2022; 80:48-55. [PMID: 35170494 DOI: 10.1097/fjc.0000000000001239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/27/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Angioplasty often fails due to the abnormal proliferation of vascular smooth muscle cells (VSMCs). Success rates of angioplasty may increase following the administration of an agent that effectively ameliorates aberrant vascular remodeling. Icariside II(ICS-II) is a natural flavonol glycoside extract from the Chinese herbal medicine Epimedii that possesses several medicinal qualities that are beneficial in humans. Nevertheless, the role of ICS-II in addressing aberrant vascular remodeling have yet to be clarified. The current investigation studies the molecular effects of ICS-II on balloon-inflicted neointimal hyperplasia in rats in vivo and on platelet-derived growth factor (PDGF)-induced vascular proliferation in primary rat aortic smooth muscle cells (VSMCs) in vitro. ICS-II was found to be as effective as rapamycin, the positive control used in this study. ICS-II inhibited neointimal formation in injured rat carotid arteries and notably reduced the expression of Wnt7b. ICS-II significantly counteracted PDGF-induced VSMCs proliferation. Cell cycle analysis showed that ICS-II triggered cell cycle arrest during the G1/S transition. Western blot analysis further indicated that this cell cycle arrest was likely through Wnt7b suppression that led to CCND1 inhibition. In conclusion, our findings demonstrate that ICS-II possesses significant anti-proliferative qualities that counteracts aberrant vascular neointimal hyperplasia. This phenomenon most likely occurs due to suppression of the Wnt7b/CCND1 axis.
Collapse
|
23
|
Long non-coding RNA PAARH promotes hepatocellular carcinoma progression and angiogenesis via upregulating HOTTIP and activating HIF-1α/VEGF signaling. Cell Death Dis 2022; 13:102. [PMID: 35110549 PMCID: PMC8810756 DOI: 10.1038/s41419-022-04505-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading lethal malignancies and a hypervascular tumor. Although some long non-coding RNAs (lncRNAs) have been revealed to be involved in HCC. The contributions of lncRNAs to HCC progression and angiogenesis are still largely unknown. In this study, we identified a HCC-related lncRNA, CMB9-22P13.1, which was highly expressed and correlated with advanced stage, vascular invasion, and poor survival in HCC. We named this lncRNA Progression and Angiogenesis Associated RNA in HCC (PAARH). Gain- and loss-of function assays revealed that PAARH facilitated HCC cellular growth, migration, and invasion, repressed HCC cellular apoptosis, and promoted HCC tumor growth and angiogenesis in vivo. PAARH functioned as a competing endogenous RNA to upregulate HOTTIP via sponging miR-6760-5p, miR-6512-3p, miR-1298-5p, miR-6720-5p, miR-4516, and miR-6782-5p. The expression of PAARH was significantly positively associated with HOTTIP in HCC tissues. Functional rescue assays verified that HOTTIP was a critical mediator of the roles of PAARH in modulating HCC cellular growth, apoptosis, migration, and invasion. Furthermore, PAARH was found to physically bind hypoxia inducible factor-1 subunit alpha (HIF-1α), facilitate the recruitment of HIF-1α to VEGF promoter, and activate VEGF expression under hypoxia, which was responsible for the roles of PAARH in promoting angiogenesis. The expression of PAARH was positively associated with VEGF expression and microvessel density in HCC tissues. In conclusion, these findings demonstrated that PAARH promoted HCC progression and angiogenesis via upregulating HOTTIP and activating HIF-1α/VEGF signaling. PAARH represents a potential prognostic biomarker and therapeutic target for HCC.
Collapse
|
24
|
Wang H, Lian X, Gao W, Gu J, Shi H, Ma Y, Li Y, Fan Y, Wang Q, Wang L. Long noncoding RNA H19 suppresses cardiac hypertrophy through the MicroRNA-145-3p/SMAD4 axis. Bioengineered 2022; 13:3826-3839. [PMID: 35139769 PMCID: PMC8973863 DOI: 10.1080/21655979.2021.2017564] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023] Open
Abstract
Sustained cardiac hypertrophy (CH) contributes to many heart diseases. Long noncoding RNAs (lncRNAs) collectively play critical roles in cardiovascular diseases (CVDs). However, the roles of lncRNA H19 in CH are still unclear. A CH model was constructed utilizing isoproterenol (ISO). We demonstrated H19 could participate in regulating ISO-induced CH development both in vivo and in vitro. The online databases DIANA and TargetScan were used to predict the targets of H19 and MicroRNA-145-3p (miR-145-3p), respectively. Luciferase reporter assay was used to verify the downstream targets. The results showed that H19 was decreased under ISO stimulation. The H19 overexpression resulted in significant decrease in mouse heart size and weight, left ventricular systolic dysfunction, left ventricular posterior wall thickness and cardiac hypertrophic growth, while promoted the increase of left ventricular ejection fraction and left ventricle fraction shortening. H19 also inhibited protein expression levels of CH markers, such as atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and MYH7. Luciferase assays results showed that miR-145-3p was a target of H19 and SMAD4 was a target of miR-145-3p. We found that H19 regulated SMAD4 by sponging miR-145-3p. Knockout of miR-145-3p or overexpression of SMAD4 facilitated H19-induced decreases in ANP, BNP, and MYH7. Collectively, our findings have indicated that the H19/miR-145-3p/SMAD4 axis should be a negative regulator involved in CH progression.
Collapse
Affiliation(s)
- Hao Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoqing Lian
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gao
- Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Gu
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haojie Shi
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Ma
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yafei Li
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Fan
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiming Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liansheng Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Liu C, Niu K, Xiao Q. Updated perspectives on vascular cell specification and pluripotent stem cell-derived vascular organoids for studying vasculopathies. Cardiovasc Res 2022; 118:97-114. [PMID: 33135070 PMCID: PMC8752356 DOI: 10.1093/cvr/cvaa313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Vasculopathy is a pathological process occurring in the blood vessel wall, which could affect the haemostasis and physiological functions of all the vital tissues/organs and is one of the main underlying causes for a variety of human diseases including cardiovascular diseases. Current pharmacological interventions aiming to either delay or stop progression of vasculopathies are suboptimal, thus searching novel, targeted, risk-reducing therapeutic agents, or vascular grafts with full regenerative potential for patients with vascular abnormalities are urgently needed. Since first reported, pluripotent stem cells (PSCs), particularly human-induced PSCs, have open new avenue in all research disciplines including cardiovascular regenerative medicine and disease remodelling. Assisting with recent technological breakthroughs in tissue engineering, in vitro construction of tissue organoid made a tremendous stride in the past decade. In this review, we provide an update of the main signal pathways involved in vascular cell differentiation from human PSCs and an extensive overview of PSC-derived tissue organoids, highlighting the most recent discoveries in the field of blood vessel organoids as well as vascularization of other complex tissue organoids, with the aim of discussing the key cellular and molecular players in generating vascular organoids.
Collapse
MESH Headings
- Blood Vessels/metabolism
- Blood Vessels/pathology
- Blood Vessels/physiopathology
- Cell Culture Techniques
- Cell Differentiation
- Cell Lineage
- Cells, Cultured
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Humans
- Induced Pluripotent Stem Cells/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neovascularization, Pathologic
- Neovascularization, Physiologic
- Organoids
- Phenotype
- Signal Transduction
- Vascular Diseases/metabolism
- Vascular Diseases/pathology
- Vascular Diseases/physiopathology
Collapse
Affiliation(s)
- Chenxin Liu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kaiyuan Niu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, Guangdong 511436, China
| |
Collapse
|
26
|
Vascular Pathobiology: Atherosclerosis and Large Vessel Disease. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Liu B, Deng B, Jiang X, Xu Y, Chen S, Cai M, Deng S, Ding W, Xu H, Zhang S, Tan ZB, Chen R, Zhang J. 10-gingerol, a natural AMPK agonist, suppresses neointimal hyperplasia and inhibits vascular smooth muscle cells proliferation. Food Funct 2022; 13:3234-3246. [DOI: 10.1039/d1fo03610f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: Abnormal proliferation of vascular smooth muscle cells (VSMCs) in the intimal region is a key event in the development of neointimal hyperplasia. 10-G, a bioactive compound found in ginger,...
Collapse
|
28
|
A novel circUBR4/miR-491-5p/NRP2 ceRNA network regulates oxidized low-density lipoprotein-induced proliferation and migration in vascular smooth muscle cells. J Cardiovasc Pharmacol 2021; 79:512-522. [PMID: 34935701 DOI: 10.1097/fjc.0000000000001204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 11/28/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Vascular smooth muscle cells (VSMCs) play critical roles in the progression of atherosclerosis. Circular RNA (circRNA) ubiquitin protein ligase E3 component n-recognin 4 (circUBR4) has been shown to regulate VSMC migration and proliferation. Here, we sought to identify the mechanism in the regulation of circUBR4. CircUBR4, microRNA (miR)-491-5p and Neuropilin-2 (NRP2) were quantified by quantitative real-time PCR (qRT-PCR) and western blot. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8) and 5-Ethynyl-2'-Deoxyuridine (EDU) assays. Cell migration was examined by wound-healing and transwell invasion assays. The direct relationship between miR-491-5p and circUBR4 or NRP2 was validated by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Our data indicated that in VSMCs, ox-LDL induced circUBR4 expression. Silencing endogenous circUBR4 attenuated VSMC proliferation and migration induced by ox-LDL. Mechanistically, circUBR4 targeted miR-491-5p by pairing to miR-491-5p. Moreover, miR-491-5p was identified as a downstream mediator of circUBR4 function in ox-LDL-treated VSMCs. NRP2 was a direct target of miR-491-5p, and circUBR4 acted as a competing endogenous RNA (ceRNA) for miR-491-5p to regulate NRP2 expression. Additionally, NRP2 was a functionally downstream effector of miR-491-5p in regulating ox-LDL-evoked VSMC proliferation and migration. Our findings identify a new ceRNA network, the circUBR4/miR-491-5p/NRP2 axis, for the regulation of circUBR4 in VSMC migration and proliferation.
Collapse
|
29
|
Chakraborty R, Chatterjee P, Dave JM, Ostriker AC, Greif DM, Rzucidlo EM, Martin KA. Targeting smooth muscle cell phenotypic switching in vascular disease. JVS Vasc Sci 2021; 2:79-94. [PMID: 34617061 PMCID: PMC8489222 DOI: 10.1016/j.jvssci.2021.04.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/01/2021] [Indexed: 12/26/2022] Open
Abstract
Objective The phenotypic plasticity of vascular smooth muscle cells (VSMCs) is central to vessel growth and remodeling, but also contributes to cardiovascular pathologies. New technologies including fate mapping, single cell transcriptomics, and genetic and pharmacologic inhibitors have provided fundamental new insights into the biology of VSMC. The goal of this review is to summarize the mechanisms underlying VSMC phenotypic modulation and how these might be targeted for therapeutic benefit. Methods We summarize findings from extensive literature searches to highlight recent discoveries in the mechanisms underlying VSMC phenotypic switching with particular relevance to intimal hyperplasia. PubMed was searched for publications between January 2001 and December 2020. Search terms included VSMCs, restenosis, intimal hyperplasia, phenotypic switching or modulation, and drug-eluting stents. We sought to highlight druggable pathways as well as recent landmark studies in phenotypic modulation. Results Lineage tracing methods have determined that a small number of mature VSMCs dedifferentiate to give rise to oligoclonal lesions in intimal hyperplasia and atherosclerosis. In atherosclerosis and aneurysm, single cell transcriptomics reveal a striking diversity of phenotypes that can arise from these VSMCs. Mechanistic studies continue to identify new pathways that influence VSMC phenotypic plasticity. We review the mechanisms by which the current drug-eluting stent agents prevent restenosis and note remaining challenges in peripheral and diabetic revascularization for which new approaches would be beneficial. We summarize findings on new epigenetic (DNA methylation/TET methylcytosine dioxygenase 2, histone deacetylation, bromodomain proteins), transcriptional (Hippo/Yes-associated protein, peroxisome proliferator-activity receptor-gamma, Notch), and β3-integrin-mediated mechanisms that influence VSMC phenotypic modulation. Pharmacologic and genetic targeting of these pathways with agents including ascorbic acid, histone deacetylase or bromodomain inhibitors, thiazolidinediones, and integrin inhibitors suggests potential therapeutic value in the setting of intimal hyperplasia. Conclusions Understanding the molecular mechanisms that underlie the remarkable plasticity of VSMCs may lead to novel approaches to treat and prevent cardiovascular disease and restenosis.
Collapse
Affiliation(s)
- Raja Chakraborty
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| | - Payel Chatterjee
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| | - Jui M Dave
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Genetics, Yale University School of Medicine, New Haven, Conn
| | - Allison C Ostriker
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| | - Daniel M Greif
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Genetics, Yale University School of Medicine, New Haven, Conn
| | - Eva M Rzucidlo
- Department Surgery, Section of Vascular Surgery, McLeod Regional Medical Center, Florence, SC
| | - Kathleen A Martin
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| |
Collapse
|
30
|
Yuan J, Liu Y, Zhou L, Xue Y, Lu Z, Gan J. YTHDC2-Mediated circYTHDC2 N6-Methyladenosine Modification Promotes Vascular Smooth Muscle Cells Dysfunction Through Inhibiting Ten-Eleven Translocation 2. Front Cardiovasc Med 2021; 8:686293. [PMID: 34660707 PMCID: PMC8517116 DOI: 10.3389/fcvm.2021.686293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/31/2021] [Indexed: 01/11/2023] Open
Abstract
Type 2 diabetes condition mediated vascular smooth muscle cell (VSMCs) dysfunction. However, the mechanism of VSMCs dysfunction in diabetic patients needs further elucidation. VSMCs are an important component of the vascular wall, participate in the process of vascular remodeling, and play a vital role in the vascular complications of diabetes. Studies have found that circular RNAs (circRNAs) play a key regulatory role in the occurrence and development of VSMCs dysfunction. In this study, we stimulated VSMCs with high glucose and identified a new circular RNA, circYTHDC2, using circRNA chip analysis. circYTHDC2 was highly expressed in VSMCs treated with high glucose. Knockout of circYTHDC2 significantly inhibited the proliferation and migration of VSMCs. Metformin treatment significantly inhibited the expression of YTHDC2 and circYTHDC2. The upstream mechanism analysis revealed that the stability of circYTHDC2 was regulated by YTHDC2-mediated m6A modification. Furthermore, circYTHDC2 negatively regulates the expression of Ten-Eleven Translocation 2 (TET2) by targeting the unstable motif of TET2 3'UTR, thereby promoting dedifferentiated "synthetic type" transformation of VSMC. Taken together, these results suggest that the YTHDC2/circYTHDC2/TET2 pathway is an important target of metformin in preventing the progression of VSMCs dysfunction under high glucose.
Collapse
Affiliation(s)
- Jun Yuan
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yu Liu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lizhen Zhou
- Health Management Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yan Xue
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zhengde Lu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jianting Gan
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
31
|
Arraiano CM. Regulatory noncoding RNAs: functions and applications in health and disease. FEBS J 2021; 288:6308-6309. [PMID: 34153158 DOI: 10.1111/febs.16027] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022]
Abstract
Science is facing a new RNA world that is shaping our knowledge, and we are discovering a new horizon in molecular biology. New technologies revealed thousands and thousands of new RNAs, most of them located in what was once known as the "dark matter of DNA". They are functional regulatory RNAs and do not code for proteins, and they orchestrate the cellular function according to the changes needed. These noncoding RNAs are ubiquitous, and they are present from viruses to humans. In this Virtual Issue, The FEBS Journal features a collection of recent articles on long noncoding RNAs, microRNAs, and circular RNAs. It gives a broad perspective regarding their role in vascular diseases, ocular diseases, immune cell development and homeostasis, inflammation, production of extracellular matrix, and cancer. Furthermore, review-type articles highlight the potential use of noncoding RNAs in a wide range of applications.
Collapse
Affiliation(s)
- Cecília Maria Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
32
|
Ding X, Wang X, Han L, Zhao Z, Jia S, Tuo Y. CircRNA DOCK1 Regulates miR-409-3p/MCL1 Axis to Modulate Proliferation and Apoptosis of Human Brain Vascular Smooth Muscle Cells. Front Cell Dev Biol 2021; 9:655628. [PMID: 34109173 PMCID: PMC8181129 DOI: 10.3389/fcell.2021.655628] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/07/2021] [Indexed: 12/29/2022] Open
Abstract
Background Intracranial aneurysm is an abnormal expansion in the intracranial arteries, which is associated with growth and apoptosis of vascular smooth muscle cells. Circular RNAs (circRNAs) have implicated in the progression of intracranial aneurysms. The purpose of this paper is to study the function and mechanism of circRNA dedicator of cytokinesis 1 (circ_DOCK1) in regulating proliferation and apoptosis of human brain vascular smooth muscle cells (HBVSMCs). Methods HBVSMCs were exposed to hydrogen peroxide (H2O2). Cell proliferation and apoptosis were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and flow cytometry, respectively. Circ_DOCK1, microRNA (miR)-409-3p, and myeloid cell leukemia sequence 1 (MCL1) levels were examined by quantitative reverse transcription polymerase chain reaction or western blotting. The target association was assessed by dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation assays. Results Exposure to H2O2 decreased proliferation and increased apoptosis of HBVSMCs. Circ_DOCK1 expression was reduced in H2O2-treated HBVSMCs. Circ_DOCK1 overexpression rescued H2O2-caused reduction of proliferation and PCNA expression and attenuated H2O2-induced apoptosis and expression of Bcl-2, Bax, and cleaved PARP. MiR-409-3p was targeted by circ_DOCK1 and upregulated in H2O2-treated HBVSMCs. MiR-409-3p upregulation mitigated the role of circ_DOCK1 in proliferation and apoptosis of H2O2-treated HBVSMCs. MCL1 was targeted via miR-409-3p and downregulated via H2O2 treatment. Circ_DOCK1 overexpression enhanced MCL1 expression via modulating miR-409-3p. MiR-409-3p knockdown weakened H2O2-induced proliferation reduction and apoptosis promotion via regulating MCL1. Conclusion Circ_DOCK1 overexpression mitigated H2O2-caused proliferation inhibition and apoptosis promotion in HBVSMCs by modulating miR-409-3p/MCL1 axis.
Collapse
Affiliation(s)
- Xinmin Ding
- Department of Neurosurgery, Shanxi Bethune Hospital, The Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaolong Wang
- Department of Neurosurgery, Shanxi Bethune Hospital, The Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Li Han
- Department of Neurosurgery, Shanxi Bethune Hospital, The Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhiyu Zhao
- Department of Neurosurgery, Shanxi Bethune Hospital, The Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuai Jia
- Department of Neurosurgery, Shanxi Bethune Hospital, The Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuanzhao Tuo
- Department of Neurosurgery, Shanxi Bethune Hospital, The Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
33
|
Zhou Y, Zhang S, Ji W, Gan X, Hua L, Hou C, Chen J, Wang Y, He S, Zhou H, Jia E. LncRNA Landscape of Coronary Atherosclerosis Reveals Differentially Expressed LncRNAs in Proliferation and Migration of Coronary Artery Smooth Muscle Cells. Front Cell Dev Biol 2021; 9:656636. [PMID: 34084771 PMCID: PMC8168468 DOI: 10.3389/fcell.2021.656636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
We aimed to investigate differentially expressed long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) in atherosclerosis and validate the expression of lncRNAs and co-expressed target genes in proliferation and migration models of human coronary artery smooth muscle cells (HCASMCs). Ten coronary artery specimens from a subject who died from a heart attack were employed. The pathological analysis was analyzed by hematoxylin and eosin (H&E) staining, and the lncRNAs and mRNAs were identified by RNA sequencing. Bioinformatic analyses were performed to predict possible mechanisms. The proliferation and migration of HCASMCs were induced with oxidized low-density lipoprotein (ox-LDL). Differentially expressed lncRNAs and mRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). In this study, 68 lncRNAs and 222 mRNAs were identified differentially expressed in atherosclerosis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the Fanconi anemia pathway may be involved in atherosclerosis. GON4L was found to be the co-localized target gene of LNC_000439, and 14 genes had high correlations with the expression of seven lncRNAs. In addition, nine lncRNA–miRNA–mRNA networks were constructed, and 53 co-expressed gene modules were detected with weighted gene co-expression network analysis (WGCNA). LNC_000684, LNC_001046, LNC_001333, LNC_001538, and LNC_002115 were downregulated, while LNC_002936 was upregulated in proliferation and migration models of HCASMCs. In total, six co-expressed mRNAs were upregulated in HCASMCs. This study suggests that the differentially expressed lncRNAs identified by RNA sequencing and validated in smooth muscle cells may be a target for regulating HCASMC proliferation and migration in atherosclerosis, which will provide a new diagnostic basis and therapeutic target for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yaqing Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sheng Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenfeng Ji
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiongkang Gan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Hua
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Can Hou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaxin Chen
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanjun Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shu He
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hanxiao Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Enzhi Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
Zhang Y, Zhang C, Chen Z, Wang M. Blocking circ_UBR4 suppressed proliferation, migration, and cell cycle progression of human vascular smooth muscle cells in atherosclerosis. Open Life Sci 2021; 16:419-430. [PMID: 33981849 PMCID: PMC8085462 DOI: 10.1515/biol-2021-0044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/06/2021] [Accepted: 01/21/2021] [Indexed: 12/22/2022] Open
Abstract
The circ_UBR4 (hsa_circ_0010283) is a novel abnormally overexpressed circRNA in oxidized low-density lipoprotein (ox-LDL)-induced model of atherosclerosis (AS) in human vascular smooth muscle cells (VSMCs). However, its role in the dysfunction of VSMCs remains to be further investigated. Here, we attempted to explore its role in ox-LDL-induced excessive proliferation and migration in VSMCs by regulating Rho/Rho-associated coiled-coil containing kinase 1 (ROCK1), a therapeutic target of AS. Expression of circ_UBR4 and ROCK1 was upregulated, whereas miR-107 was downregulated in human AS serum and ox-LDL-induced VSMCs. Depletion of circ_UBR4 arrested cell cycle, suppressed cell viability, colony-forming ability, and migration ability, and depressed expression of proliferating cell nuclear antigen and matrix metalloproteinase 2 in VSMCs in spite of the opposite effects of ox-LDL. Notably, ROCK1 upregulation mediated by plasmid transfection or miR-107 deletion could counteract the suppressive role of circ_UBR4 knockdown in ox-LDL-induced VSMCs proliferation, migration, and cell cycle progression. In mechanism, miR-107 was identified as a target of circ_UBR4 to mediate the regulatory effect of circ_UBR4 on ROCK1. circ_UBR4 might be a contributor in human AS partially by regulating VSMCs’ cell proliferation, migration, and cell cycle progression via circ_UBR4/miR-107/ROCK1 pathway.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Cardiology, Zhongshan Affiliated Hospital, Dalian University, No. 6, Zhonshan Road, Dalian, 116001, Liaoning, China
| | - Cheng Zhang
- Department of Cardiology, Zhongshan Affiliated Hospital, Dalian University, No. 6, Zhonshan Road, Dalian, 116001, Liaoning, China
| | - Zongwei Chen
- Department of Cardiology, Zhongshan Affiliated Hospital, Dalian University, No. 6, Zhonshan Road, Dalian, 116001, Liaoning, China
| | - Meilan Wang
- Department of Cardiology, Zhongshan Affiliated Hospital, Dalian University, No. 6, Zhonshan Road, Dalian, 116001, Liaoning, China
| |
Collapse
|
35
|
Fisetin Alleviates Neointimal Hyperplasia via PPAR γ/PON2 Antioxidative Pathway in SHR Rat Artery Injury Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6625517. [PMID: 33968295 PMCID: PMC8084648 DOI: 10.1155/2021/6625517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/18/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022]
Abstract
The phenotypic transformation of proliferation and migration in vascular smooth muscle cells (VSMCs) from media to intima is the basic pathology of neointimal hyperplasia after angioplasty in hypertensive patients. Angiotensin II (AngII) stimulates oxidative stress in VSMC, inducing VSMC proliferation and migration, which is a critical factor in both developments of hypertension and angioplasty-induced arterial restenosis. Fisetin, a plant flavonoid polyphenol, has been reported to be antioxidative and potent senolytic. It is unknown whether fisetin would inhibit neointimal hyperplasia. Therefore, we investigated the role of fisetin in neointimal formation in vitro and in vivo. The rat thoracic aortic smooth muscle cells (A10 cells) stimulated by AngII were used as the in vitro neointimal hyperplasia model, where AngII significantly induced the proliferation and migration in A10 cells. We found that fisetin could dose-dependently inhibit the effect of AngII via inducing the expression of an antioxidant, paraoxonase-2 (PON2), whose overexpression could inhibit the proliferation and migration of A10 cells and downexpression by siRNA had the opposite effect. Furthermore, we found the mechanism of fisetin's inducing PON2 expression involved PPARγ. Rosiglitazone, a PPARγ agonist, could increase PON2 expression in A10 cells, while the PPARγ inhibitor prevented the effect of fisetin on PON2. The in vivo neointimal hyperplasia model was established 2 weeks after the carotid artery balloon injury in SHR rats. Administration of fisetin (ip 3 mg/kg daily for 2 weeks) right after the injury significantly increased PON2 expression in the artery, inhibiting ROS production, and efficiently reduced carotid neointimal hyperplasia. These results indicate that fisetin increases the expression of antioxidant PON2 via activation of PPARγ, reducing oxidative stress, inhibiting VSMC proliferation and migration, and alleviates neointimal hyperplasia after intimal injury. PON2 may be a potential therapeutic target to reduce arterial remodeling after angioplasty in hypertensive patients.
Collapse
|
36
|
Ma X, Liu H, Chen F. Functioning of Long Noncoding RNAs Expressed in Macrophage in the Development of Atherosclerosis. Front Pharmacol 2020; 11:567582. [PMID: 33381026 PMCID: PMC7768882 DOI: 10.3389/fphar.2020.567582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/22/2020] [Indexed: 12/26/2022] Open
Abstract
Chronic inflammation is part of the pathological process during atherosclerosis (AS). Due to the abundance of monocytes/macrophages within the arterial plaque, monocytes/macrophages have become a critical cellular target in AS studies. In recent decades, a number of long noncoding RNAs (lncRNAs) have been found to exert regulatory roles on the macrophage metabolism and macrophage plasticity, consequently promoting or suppressing atherosclerotic inflammation. In this review, we provide a comprehensive overview of lncRNAs in macrophage biology, highlighting the potential role of lncRNAs in AS based on recent findings, with the aim to identify disease biomarkers and future therapeutic interventions for AS.
Collapse
Affiliation(s)
- Xirui Ma
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huifang Liu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengling Chen
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|