1
|
Liu Z, Chen Z, Zhang J, Liu J, Li B, Zhang Z, Cai M, Zhang Z. Role of tumor-derived exosomes mediated immune cell reprograming in cancer. Gene 2024; 925:148601. [PMID: 38788817 DOI: 10.1016/j.gene.2024.148601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Tumor-derived exosomes (TDEs), as topologies of tumor cells, not only carry biological information from the mother, but also act as messengers for cellular communication. It has been demonstrated that TDEs play a key role in inducing an immunosuppressive tumor microenvironment (TME). They can reprogram immune cells indirectly or directly by delivering inhibitory proteins, cytokines, RNA and other substances. They not only inhibit the maturation and function of dendritic cells (DCs) and natural killer (NK) cells, but also remodel M2 macrophages and inhibit T cell infiltration to promote immunosuppression and create a favorable ecological niche for tumor growth, invasion and metastasis. Based on the specificity of TDEs, targeting TDEs has become a new strategy to monitor tumor progression and enhance treatment efficacy. This paper reviews the intricate molecular mechanisms underlying the immunosuppressive effects induced by TDEs to establish a theoretical foundation for cancer therapy. Additionally, the challenges of TDEs as a novel approach to tumor treatment are discussed.
Collapse
Affiliation(s)
- Zening Liu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zichao Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Jing Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Junqiu Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Baohong Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhenyong Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Meichao Cai
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhen Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
2
|
Liu X, Wu F, Pan W, Liu G, Zhang H, Yan D, Zheng S, Ma Z, Ren X. Tumor-associated exosomes in cancer progression and therapeutic targets. MedComm (Beijing) 2024; 5:e709. [PMID: 39247621 PMCID: PMC11380050 DOI: 10.1002/mco2.709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Exosomes are small membrane vesicles that are released by cells into the extracellular environment. Tumor-associated exosomes (TAEs) are extracellular vesicles that play a significant role in cancer progression by mediating intercellular communication and contributing to various hallmarks of cancer. These vesicles carry a cargo of proteins, lipids, nucleic acids, and other biomolecules that can be transferred to recipient cells, modifying their behavior and promoting tumor growth, angiogenesis, immune modulation, and drug resistance. Several potential therapeutic targets within the TAEs cargo have been identified, including oncogenic proteins, miRNAs, tumor-associated antigens, immune checkpoint proteins, drug resistance proteins, and tissue factor. In this review, we will systematically summarize the biogenesis, composition, and function of TAEs in cancer progression and highlight potential therapeutic targets. Considering the complexity of exosome-mediated signaling and the pleiotropic effects of exosome cargoes has challenge in developing effective therapeutic strategies. Further research is needed to fully understand the role of TAEs in cancer and to develop effective therapies that target them. In particular, the development of strategies to block TAEs release, target TAEs cargo, inhibit TAEs uptake, and modulate TAEs content could provide novel approaches to cancer treatment.
Collapse
Affiliation(s)
- Xiaomin Liu
- Lab for Noncoding RNA & Cancer School of Life Sciences Shanghai University Shanghai China
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Fan Wu
- Lab for Noncoding RNA & Cancer School of Life Sciences Shanghai University Shanghai China
| | - Wei Pan
- Lab for Noncoding RNA & Cancer School of Life Sciences Shanghai University Shanghai China
| | - Guangchao Liu
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Hui Zhang
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Dawei Yan
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Saijing Zheng
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer School of Life Sciences Shanghai University Shanghai China
| | - Xiaojun Ren
- Department of Chemistry College of Chemistry and Life Sciences Beijing University of Technology Beijing China
| |
Collapse
|
3
|
Wang Y, Liang C, Liu X, Cheng SQ. A novel tumor-derived exosomal gene signature predicts prognosis in patients with pancreatic cancer. Transl Cancer Res 2024; 13:4324-4340. [PMID: 39262474 PMCID: PMC11384923 DOI: 10.21037/tcr-23-2354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/02/2024] [Indexed: 09/13/2024]
Abstract
Background Pancreatic cancer is a devastating disease with poor prognosis. Accumulating evidence has shown that exosomes and their cargo have the potential to mediate the progression of pancreatic cancer and are promising non-invasive biomarkers for the early detection and prognosis of this malignancy. This study aimed to construct a gene signature from tumor-derived exosomes with high prognostic capacity for pancreatic cancer using bioinformatics analysis. Methods Gene expression data of solid pancreatic cancer tumors and blood-derived exosome tissues were downloaded from The Cancer Genome Atlas (TCGA) and ExoRBase 2.0. Overlapping differentially expressed genes (DEGs) in the two datasets were analyzed, followed by functional enrichment analysis, protein-protein interaction networks, and weighted gene co-expression network analysis (WGCNA). Using the least absolute shrinkage and selection operator (LASSO) regression of prognosis-related exosomal DEGs, a tumor-derived exosomal gene signature was constructed based on the TCGA dataset, which was validated by an external validation dataset, GSE62452. The prognostic power of this gene signature and its relationship with various pathways and immune cell infiltration were analyzed. Results A total of 166 overlapping DEGs were identified from the two datasets, which were markedly enriched in functions and pathways associated with the cell cycle. Two key modules and corresponding 70 exosomal DEGs were identified using WGCNA. Using LASSO Cox regression of prognosis-related exosomal DEGs, a tumor-derived exosomal gene signature was built using six exosomal DEGs (ARNTL2, FHL2, KRT19, MMP1, CDCA5, and KIF11), which showed high predictive performance for prognosis in both the training and validation datasets. In addition, this prognostic signature is associated with the differential activation of several pathways, such as the cell cycle, and the infiltration of some immune cells, such as Tregs and CD8+ T cells. Conclusions This study established a six-exosome gene signature that can accurately predict the prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Yang Wang
- Department of Hepatopancreatobiliary Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Liang
- Department of Hepatopancreatobiliary Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinbo Liu
- Department of Hepatopancreatobiliary Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shu-Qun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
4
|
Abd-Elmoniem KZ, Edwan JH, Dietsche KB, Villalobos-Perez A, Shams N, Matta J, Baumgarten L, Qaddumi WN, Dixon SA, Chowdhury A, Stagliano M, Mabundo L, Wentzel A, Hadigan C, Gharib AM, Chung ST. Endothelial Dysfunction in Youth-Onset Type 2 Diabetes: A Clinical Translational Study. Circ Res 2024; 135:639-650. [PMID: 39069898 PMCID: PMC11361354 DOI: 10.1161/circresaha.124.324272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Youth-onset type 2 diabetes (Y-T2D) is associated with increased risk for coronary atherosclerotic disease, but the timing of the earliest pathological features and evidence of cardiac endothelial dysfunction have not been evaluated in this population. Endothelial function magnetic resonance imaging may detect early and direct endothelial dysfunction in the absence of classical risk factors (severe hyperglycemia, hypertension, and hyperlipidemia). Using endothelial function magnetic resonance imaging, we evaluated peripheral and coronary artery structure and endothelial function in young adults with Y-T2D diagnosed ≤5 years compared with age-matched healthy peers. We isolated and characterized plasma-derived small extracellular vesicles and evaluated their effects on inflammatory and signaling biomarkers in healthy human coronary artery endothelial cells to validate the imaging findings. METHODS Right coronary wall thickness, coronary artery flow-mediated dilation, and brachial artery flow-mediated dilation were measured at baseline and during isometric handgrip exercise using a 3.0T magnetic resonance imaging. Human coronary artery endothelial cells were treated with Y-T2D plasma-derived small extracellular vesicles. Protein expression was measured by Western blot analysis, oxidative stress was measured using the redox-sensitive probe dihydroethidium, and nitric oxide levels were measured by 4-amino-5-methylamino-2',7'-difluororescein diacetate. RESULTS Y-T2D (n=20) had higher hemoglobin A1c and high-sensitivity C-reactive protein, but similar total and LDL (low-density lipoprotein)-cholesterol compared with healthy peers (n=16). Y-T2D had greater coronary wall thickness (1.33±0.13 versus 1.22±0.13 mm; P=0.04) and impaired endothelial function: lower coronary artery flow-mediated dilation (-3.1±15.5 versus 15.9±17.3%; P<0.01) and brachial artery flow-mediated dilation (6.7±14.7 versus 26.4±15.2%; P=0.001). Y-T2D plasma-derived small extracellular vesicles reduced phosphorylated endothelial nitric oxide synthase expression and nitric oxide levels, increased reactive oxygen species production, and elevated ICAM (intercellular adhesion molecule)-mediated inflammatory pathways in human coronary artery endothelial cells. CONCLUSIONS Coronary and brachial endothelial dysfunction was evident in Y-T2D who were within 5 years of diagnosis and did not have severe hyperglycemia or dyslipidemia. Plasma-derived small extracellular vesicles induced markers of endothelial dysfunction, which corroborated accelerated subclinical coronary atherosclerosis as an early feature in Y-T2D. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT02830308 and NCT01399385.
Collapse
Affiliation(s)
- Khaled Z. Abd-Elmoniem
- National Institute of Diabetes and Digestive and Kidney Diseases, Biomedical Medical and Imaging Branch (K.Z.A., J.E., N.S., J.M., L.B., W.Q., A.M.G.), National Institutes of Health, Bethesda, MD
| | - Jehad H. Edwan
- National Institute of Diabetes and Digestive and Kidney Diseases, Biomedical Medical and Imaging Branch (K.Z.A., J.E., N.S., J.M., L.B., W.Q., A.M.G.), National Institutes of Health, Bethesda, MD
| | - Katrina B. Dietsche
- Diabetes Endocrinology and Obesity Branch (K.B., A.V., S.D., A.C., M.S., L.M., S.T.C.), National Institutes of Health, Bethesda, MD
| | - Alfredo Villalobos-Perez
- Diabetes Endocrinology and Obesity Branch (K.B., A.V., S.D., A.C., M.S., L.M., S.T.C.), National Institutes of Health, Bethesda, MD
| | - Nour Shams
- National Institute of Diabetes and Digestive and Kidney Diseases, Biomedical Medical and Imaging Branch (K.Z.A., J.E., N.S., J.M., L.B., W.Q., A.M.G.), National Institutes of Health, Bethesda, MD
| | - Jatin Matta
- National Institute of Diabetes and Digestive and Kidney Diseases, Biomedical Medical and Imaging Branch (K.Z.A., J.E., N.S., J.M., L.B., W.Q., A.M.G.), National Institutes of Health, Bethesda, MD
| | - Leilah Baumgarten
- National Institute of Diabetes and Digestive and Kidney Diseases, Biomedical Medical and Imaging Branch (K.Z.A., J.E., N.S., J.M., L.B., W.Q., A.M.G.), National Institutes of Health, Bethesda, MD
| | - Waleed N. Qaddumi
- National Institute of Diabetes and Digestive and Kidney Diseases, Biomedical Medical and Imaging Branch (K.Z.A., J.E., N.S., J.M., L.B., W.Q., A.M.G.), National Institutes of Health, Bethesda, MD
| | - Sydney A. Dixon
- Diabetes Endocrinology and Obesity Branch (K.B., A.V., S.D., A.C., M.S., L.M., S.T.C.), National Institutes of Health, Bethesda, MD
| | - Aruba Chowdhury
- Diabetes Endocrinology and Obesity Branch (K.B., A.V., S.D., A.C., M.S., L.M., S.T.C.), National Institutes of Health, Bethesda, MD
| | - Michael Stagliano
- Diabetes Endocrinology and Obesity Branch (K.B., A.V., S.D., A.C., M.S., L.M., S.T.C.), National Institutes of Health, Bethesda, MD
| | - Lilian Mabundo
- Diabetes Endocrinology and Obesity Branch (K.B., A.V., S.D., A.C., M.S., L.M., S.T.C.), National Institutes of Health, Bethesda, MD
| | - Annemarie Wentzel
- Hypertension in Africa Research Team (A.W.), North-West University, Potchefstroom
- South African Medical Research Council, Unit for Hypertension and Cardiovascular Disease (A.W.), North-West University, Potchefstroom
| | - Colleen Hadigan
- Clinical Center (C.H.), National Institutes of Health, Bethesda, MD
| | - Ahmed M. Gharib
- National Institute of Diabetes and Digestive and Kidney Diseases, Biomedical Medical and Imaging Branch (K.Z.A., J.E., N.S., J.M., L.B., W.Q., A.M.G.), National Institutes of Health, Bethesda, MD
| | - Stephanie T. Chung
- Diabetes Endocrinology and Obesity Branch (K.B., A.V., S.D., A.C., M.S., L.M., S.T.C.), National Institutes of Health, Bethesda, MD
| |
Collapse
|
5
|
Rodolfo C, Campello S. Extracellular Vesicles & Co.: scaring immune cells in the TME since ever. Front Immunol 2024; 15:1451003. [PMID: 39267748 PMCID: PMC11390669 DOI: 10.3389/fimmu.2024.1451003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
The health tissue surrounding a solid tumor, namely the tumor microenvironment (TME), is an extremely complex universe of cells, extracellular matrix, and signals of various nature, that support and protect the growth of cancer cells. The interactions taking place between cancer cells and the TME are crucial not only for tumor growth, invasion, and metastasis but they also play a key role in modulating immune system responses to cancer, and vice-versa. Indeed, tumor-infiltrating immune cells (e.g., T lymphocytes and natural killers) activity is greatly affected by signals (mostly ligands/receptors and paracrine) they receive in the TME, which frequently generate an immunosuppressive milieu. In the last years, it has become evident that soluble and receptor signaling is not the only way of communication between cells in the TME, with extracellular vesicles, such as exosomes, playing a central role. Among the different new kind of vesicles recently discovered, migrasomes look like to be of extreme interest as they are not only different from the others, but also have been reported as able to deliver a very heterogeneous kind of messages, able to profoundly affect recipient cells' behavior. Indeed, the role played by the different classes of extracellular vesicles, especially in the TME, relies on their not-directional diffusion from the originating cells, while migrasomes released from migrating cells do have a directional effect. Migrasomes biology and their involvement in cancer progression, dissemination, and resistance to therapy is still a largely obscure field, but with promising development foreseen in the next future.
Collapse
Affiliation(s)
- Carlo Rodolfo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Campello
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
6
|
Kalluri R. The biology and function of extracellular vesicles in immune response and immunity. Immunity 2024; 57:1752-1768. [PMID: 39142276 PMCID: PMC11401063 DOI: 10.1016/j.immuni.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 01/02/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
Extracellular vesicles (EVs), such as ectosomes and exosomes, contain DNA, RNA, proteins and are encased in a phospholipid bilayer. EVs provide intralumenal cargo for delivery into the cytoplasm of recipient cells with an impact on the function of immune cells, in part because their biogenesis can also intersect with antigen processing and presentation. Motile EVs from activated immune cells may increase the frequency of immune synapses on recipient cells in a proximity-independent manner for local and long-distance modulation of systemic immunity in inflammation, autoimmunity, organ fibrosis, cancer, and infections. Natural and engineered EVs exhibit the ability to impact innate and adaptive immunity and are entering clinical trials. EVs are likely a component of an optimally functioning immune system, with the potential to serve as immunotherapeutics. Considering the evolving evidence, it is possible that EVs could be the original primordial organic units that preceded the creation of the first cell.
Collapse
Affiliation(s)
- Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
7
|
Chuang CH, Zhen YY, Ma JY, Lee TH, Hung HY, Wu CC, Wang PH, Huang CT, Huang MS, Hsiao M, Lee YR, Huang CYF, Chang YC, Yang CJ. CD47-mediated immune evasion in early-stage lung cancer progression. Biochem Biophys Res Commun 2024; 720:150066. [PMID: 38749193 DOI: 10.1016/j.bbrc.2024.150066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
Alveolar and interstitial macrophages play crucial roles in eradicating pathogens and transformed cells in the lungs. The immune checkpoint CD47, found on normal and malignant cells, interacts with the SIRPα ligand on macrophages, inhibiting phagocytosis, antigen presentation, and promoting immune evasion. In this study, we demonstrated that CD47 is not only a transmembrane protein, but that it is also highly concentrated in extracellular vesicles from lung cancer cell lines and patient plasma. Abundant CD47 was observed in the cytoplasm of lung cancer cells, aligning with our finding that it was packed into extracellular vesicles for physiological and pathological functions. In our clinical cohort, extracellular vesicle CD47 was significantly higher in the patients with early-stage lung cancer, emphasizing innate immunity inactivation in early tumor progression. To validate our hypothesis, we established an orthotopic xenograft model mimicking lung cancer development, which showed increased serum soluble CD47 and elevated IL-10/TNF-α ratio, indicating an immune-suppressive tumor microenvironment. CD47 expression led to reduced tumor-infiltrating macrophages during progression, while there was a post-xenograft increase in tumor-associated macrophages. In conclusion, CD47 is pivotal in early lung cancer progression, with soluble CD47 emerging as a key pathological effector.
Collapse
Affiliation(s)
- Cheng-Hao Chuang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Yi Zhen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Juei-Yang Ma
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tai-Huang Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huei-Yang Hung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Chieh Wu
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Pei-Hui Wang
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Tang Huang
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, E-Da Cancer Hospital, School of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
| | | | - Ying-Ray Lee
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Jen Yang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
8
|
Yu S, Jiang S, Zhou Y, Zhu Z, Yang X. Impact of Radiation on Exosomes in Regulating Tumor Immune Microenvironment. Adv Radiat Oncol 2024; 9:101549. [PMID: 39055959 PMCID: PMC11269846 DOI: 10.1016/j.adro.2024.101549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/04/2024] [Indexed: 07/28/2024] Open
Abstract
Purpose Exosomes have been shown to play a role in most, if not all, steps of cancer progression. We still lack a comprehensive understanding of the bidirectional communication of exosomes between tumor cells and immune cells. This article aims to explore how exosomes can influence cancer growth and how they are affected by radiation therapy. Methods and Materials We searched on PubMed and Web of Science on the impact of radiation on tumor derived exosomes and immune cell derived exosomes in tumor immune microenvironment. We screened all the related articles and summarized their main discoveries and important results. Results This article reviewed the effects of tumor derived exosomes and immune cell-derived exosomes on TME and tumor progression after radiotherapy, suggesting the dual effects of exosomes which may refer to clinical practice. Moreover, we retrospected the clinical applications based on tumor derived exosomes, including liquid biopsy, radio-resistance and drug delivery, and discussed the challenges and prospects. Conclusions Exosomes are important in cancer treatment, especially with radiation therapy. Learning more about them could lead to better treatments. However, there are still challenges to overcome. The review points out the need for more research in this area.
Collapse
Affiliation(s)
- Silai Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Shanshan Jiang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Yue Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| |
Collapse
|
9
|
Panda SS, Sahoo RK, Patra SK, Biswal S, Biswal BK. Molecular insights to therapeutic in cancer: role of exosomes in tumor microenvironment, metastatic progression and drug resistance. Drug Discov Today 2024; 29:104061. [PMID: 38901672 DOI: 10.1016/j.drudis.2024.104061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
Exosomes play a pivotal part in cancer progression and metastasis by transferring various biomolecules. Recent research highlights their involvement in tumor microenvironment remodeling, mediating metastasis, tumor heterogeneity and drug resistance. The unique cargo carried by exosomes garners the interest of researchers owing to its potential as a stage-specific biomarker for early cancer detection and its role in monitoring personalized treatment. However, unanswered questions hinder a comprehensive understanding of exosomes and their cargo in this context. This review discusses recent advancements and proposes novel ideas for exploring exosomes in cancer progression, aiming to deepen our understanding and improve treatment approaches.
Collapse
Affiliation(s)
- Shikshya S Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Rajeev K Sahoo
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Sambit K Patra
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Stuti Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
10
|
Chen Y, Tang S, Cai F, Wan Y. Strategies for Small Extracellular Vesicle-Based Cancer Immunotherapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0421. [PMID: 39040921 PMCID: PMC11260559 DOI: 10.34133/research.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed vesicles released by cells. EVs encapsulate proteins and nucleic acids of their parental cell and efficiently deliver the cargo to recipient cells. These vesicles act as mediators of intercellular communication and thus play a crucial role in various physiological and pathological processes. Moreover, EVs hold promise for clinical use. They have been explored as drug delivery vehicles, therapeutic agents, and targets for disease diagnosis. In the landscape of cancer research, while strides have been made in EV-focused cancer physiopathology, liquid biopsy, and drug delivery, the exploration of EVs as immunotherapeutic agents may not have seen substantial progress to date. Despite promising findings reported in cell and animal studies, the clinical translation of EV-based cancer immunotherapeutics encounters challenges. Here, we review the existing strategies used in EV-based cancer immunotherapy, aiming to propel the development of this emerging yet crucial field.
Collapse
Affiliation(s)
- Yundi Chen
- Department of Breast Surgery, Tongji Hospital, School of Medicine,
Tongji University, Shanghai, China
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering,
Binghamton University, Binghamton, NY, USA
| | - Shasha Tang
- Department of Breast Surgery, Tongji Hospital, School of Medicine,
Tongji University, Shanghai, China
| | - Fengfeng Cai
- Department of Breast Surgery, Tongji Hospital, School of Medicine,
Tongji University, Shanghai, China
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering,
Binghamton University, Binghamton, NY, USA
| |
Collapse
|
11
|
Larbi A. From Genesis to Old Age: Exploring the Immune System One Cell at a Time with Flow Cytometry. Biomedicines 2024; 12:1469. [PMID: 39062042 PMCID: PMC11275137 DOI: 10.3390/biomedicines12071469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The immune system is a highly complex and tightly regulated system that plays a crucial role in protecting the body against external threats, such as pathogens, and internal abnormalities, like cancer cells. It undergoes development during fetal stages and continuously learns from each encounter with pathogens, allowing it to develop immunological memory and provide a wide range of immune protection. Over time, after numerous encounters and years of functioning, the immune system can begin to show signs of erosion, which is commonly named immunosenescence. In this review, we aim to explore how the immune system responds to initial encounters with antigens and how it handles persistent stimulations throughout a person's lifetime. Our understanding of the immune system has greatly benefited from advanced technologies like flow cytometry. In this context, we will discuss the valuable contribution of flow cytometry in enhancing our knowledge of the immune system behavior in aging, with a specific focus on T-cells. Moreover, we will expand our discussion to the flow cytometry-based assessment of extracellular vesicles, a recently discovered communication channel in biology, and their implications for immune system functioning.
Collapse
Affiliation(s)
- Anis Larbi
- Medical and Scientific Affairs, Beckman Coulter Life Sciences, 22 Avenue des Nations, 93420 Villepinte, France;
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
12
|
Wang Z, Zhang Y, Li X. Mitigation of Oxidative Stress in Idiopathic Pulmonary Fibrosis Through Exosome-Mediated Therapies. Int J Nanomedicine 2024; 19:6161-6176. [PMID: 38911503 PMCID: PMC11193999 DOI: 10.2147/ijn.s453739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/01/2024] [Indexed: 06/25/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) poses a formidable clinical challenge, characterized by the thickening of alveolar septa and the onset of pulmonary fibrosis. The pronounced activation of oxidative stress emerges as a pivotal hallmark of inflammation. Traditional application of exogenous antioxidants proves inadequate in addressing oxidative stress, necessitating exploration into strategies to augment their antioxidant efficacy. Exosomes, nano-sized extracellular vesicles harboring a diverse array of bioactive factors, present as promising carriers with the potential to meet this challenge. Recent attention has been directed towards the clinical applications of exosomes in IPF, fueling the impetus for this comprehensive review. We have compiled fresh insights into the role of exosomes in modulating oxidative stress in IPF and delved into their potential as carriers for regulating endogenous reactive oxygen species generation. This review endeavors to bridge the divide between exosome research and IPF, traversing from bedside to bench. Through the synthesis of recent findings, we propose exosomes as a novel and promising strategy for improving the outcomes of IPF therapy.
Collapse
Affiliation(s)
- Zaiyan Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, People’s Republic of China
| | - Yuan Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
| | - Xiaoning Li
- Department of Geriatric Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, People’s Republic of China
| |
Collapse
|
13
|
Yadav K, Vijayalakshmi R, Kumar Sahu K, Sure P, Chahal K, Yadav R, Sucheta, Dubey A, Jha M, Pradhan M. Exosome-Based Macromolecular neurotherapeutic drug delivery approaches in overcoming the Blood-Brain barrier for treating brain disorders. Eur J Pharm Biopharm 2024; 199:114298. [PMID: 38642716 DOI: 10.1016/j.ejpb.2024.114298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Delivering drugs to the brain is a complex challenge in medical research, particularly for disorders like Alzheimer's and Parkinson's. The blood-brain barrier restricts the entry of many therapeutic molecules, hindering their effectiveness. Nanoparticles, a potential solution, face issues like toxicity and limited approvals. A new avenue explores the use of small extracellular vesicles (sEVs), i.e., exosomes, as natural carriers for drug delivery. sEVs, tiny structures below 150 nm, show promise due to their minimal immune response and ability to precisely deliver drugs. This review focuses on the potential of sEVs-based drug delivery systems for treating neurological disorders, brain cancers, and other brain-related issues. Notably, bioengineered sEVs-carrying therapeutic compounds exhibit promise in early studies. The unique features of sEVs, such as their small size and natural properties, position them as candidates to overcome challenges in drug delivery to the brain. Ongoing clinical trials and research into sEVs behavior within the body further highlight their potential for revolutionizing drug delivery and addressing complex brain conditions.
Collapse
Affiliation(s)
- Krishna Yadav
- Raipur Institute of Pharmaceutical Education and Research, Sarona, Raipur, Chhattisgarh 492010, India
| | - R Vijayalakshmi
- Department of Pharmaceutical Analysis, GIET School of Pharmacy, Chaitanya Knowledge City, Rajahmundry, AP, 533296, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Pavani Sure
- Department of Pharmaceutics, Vignan Institute of Pharmaceutical Sciences, Hyderabad, Telangana, India
| | - Kavita Chahal
- Department of Botany, Government Model Science College Jabalpur, Madhya Pradesh, India
| | - Renu Yadav
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, Haryana, 122103, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, Haryana, 122103, India
| | - Akhilesh Dubey
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru-575018, Karnataka, India
| | - Megha Jha
- Department of Life Science, Mansarovar Global University, Sehore, M.P., India
| | - Madhulika Pradhan
- Gracious College of Pharmacy, Abhanpur, Chhattisgarh, 493661, India.
| |
Collapse
|
14
|
Tian Y, Gao X, Yang X, Chen S, Ren Y. Glioma-derived exosome Lncrna Agap2-As1 promotes glioma proliferation and metastasis by mediating Tgf-β1 secretion of myeloid-derived suppressor cells. Heliyon 2024; 10:e29949. [PMID: 38699039 PMCID: PMC11064146 DOI: 10.1016/j.heliyon.2024.e29949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Background Glioma (GBM) is the most prevalent malignancy worldwide with high morbidity and mortality. Exosome-mediated transfer of long noncoding RNA (lncRNA) has been reported to be associated with human cancers, containing GBM. Meanwhile, myeloid-derived suppressor cells (MDSCs) play a vital role in mediating the immunosuppressive environments in GBM. Objectives This study is designed to explore the role and mechanism of exosomal (Exo) lncRNA AGAP2-AS1 on the MDSC pathway in GBM. Methods AGAP2-AS1, microRNA-486-3p (miR-486-3p), and Transforming growth factor beta-1 (TGF-β1) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation, apoptosis, migration, and invasion were detected by 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and Transwell assays. E-cadherin, Vimentin, CD9, CD81, and TGF-β1 protein levels were examined using Western blot. Exosomes were detected by a transmission electron microscope (TEM). Binding between miR-486-3p and AGAP2-AS1 or TGF-β1 was predicted by LncBase or TargetScan and then verified using a dual-luciferase reporter assay. Results AGAP2-AS1 was highly expressed in GBM tissues and cells. Functionally, AGAP2-AS1 absence or TGF-β1 knockdown repressed tumor cell growth and metastasis. Furthermore, Exo-AGAP2-AS1 from GBM cells regulated TGF-β1 expression via sponging miR-486-3p in MDSCs. Exo-AGAP2-AS1 upregulation facilitated GBM cell growth and metastasis via the MDSC pathway. Conclusion Exo-AGAP2-AS1 boosted GBM cell development partly by regulating the MDSC pathway, hinting at a promising therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Yanlong Tian
- Department of Pathology, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, 712000, Shaanxi, China
| | - Xiao Gao
- Department of Pathology, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, 712000, Shaanxi, China
| | - Xuechao Yang
- Department of Pathology, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, 712000, Shaanxi, China
| | - Shangjun Chen
- Department of Neurosurgery, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, 712000, Shaanxi, China
| | - Yufeng Ren
- Department of Orthopaedics, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, 712000, Shaanxi, China
| |
Collapse
|
15
|
Yin C, Liufu C, Zhu T, Ye S, Jiang J, Wang M, Wang Y, Shi B. Bladder Cancer in Exosomal Perspective: Unraveling New Regulatory Mechanisms. Int J Nanomedicine 2024; 19:3677-3695. [PMID: 38681092 PMCID: PMC11048230 DOI: 10.2147/ijn.s458397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/06/2024] [Indexed: 05/01/2024] Open
Abstract
Bladder cancer, a prevalent malignant neoplasm of the urinary tract, exhibits escalating morbidity and mortality rates. Current diagnosis standards rely on invasive and costly cystoscopy and histopathology, underscoring the urgency for non-invasive, high-throughput, and cost-effective novel diagnostic techniques to ensure timely detection and standardized treatment. Recent years have witnessed the rise of exosome research in bladder cancer studies. Exosomes contain abundant bioactive molecules that can help elucidate the intricate mechanisms underlying bladder cancer pathogenesis and metastasis. Exosomes hold potential as biomarkers for early bladder cancer diagnosis while also serving as targeted drug delivery vehicles to enhance treatment efficacy and mitigate adverse effects. Furthermore, exosome analyses offer insights into the complex molecular signaling networks implicated in bladder cancer progression, revealing novel therapeutic targets. This review provides a comprehensive overview of prevalent exosome isolation techniques and highlights the promising clinical utility of exosomes in both diagnostic and therapeutic applications in bladder cancer management.
Collapse
Affiliation(s)
- Cong Yin
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
- Shenzhen University Health Science Center, Shenzhen, People’s Republic of China
| | - Cen Liufu
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, People’s Republic of China
- Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Tao Zhu
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, People’s Republic of China
- Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Shuai Ye
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
- Shenzhen University Health Science Center, Shenzhen, People’s Republic of China
| | - Jiahao Jiang
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
- Clinical College of Anhui Medical University, Shenzhen, People’s Republic of China
| | - Mingxia Wang
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, People’s Republic of China
| | - Yan Wang
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, People’s Republic of China
| | - Bentao Shi
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
| |
Collapse
|
16
|
Wu Y, Han W, Dong H, Liu X, Su X. The rising roles of exosomes in the tumor microenvironment reprogramming and cancer immunotherapy. MedComm (Beijing) 2024; 5:e541. [PMID: 38585234 PMCID: PMC10999178 DOI: 10.1002/mco2.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Exosomes are indispensable for intercellular communications. Tumor microenvironment (TME) is the living environment of tumor cells, which is composed of various components, including immune cells. Based on TME, immunotherapy has been recently developed for eradicating cancer cells by reactivating antitumor effect of immune cells. The communications between tumor cells and TME are crucial for tumor development, metastasis, and drug resistance. Exosomes play an important role in mediating these communications and regulating the reprogramming of TME, which affects the sensitivity of immunotherapy. Therefore, it is imperative to investigate the role of exosomes in TME reprogramming and the impact of exosomes on immunotherapy. Here, we review the communication role of exosomes in regulating TME remodeling and the efficacy of immunotherapy, as well as summarize the underlying mechanisms. Furthermore, we also introduce the potential application of the artificially modified exosomes as the delivery systems of antitumor drugs. Further efforts in this field will provide new insights on the roles of exosomes in intercellular communications of TME and cancer progression, thus helping us to uncover effective strategies for cancer treatment.
Collapse
Affiliation(s)
- Yu Wu
- Clinical Medical Research Center of the Affiliated HospitalInner Mongolia Medical UniversityHohhotChina
| | - Wenyan Han
- Clinical Laboratorythe Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotChina
| | - Hairong Dong
- Clinical LaboratoryHohhot first hospitalHohhotChina
| | - Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department IKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital and InstituteBeijingChina
| | - Xiulan Su
- Clinical Medical Research Center of the Affiliated HospitalInner Mongolia Medical UniversityHohhotChina
| |
Collapse
|
17
|
Huang Z, Liu X, Guo Q, Zhou Y, Shi L, Cai Q, Tang S, Ouyang Q, Zheng J. Extracellular vesicle-mediated communication between CD8 + cytotoxic T cells and tumor cells. Front Immunol 2024; 15:1376962. [PMID: 38562940 PMCID: PMC10982391 DOI: 10.3389/fimmu.2024.1376962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Tumors pose a significant global public health challenge, resulting in numerous fatalities annually. CD8+ T cells play a crucial role in combating tumors; however, their effectiveness is compromised by the tumor itself and the tumor microenvironment (TME), resulting in reduced efficacy of immunotherapy. In this dynamic interplay, extracellular vesicles (EVs) have emerged as pivotal mediators, facilitating direct and indirect communication between tumors and CD8+ T cells. In this article, we provide an overview of how tumor-derived EVs directly regulate CD8+ T cell function by carrying bioactive molecules they carry internally and on their surface. Simultaneously, these EVs modulate the TME, indirectly influencing the efficiency of CD8+ T cell responses. Furthermore, EVs derived from CD8+ T cells exhibit a dual role: they promote tumor immune evasion while also enhancing antitumor activity. Finally, we briefly discuss current prevailing approaches that utilize functionalized EVs based on tumor-targeted therapy and tumor immunotherapy. These approaches aim to present novel perspectives for EV-based tumor treatment strategies, demonstrating potential for advancements in the field.
Collapse
Affiliation(s)
- Zeyu Huang
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xuehui Liu
- Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Qinghao Guo
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yihang Zhou
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Linlin Shi
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shupei Tang
- Department of Shigatse Branch, Xinqiao Hospital, Third Military Medical University, Shigatse, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
18
|
Hämälistö S, Del Valle Batalla F, Yuseff MI, Mattila PK. Endolysosomal vesicles at the center of B cell activation. J Cell Biol 2024; 223:e202307047. [PMID: 38305771 PMCID: PMC10837082 DOI: 10.1083/jcb.202307047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/22/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
The endolysosomal system specializes in degrading cellular components and is crucial to maintaining homeostasis and adapting rapidly to metabolic and environmental cues. Cells of the immune system exploit this network to process antigens or promote cell death by secreting lysosome-related vesicles. In B lymphocytes, lysosomes are harnessed to facilitate the extraction of antigens and to promote their processing into peptides for presentation to T cells, critical steps to mount protective high-affinity antibody responses. Intriguingly, lysosomal vesicles are now considered important signaling units within cells and also display secretory functions by releasing their content to the extracellular space. In this review, we focus on how B cells use pathways involved in the intracellular trafficking, secretion, and function of endolysosomes to promote adaptive immune responses. A basic understanding of such mechanisms poses an interesting frontier for the development of therapeutic strategies in the context of cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Saara Hämälistö
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
- Cancer Research Unit and FICAN West Cancer Centre Laboratory, Turku, Finland
| | - Felipe Del Valle Batalla
- Laboratory of Immune Cell Biology, Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Isabel Yuseff
- Laboratory of Immune Cell Biology, Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pieta K. Mattila
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| |
Collapse
|
19
|
Palomar-Alonso N, Lee M, Kim M. Exosomes: Membrane-associated proteins, challenges and perspectives. Biochem Biophys Rep 2024; 37:101599. [PMID: 38145105 PMCID: PMC10746368 DOI: 10.1016/j.bbrep.2023.101599] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023] Open
Abstract
Membrane proteins determine the precise function of each membrane and, therefore, the function of each cell type. These proteins essential roles in cell physiology, participating in the maintenance of the cell metabolism, its homeostasis or promoting proper cell growth. Membrane proteins, as has long been described, are located both in the plasma membrane and in complex subcellular structures. However, they can also be released into the extracellular environment associated with extracellular vesicles (EVs). To date, most of the research have been focused on understanding the role of exosomal RNA in several processes. Recently, there has been increasing interest in studying the function of exosome membrane proteins for exosome-based therapy, but not much research has been done yet on the function of exosome membrane proteins. One of the major limitations of studying exosome membrane proteins and their application to translational research of exosome-based therapeutics is the low yield of exosome isolation. Here, we have introduced a new perspective on exosome membrane protein research by reviewing studies showing the important role of exosome membrane proteins in exosome-based therapies. Furthermore, we have proposed a new strategy to boost the yield of exosome isolation: hybridization of liposomes with exosome-derived membrane. Liposomes have already been reported to affect the cell excitation to increase exosome production in tumor cells. Therefore, increasing cellular uptake of these liposomes would enhance exosome release by increasing cellular excitation. This new perspective could be a breakthrough in exosome-based therapeutic research.
Collapse
Affiliation(s)
- Nuria Palomar-Alonso
- Department of Neurology, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Mijung Lee
- Department of Neurology, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Manho Kim
- Department of Neurology, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Neuroscience Dementia Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
20
|
Hong CS, Diergaarde B, Whiteside TL. Small extracellular vesicles in plasma carry luminal cytokines that remain undetectable by antibody-based assays in cancer patients and healthy donors. BJC REPORTS 2024; 2:16. [PMID: 38938748 PMCID: PMC11210721 DOI: 10.1038/s44276-024-00037-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 06/29/2024]
Abstract
Background Small (30-150nm) extracellular vesicles (sEV), also known as exosomes, play a key role in cell-to-cell signaling. They are produced by all cells, circulate freely and are present in all body fluids. Evidence indicates that cytokines are present on the surface and/or in the lumen of sEV. The contribution of intravesicular cytokines to cytokine levels in plasma are unknown. Methods sEV were isolated by ultrafiltration/size exclusion chromatography from pre-cleared plasma obtained from patients with head and neck squamous cell carcinoma (HNSCC) and healthy donors (HDs). Multiplex immunoassays were used to measure cytokine levels in paired untreated and detergent-treated (0.5% Triton X-100) plasma and plasma-derived detergent-treated sEV. Non-parametric tests were used to assess differences in cytokine levels. Results The presence of cytokines in sEV isolated from patients' and HDs' plasma was confirmed by immunoblots and on-bead flow cytometry. sEV-associated cytokines were functional in various in vitro assays. Levels of cytokines in sEV varied among the HNSCC patients and were generally significantly higher than the levels observed in sEV from HDs. Compared to untreated plasma, levels for the majority (40/51) of the evaluated proteins were significantly higher in detergent-treated plasma (P<0.0001-0.03). In addition, levels of 24/51 proteins in sEV, including IL6, TNFRII, IL-17a, IFNa and IFNg, were significantly positively correlated with the difference between levels detected in detergent-treated plasma and untreated plasma. Discussion The data indicate that sEV-associated cytokines account for the differences in cytokine levels measured in detergent-treated versus untreated plasma. Ab-based assays using untreated plasma detect only soluble cytokines and miss cytokines carried in the lumen of sEV. Permeabilization of sEV with a mild detergent allows for Ab-based detection of sEV-associated and soluble cytokines in plasma. The failure to detect cytokines carried in the sEV lumen leads to inaccurate estimates of cytokine levels in body fluids.
Collapse
Affiliation(s)
- Chang Sook Hong
- Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA 15213 USA
| | - Brenda Diergaarde
- Department of Human Genetics, School of Public Health, University of Pittsburgh and UPMC Hillman Cancer Center, Pittsburgh, PA 15213 USA
| | - Theresa L. Whiteside
- Departments of Pathology, Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| |
Collapse
|
21
|
Abbasi-Malati Z, Azizi SG, Milani SZ, Serej ZA, Mardi N, Amiri Z, Sanaat Z, Rahbarghazi R. Tumorigenic and tumoricidal properties of exosomes in cancers; a forward look. Cell Commun Signal 2024; 22:130. [PMID: 38360641 PMCID: PMC10870553 DOI: 10.1186/s12964-024-01510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
In recent decades, emerging data have highlighted the critical role of extracellular vesicles (EVs), especially (exosomes) Exos, in the progression and development of several cancer types. These nano-sized vesicles are released by different cell lineages within the cancer niche and maintain a suitable platform for the interchange of various signaling molecules in a paracrine manner. Based on several studies, Exos can transfer oncogenic factors to other cells, and alter the activity of immune cells, and tumor microenvironment, leading to the expansion of tumor cells and metastasis to the remote sites. It has been indicated that the cell-to-cell crosstalk is so complicated and a wide array of factors are involved in this process. How and by which mechanisms Exos can regulate the behavior of tumor cells and non-cancer cells is at the center of debate. Here, we scrutinize the molecular mechanisms involved in the oncogenic behavior of Exos released by different cell lineages of tumor parenchyma. Besides, tumoricidal properties of Exos from various stem cell (SC) types are discussed in detail.
Collapse
Affiliation(s)
- Zahra Abbasi-Malati
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Ghader Azizi
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Soheil Zamen Milani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Aliyari Serej
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Amiri
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Schneider N, Hermann PC, Eiseler T, Seufferlein T. Emerging Roles of Small Extracellular Vesicles in Gastrointestinal Cancer Research and Therapy. Cancers (Basel) 2024; 16:567. [PMID: 38339318 PMCID: PMC10854789 DOI: 10.3390/cancers16030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Discovered in the late eighties, sEVs are small extracellular nanovesicles (30-150 nm diameter) that gained increasing attention due to their profound roles in cancer, immunology, and therapeutic approaches. They were initially described as cellular waste bins; however, in recent years, sEVs have become known as important mediators of intercellular communication. They are secreted from cells in substantial amounts and exert their influence on recipient cells by signaling through cell surface receptors or transferring cargos, such as proteins, RNAs, miRNAs, or lipids. A key role of sEVs in cancer is immune modulation, as well as pro-invasive signaling and formation of pre-metastatic niches. sEVs are ideal biomarker platforms, and can be engineered as drug carriers or anti-cancer vaccines. Thus, sEVs further provide novel avenues for cancer diagnosis and treatment. This review will focus on the role of sEVs in GI-oncology and delineate their functions in cancer progression, diagnosis, and therapeutic use.
Collapse
Affiliation(s)
- Nora Schneider
- Department for Internal Medicine 1, University Clinic Ulm, 89081 Ulm, Germany; (P.C.H.); (T.S.)
| | | | - Tim Eiseler
- Correspondence: (N.S.); (T.E.); Tel.: +49-731-500-44678 (N.S.); +49-731-500-44523 (T.E.)
| | | |
Collapse
|
23
|
Yang Q, Li S, Ou H, Zhang Y, Zhu G, Li S, Lei L. Exosome-based delivery strategies for tumor therapy: an update on modification, loading, and clinical application. J Nanobiotechnology 2024; 22:41. [PMID: 38281957 PMCID: PMC10823703 DOI: 10.1186/s12951-024-02298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
Malignancy is a major public health problem and among the leading lethal diseases worldwide. Although the current tumor treatment methods have therapeutic effect to a certain extent, they still have some shortcomings such as poor water solubility, short half-life, local and systemic toxicity. Therefore, how to deliver therapeutic agent so as to realize safe and effective anti-tumor therapy become a problem urgently to be solved in this field. As a medium of information exchange and material transport between cells, exosomes are considered to be a promising drug delivery carrier due to their nano-size, good biocompatibility, natural targeting, and easy modification. In this review, we summarize recent advances in the isolation, identification, drug loading, and modification of exosomes as drug carriers for tumor therapy alongside their application in tumor therapy. Basic knowledge of exosomes, such as their biogenesis, sources, and characterization methods, is also introduced herein. In addition, challenges related to the use of exosomes as drug delivery vehicles are discussed, along with future trends. This review provides a scientific basis for the application of exosome delivery systems in oncological therapy.
Collapse
Affiliation(s)
- Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Haibo Ou
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shaohong Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Lanjie Lei
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China.
| |
Collapse
|
24
|
Li H, Miao YQ, Suo LP, Wang X, Mao YQ, Zhang XH, Zhou N, Tian JR, Yu XY, Wang TX, Gao Y, Guo HY, Zhang Z, Ma DS, Wu HX, Cui YW, Zhang XL, Chi XC, Li YC, Irwin DM, Niu G, Tan HR. CD206 modulates the role of M2 macrophages in the origin of metastatic tumors. J Cancer 2024; 15:1462-1486. [PMID: 38356723 PMCID: PMC10861823 DOI: 10.7150/jca.91944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/30/2023] [Indexed: 02/16/2024] Open
Abstract
Tumor metastasis is a key factor affecting the life of patients with malignant tumors. For the past hundred years, scientists have focused on how to kill cancer cells and inhibit their metastasis in vivo, but few breakthroughs have been made. Here we hypothesized a novel mode for cancer metastasis. We show that the phagocytosis of apoptotic tumor cells by macrophages leads to their polarization into the M2 phenotype, and that the expression of stem cell related as well as drug resistance related genes was induced. Therefore, it appears that M2 macrophages have "defected" and have been transformed into the initial "metastatic cancer cells", and thus are the source, at least in part, of the distal tissue tumor metastasis. This assumption is supported by the presence of fused cells with characteristics of both macrophage and tumor cell observed in the peripheral blood and ascites of patients with ovarian cancer. By eliminating the expression of CD206 in M2 macrophages using siRNA, we show that the growth and metastasis of tumors was suppressed using both in vitro cell line and with experimental in vivo mouse models. In summary, we show that M2 macrophages in the blood circulation underwent a "change of loyalty" to become "cancer cells" that transformed into distal tissue metastasis, which could be suppressed by the knockdown of CD206 expression.
Collapse
Affiliation(s)
- Hui Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ying-Qi Miao
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Li-Ping Suo
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xi Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yi-Qing Mao
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xue-Hui Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Na Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jun-Rui Tian
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiu-Yan Yu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tong-Xia Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yan Gao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hong-Yan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Zheng Zhang
- Peking University First Hospital, Beijing, China
| | | | | | | | | | - Xiao-Chun Chi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | | | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Gang Niu
- Beijing N&N Genetech Company, Beijing, China
| | - Huan-Ran Tan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
25
|
Bhattacharya B, Nag S, Mukherjee S, Kulkarni M, Chandane P, Mandal D, Mukerjee N, Mirgh D, Anand K, Adhikari MD, Gorai S, Thorat N. Role of Exosomes in Epithelial-Mesenchymal Transition. ACS APPLIED BIO MATERIALS 2024; 7:44-58. [PMID: 38108852 PMCID: PMC10792609 DOI: 10.1021/acsabm.3c00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a fundamental process driving cancer metastasis, transforming non-motile cells into a motile population that migrates to distant organs and forms secondary tumors. In recent years, cancer research has revealed a strong connection between exosomes and the EMT. Exosomes, a subpopulation of extracellular vesicles, facilitate cellular communication and dynamically regulate various aspects of cancer metastasis, including immune cell suppression, extracellular matrix remodeling, metastasis initiation, EMT initiation, and organ-specific metastasis. Tumor-derived exosomes (TEXs) and their molecular cargo, comprising proteins, lipids, nucleic acids, and carbohydrates, are essential components that promote EMT in cancer. TEXs miRNAs play a crucial role in reprogramming the tumor microenvironment, while TEX surface integrins contribute to organ-specific metastasis. Exosome-based cancer metastasis research offers a deeper understanding about cancer and an effective theranostic platform development. Additionally, various therapeutic sources of exosomes are paving the way for innovative cancer treatment development. In this Review, we spotlight the role of exosomes in EMT and their theranostic impact, aiming to inspire cancer researchers worldwide to explore this fascinating field in more innovative ways.
Collapse
Affiliation(s)
- Bikramjit Bhattacharya
- Department
of Applied Microbiology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Sagnik Nag
- Department
of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore, Tamil Nadu 632014, India
| | - Sayantanee Mukherjee
- Amrita
School of NanoSciences and Molecular Medicine, Amrita Institute of Medical Sciences, Kochi, Kerala 682041, India
| | - Mrunal Kulkarni
- Department
of Pharmacy, BITS Pilani, Pilani, Rajasthan 333031, India
| | - Priti Chandane
- Department
of Biochemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Debashmita Mandal
- Department
of Biotechnology, Maulana Abul Kalam Azad
University of Technology (MAKAUT), Haringhata, Nadia, West Bengal 741249, India
| | - Nobendu Mukerjee
- Center
for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
- Department
of Health Sciences, Novel Global Community
and Educational Foundation, Hebersham, New South Wales 2770, Australia
| | - Divya Mirgh
- Vaccine
and Immunotherapy Canter, Massachusetts
General Hospital, Boston, Massachusetts 02114, United States
| | - Krishnan Anand
- Department
of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Manab Deb Adhikari
- Department
of Biotechnology, University of North Bengal
Raja Rammohunpur, Darjeeling, West Bengal 734013, India
| | - Sukhamoy Gorai
- Rush University Medical
Center, 1620 W. Harrison St., Chicago, Illinois 60612, United States
| | - Nanasaheb Thorat
- Limerick
Digital Cancer Research Centre and Department of Physics, Bernal Institute, University of Limerick, Limerick V94T9PX, Ireland
| |
Collapse
|
26
|
Wang B, Cheng D, Ma D, Chen R, Li D, Zhao W, Fang C, Ji M. Mutual regulation of PD-L1 immunosuppression between tumor-associated macrophages and tumor cells: a critical role for exosomes. Cell Commun Signal 2024; 22:21. [PMID: 38195554 PMCID: PMC10775441 DOI: 10.1186/s12964-024-01473-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
Tumor cells primarily employ the PD-1/PD-L1 pathway to thwart the anti-tumor capabilities of T lymphocytes, inducing immunosuppression. This occurs through the direct interaction of PD-L1 with PD-1 on T lymphocyte surfaces. Recent research focusing on the tumor microenvironment has illuminated the pivotal role of immune cells, particularly tumor-associated macrophages (TAMs), in facilitating PD-L1-mediated immunosuppression. Exosomes, characterized by their ability to convey information and be engulfed by cells, significantly contribute to promoting TAM involvement in establishing PD-L1-mediated immunosuppression within the tumor microenvironment. Exosomes, characterized by their ability to convey information and be engulfed by cells, significantly contribute to promoting TAM involvement in establishing PD-L1-mediated immunosuppression within the tumor microenvironment. In addition to receiving signals from tumor-derived exosomes that promote PD-L1 expression, TAMs also exert control over PD-L1 expression in tumor cells through the release of exosomes. This paper aims to summarize the mechanisms by which exosomes participate in this process, identify crucial factors that influence these mechanisms, and explore innovative strategies for inhibiting or reversing the tumor-promoting effects of TAMs by targeting exosomes.
Collapse
Affiliation(s)
- Banglu Wang
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Daoan Cheng
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Danyu Ma
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Rui Chen
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Dong Li
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Weiqing Zhao
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Cheng Fang
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Mei Ji
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| |
Collapse
|
27
|
Guo ZY, Tang Y, Cheng YC. Exosomes as Targeted Delivery Drug System: Advances in Exosome Loading, Surface Functionalization and Potential for Clinical Application. Curr Drug Deliv 2024; 21:473-487. [PMID: 35702803 DOI: 10.2174/1567201819666220613150814] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/22/2022]
Abstract
Exosomes are subtypes of vesicles secreted by almost all cells and can play an important role in intercellular communication. They contain various proteins, lipids, nucleic acids and other natural substances from their metrocytes. Exosomes are expected to be a new generation of drug delivery systems due to their low immunogenicity, high potential to transfer bioactive substances and biocompatibility. However, exosomes themselves are not highly targeted, it is necessary to develop new surface modification techniques and targeted drug delivery strategies, which are the focus of drug delivery research. In this review, we introduced the biogenesis of exosomes and their role in intercellular communication. We listed various advanced exosome drug-loading techniques. Emphatically, we summarized different exosome surface modification techniques and targeted drug delivery strategies. In addition, we discussed the application of exosomes in vaccines and briefly introduced milk exosomes. Finally, we clarified the clinical application prospects and shortcomings of exosomes.
Collapse
Affiliation(s)
- Zun Y Guo
- Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing 211198, P.R. China
| | - Yue Tang
- Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing 211198, P.R. China
| | - Yi C Cheng
- Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing 211198, P.R. China
| |
Collapse
|
28
|
Alam MR, Rahman MM, Li Z. The link between intracellular calcium signaling and exosomal PD-L1 in cancer progression and immunotherapy. Genes Dis 2024; 11:321-334. [PMID: 37588227 PMCID: PMC10425812 DOI: 10.1016/j.gendis.2023.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 03/29/2023] Open
Abstract
Exosomes are small membrane vesicles containing microRNA, RNA, DNA fragments, and proteins that are transferred from donor cells to recipient cells. Tumor cells release exosomes to reprogram the factors associated with the tumor microenvironment (TME) causing tumor metastasis and immune escape. Emerging evidence revealed that cancer cell-derived exosomes carry immune inhibitory molecule program death ligand 1 (PD-L1) that binds with receptor program death protein 1 (PD-1) and promote tumor progression by escaping immune response. Currently, some FDA-approved monoclonal antibodies are clinically used for cancer treatment by blocking PD-1/PD-L1 interaction. Despite notable treatment outcomes, some patients show poor drug response. Exosomal PD-L1 plays a vital role in lowering the treatment response, showing resistance to PD-1/PD-L1 blockage therapy through recapitulating the effect of cell surface PD-L1. To enhance therapeutic response, inhibition of exosomal PD-L1 is required. Calcium signaling is the central regulator of tumorigenesis and can regulate exosome biogenesis and secretion by modulating Rab GTPase family and membrane fusion factors. Immune checkpoints are also connected with calcium signaling and calcium channel blockers like amlodipine, nifedipine, lercanidipine, diltiazem, and verapamil were also reported to suppress cellular PD-L1 expression. Therefore, to enhance the PD-1/PD-L1 blockage therapy response, the reduction of exosomal PD-L1 secretion from cancer cells is in our therapeutic consideration. In this review, we proposed a therapeutic strategy by targeting calcium signaling to inhibit the expression of PD-L1-containing exosome levels that could reduce the anti-PD-1/PD-L1 therapy resistance and increase the patient's drug response rate.
Collapse
Affiliation(s)
- Md Rakibul Alam
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - Md Mizanur Rahman
- Department of Medicine (Nephrology), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6E2H7, Canada
| | - Zhiguo Li
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
29
|
Prokopeva AE, Emene CC, Gomzikova MO. Antitumor Immunity: Role of NK Cells and Extracellular Vesicles in Cancer Immunotherapy. Curr Issues Mol Biol 2023; 46:140-152. [PMID: 38248313 PMCID: PMC10814167 DOI: 10.3390/cimb46010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 01/23/2024] Open
Abstract
The immune system plays a crucial role in recognizing and eliminating altered tumor cells. However, tumors develop mechanisms to evade the body's natural immune defenses. Therefore, methods for specifically recognizing/targeting tumor cells, for instance, through the activation, directed polarization, and training of immune cells, have been developed based on the body's immune cells. This strategy has been termed cellular immunotherapy. One promising strategy for treating tumor diseases is NK cell-based immunotherapy. NK cells have the ability to recognize and destroy transformed cells without prior activation as well as tumor cells with reduced MHC-I expression. A novel approach in immunotherapy is the use of extracellular vesicles (EVs) derived from NK cells. The main advantages of NK cell-derived EVs are their small size and better tissue penetration into a tumor. The aim of this review is to systematically present existing information on the mechanisms of antitumor immunity and the role of NK cells and extracellular vesicles in cancer immunotherapy. Clinical and preclinical studies utilizing NK cells and extracellular vesicles for anticancer therapy currently underway will provide valuable insights for researchers in the field of cancer.
Collapse
Affiliation(s)
- Angelina E. Prokopeva
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420111, Russia;
| | - Charles C. Emene
- Laboratory of Intercellular Communication, Kazan Federal University, Kazan 420111, Russia;
| | - Marina O. Gomzikova
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420111, Russia;
- Laboratory of Intercellular Communication, Kazan Federal University, Kazan 420111, Russia;
| |
Collapse
|
30
|
Tian J, Han Z, Song D, Peng Y, Xiong M, Chen Z, Duan S, Zhang L. Engineered Exosome for Drug Delivery: Recent Development and Clinical Applications. Int J Nanomedicine 2023; 18:7923-7940. [PMID: 38152837 PMCID: PMC10752020 DOI: 10.2147/ijn.s444582] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/16/2023] [Indexed: 12/29/2023] Open
Abstract
Exosomes are nano-sized membrane vesicles that transfer bioactive molecules between cells and modulate various biological processes under physiological and pathological conditions. By applying bioengineering technologies, exosomes can be modified to express specific markers or carry therapeutic cargo and emerge as novel platforms for the treatment of cancer, neurological, cardiovascular, immune, and infectious diseases. However, there are many challenges and uncertainties in the clinical translation of exosomes. This review aims to provide an overview of the recent advances and challenges in the translation of engineered exosomes, with a special focus on the methods and strategies for loading drugs into exosomes, the pros and cons of different loading methods, and the optimization of exosome production based on the drugs to be encapsulated. Moreover, we also summarize the current clinical applications and prospects of engineered exosomes, as well as the potential risks and limitations that need to be addressed in exosome engineering, including the standardization of exosome preparation and engineering protocols, the quality and quantity of exosomes, the control of drug release, and the immunogenicity and cytotoxicity of exosomes. Overall, engineered exosomes represent an exciting frontier in nanomedicine, but they still face challenges in large-scale production, the maintenance of storage stability, and clinical translation. With continuous advances in this field, exosome-based drug formulation could offer great promise for the targeted treatment of human diseases.
Collapse
Affiliation(s)
- Jiaqi Tian
- Clinical Medical Research Center for Women and Children Diseases, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, People’s Republic of China
| | - Zhengpu Han
- Clinical Medical Research Center for Women and Children Diseases, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, People’s Republic of China
- School of Public Health, Weifang Medical University, Weifang, People’s Republic of China
| | - Dandan Song
- Clinical Medical Research Center for Women and Children Diseases, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, People’s Republic of China
| | - Yanjie Peng
- Clinical Medical Research Center for Women and Children Diseases, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, People’s Republic of China
| | - Min Xiong
- School of Public Health, North China University of Science and Technology, Tangshan, People’s Republic of China
| | - Zhen Chen
- School of Public Health, Weifang Medical University, Weifang, People’s Republic of China
| | - Shuyin Duan
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, People’s Republic of China
- Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan, People’s Republic of China
| |
Collapse
|
31
|
Olejarz W, Basak G. Emerging Therapeutic Targets and Drug Resistance Mechanisms in Immunotherapy of Hematological Malignancies. Cancers (Basel) 2023; 15:5765. [PMID: 38136311 PMCID: PMC10741639 DOI: 10.3390/cancers15245765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
CAR-T cell therapy has revolutionized the treatment of hematological malignancies with high remission rates in the case of ALL and NHL. This therapy has some limitations such as long manufacturing periods, persistent restricted cell sources and high costs. Moreover, combination regimens increase the risk of immune-related adverse events, so the identification new therapeutic targets is important to minimize the risk of toxicities and to guide more effective approaches. Cancer cells employ several mechanisms to evade immunosurveillance, which causes resistance to immunotherapy; therefore, a very important therapeutic approach is to focus on the development of rational combinations of targeted therapies with non-overlapping toxicities. Recent progress in the development of new inhibitory clusters of differentiation (CDs), signaling pathway molecules, checkpoint inhibitors, and immunosuppressive cell subsets and factors in the tumor microenvironment (TME) has significantly improved anticancer responses. Novel strategies regarding combination immunotherapies with CAR-T cells are the most promising approach to cure cancer.
Collapse
Affiliation(s)
- Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland;
| |
Collapse
|
32
|
Li Z, Zhang Y, Hao H, Chen L, Lv T, Zhang X, Qi Y, Wang Z. Esophageal cancer cell-derived small extracellular vesicles decrease circulating Tfh/Tfr via sEV-PDL1 to promote immunosuppression. Cancer Immunol Immunother 2023; 72:4249-4259. [PMID: 37943341 PMCID: PMC10992026 DOI: 10.1007/s00262-023-03561-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
Esophageal cancer (EC) is a deadly malignancy. Small extracellular vesicles (sEVs) with programmed death ligand 1 (sEV-PDL1) induce immune escape to promote tumor progression. Furthermore, the imbalance between circulating follicular helper T (Tfh) and circulating follicular regulatory T (Tfr) cells is related to the progression of many malignant tumors. However, the role of the EC-derived sEV-PDL1 in circulating Tfh/Tfr is unknown. Circulating Tfh and Tfr cells were detected by flow cytometry. sEVs were isolated through differential centrifugation and cultured for cell expansion assays. Naïve CD4+ T cells were isolated, stimulated, and cultured with sEVs to evaluate the frequencies, phenotypes, and functions of Tfh and Tfr cells. The proportion of circulating Tfh in patients with EC was lower than that in healthy donors (HDs), whereas that of circulating Tfr was higher. The EC group showed significantly lower circulating Tfh/Tfr and a higher level of sEV-PDL1 than HDs. Notably, sEV-PDL1 was negatively correlated with circulating Tfh/Tfr in the EC group. In vitro assays, sEV-PDL1 inhibited Tfh expansion, enhanced the cytotoxic T lymphocyte-associated antigen 4+ (CTLA4+) Tfh cell percentage, decreased the levels of interleukin (IL)-21 and interferon-γ, and increased IL-10. sEV-PDL1 promoted the expansion and immunosuppressive functions of circulating Tfr; the increased percentages of CTLA4+ Tfr and inducible T cell co-stimulator+ Tfr were accompanied with high IL-10. However, applying an anti-PDL1 antibody significantly reversed this. Our results suggest a novel mechanism of sEV-PDL1-mediated immunosuppression in EC. Inhibiting sEV-PDL1 to restore circulating Tfh/Tfr balance provides a novel therapeutic approach for EC.
Collapse
Affiliation(s)
- Zijie Li
- Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Yuehua Zhang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050010, Hebei, China
| | - He Hao
- Department of Internal Medicine, Henan Cancer Hospital Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Lu Chen
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050010, Hebei, China
| | - Tingting Lv
- Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Xiaokuan Zhang
- Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Yuying Qi
- Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Zhiyu Wang
- Hebei Medical University, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
33
|
Kugeratski FG, LeBleu VS, Dowlatshahi DP, Sugimoto H, Arian KA, Fan Y, Huang L, Wells D, Lilla S, Hodge K, Zanivan S, McAndrews KM, Kalluri R. Engineered immunomodulatory extracellular vesicles derived from epithelial cells acquire capacity for positive and negative T cell co-stimulation in cancer and autoimmunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565371. [PMID: 37961535 PMCID: PMC10635085 DOI: 10.1101/2023.11.02.565371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Extracellular vesicles (EVs) are generated by all cells and systemic administration of allogenic EVs derived from epithelial and mesenchymal cells have been shown to be safe, despite carrying an array of functional molecules, including thousands of proteins. To address whether epithelial cells derived EVs can be modified to acquire the capacity to induce immune response, we engineered 293T EVs to harbor the immunomodulatory CD80, OX40L and PD-L1 molecules. We demonstrated abundant levels of these proteins on the engineered cells and EVs. Functionally, the engineered EVs efficiently elicit positive and negative co-stimulation in human and murine T cells. In the setting of cancer and auto-immune hepatitis, the engineered EVs modulate T cell functions and alter disease progression. Moreover, OX40L EVs provide additional benefit to anti-CTLA-4 treatment in melanoma-bearing mice. Our work provides evidence that epithelial cell derived EVs can be engineered to induce immune responses with translational potential to modulate T cell functions in distinct pathological settings.
Collapse
Affiliation(s)
- Fernanda G. Kugeratski
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Valerie S. LeBleu
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Dara P. Dowlatshahi
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Kent A. Arian
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yibo Fan
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Li Huang
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Danielle Wells
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Sergio Lilla
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD UK
| | - Kelly Hodge
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD UK
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Kathleen M. McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
34
|
Li J, Feng H, Zhu J, Yang K, Zhang G, Gu Y, Shi T, Chen W. Gastric cancer derived exosomal THBS1 enhanced Vγ9Vδ2 T-cell function through activating RIG-I-like receptor signaling pathway in a N6-methyladenosine methylation dependent manner. Cancer Lett 2023; 576:216410. [PMID: 37783390 DOI: 10.1016/j.canlet.2023.216410] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/04/2023]
Abstract
Gamma delta (γδ) T-cell-based immunotherapy has shown favorable safety and clinical response in patients with multiple types of cancer. However, its efficiency in treating patients with solid tumors remains limited. In the current study, we investigated the function and molecular mechanism underlying gastric cancer (GC) cell-derived exosomal THBS1 in the regulation of Vγ9Vδ2 T cells. We found that GC cell-derived exosomal THBS1 markedly enhanced the cytotoxicity of Vγ9Vδ2 T cells against GC cells and the production of IFN-γ, TNF-α, perforin and granzyme B in vitro and elevated the killing effects of Vγ9Vδ2 T cells on GC cells in vivo. Mechanistically, exosomal THBS1 could regulate METTL3-or IGF2BP2-mediated m6A modification, further activating the RIG-I-like receptor signaling pathway in Vγ9Vδ2 T cells. Moreover, blocking the RIG-I-like receptor signaling pathway reversed the effects of exosomal THBS1 on the function of Vγ9Vδ2 T cells. In addition, THBS1 was expressed at low levels in GC tissues and was associated with an unfavorable prognosis in GC patients. In sum, our findings indicate that exosomal THBS1 derived from GC cells enhanced the function of Vγ9Vδ2 T cells by activating the RIG-I-like signaling pathway in a m6A methylation-dependent manner. Targeting the exosomal THBS1/m6A/RIG-I axis may have important implications for GC immunotherapy based on Vγ9Vδ2 T cells.
Collapse
Affiliation(s)
- Juntao Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huang Feng
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinghan Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kexi Yang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Yanzheng Gu
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.
| | - Weichang Chen
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
35
|
Dey D, Ghosh S, Mirgh D, Panda SP, Jha NK, Jha SK. Role of exosomes in prostate cancer and male fertility. Drug Discov Today 2023; 28:103791. [PMID: 37777169 DOI: 10.1016/j.drudis.2023.103791] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Prostate cancer (PCa) is the second most common and fifth most aggressive neoplasm among men worldwide. In the last decade, extracellular vesicle (EV) research has decoded multiple unsolved cancer-related mysteries. EVs can be classified as microvesicles, apoptotic bodies, and exosomes, among others. Exosomes play a key role in cellular signaling. Their internal cargos (nucleic acids, proteins, lipids) influence the recipient cell. In PCa, the exosome is the regulator of cancer progression. It is also a promising theranostics tool for PCa. Moreover, exosomes have strong participation in male fertility complications. This review aims to highlight the exosome theranostics signature in PCa and its association with male fertility.
Collapse
Affiliation(s)
- Dwaipayan Dey
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara, West Bengal 700118, India
| | - Srestha Ghosh
- Department of Microbiology, Lady Brabourne College, Kolkata 700017, West Bengal, India
| | - Divya Mirgh
- Johns Hopkins University, Baltimore, MD 21218, USA
| | - Siva Parsad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal, University, Dehradun, India.
| |
Collapse
|
36
|
Castillo-Peña A, Molina-Pinelo S. Landscape of tumor and immune system cells-derived exosomes in lung cancer: mediators of antitumor immunity regulation. Front Immunol 2023; 14:1279495. [PMID: 37915578 PMCID: PMC10616833 DOI: 10.3389/fimmu.2023.1279495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023] Open
Abstract
The immune system plays a critical role in cancer, including lung cancer, which is the leading cause of cancer-related deaths worldwide. Immunotherapy, particularly immune checkpoint blockade, has revolutionized the treatment of lung cancer, but a large subset of patients either do not respond or develop resistance. Exosomes, essential mediators of cell-to-cell communication, exert a profound influence on the tumor microenvironment and the interplay between cancer and the immune system. This review focuses on the role of tumor-derived exosomes and immune cells-derived exosomes in the crosstalk between these cell types, influencing the initiation and progression of lung cancer. Depending on their cell of origin and microenvironment, exosomes can contain immunosuppressive or immunostimulatory molecules that can either promote or inhibit tumor growth, thus playing a dual role in the disease. Furthermore, the use of exosomes in lung cancer immunotherapy is discussed. Their potential applications as cell-free vaccines and drug delivery systems make them an attractive option for lung cancer treatment. Additionally, exosomal proteins and RNAs emerge as promising biomarkers that could be employed for the prediction, diagnosis, prognosis and monitoring of the disease. In summary, this review assesses the relationship between exosomes, lung cancer, and the immune system, shedding light on their potential clinical applications and future perspectives.
Collapse
Affiliation(s)
- Alejandro Castillo-Peña
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, University of Seville, Seville, Spain
| | - Sonia Molina-Pinelo
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, University of Seville, Seville, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
| |
Collapse
|
37
|
Hegde M, Kumar A, Girisa S, Alqahtani MS, Abbas M, Goel A, Hui KM, Sethi G, Kunnumakkara AB. Exosomal noncoding RNA-mediated spatiotemporal regulation of lipid metabolism: Implications in immune evasion and chronic inflammation. Cytokine Growth Factor Rev 2023; 73:114-134. [PMID: 37419767 DOI: 10.1016/j.cytogfr.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 07/09/2023]
Abstract
The hallmark of chronic inflammatory diseases is immune evasion. Successful immune evasion involves numerous mechanisms to suppress both adaptive and innate immune responses. Either direct contact between cells or paracrine signaling triggers these responses. Exosomes are critical drivers of these interactions and exhibit both immunogenic and immune evasion properties during the development and progression of various chronic inflammatory diseases. Exosomes carry diverse molecular cargo, including lipids, proteins, and RNAs that are crucial for immunomodulation. Moreover, recent studies have revealed that exosomes and their cargo-loaded molecules are extensively involved in lipid remodeling and metabolism during immune surveillance and disease. Many studies have also shown the involvement of lipids in controlling immune cell activities and their crucial upstream functions in regulating inflammasome activation, suggesting that any perturbation in lipid metabolism results in abnormal immune responses. Strikingly, the expanded immunometabolic reprogramming capacities of exosomes and their contents provided insights into the novel mechanisms behind the prophylaxis of inflammatory diseases. By summarizing the tremendous therapeutic potential of exosomes, this review emphasizes the role of exosome-derived noncoding RNAs in regulating immune responses through the modulation of lipid metabolism and their promising therapeutic applications.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; Computers and communications Department College of Engineering Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Akul Goel
- California Institute of Technology (CalTech), Pasadena, CA, USA
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore 169610, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
38
|
Hui J, Zhou M, An G, Zhang H, Lu Y, Wang X, Zhao X. Regulatory role of exosomes in colorectal cancer progression and potential as biomarkers. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0119. [PMID: 37553810 PMCID: PMC10476469 DOI: 10.20892/j.issn.2095-3941.2023.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2023] Open
Abstract
Colorectal cancer (CRC) remains an enormous challenge to human health worldwide. Unfortunately, the mechanism underlying CRC progression is not well understood. Mounting evidence has confirmed that exosomes play a vital role in CRC progression, which has attracted extensive attention among researchers. In addition to acting as messengers between CRC cells, exosomes also participate in the CRC immunomodulatory process and reshape immune function. As stable message carriers and liquid biopsy option under development, exosomes are promising biomarkers in the diagnosis or treatment of CRC. In this review we have described and analyzed the biogenesis and release of exosomes and current research on the role of exosomes in immune regulation and metastasis of CRC. Moreover, we have discussed candidate exosomal molecules as potential biomarkers to diagnose CRC, predict CRC progression, or determine CRC chemoresistance, and described the significance of exosomes in the immunotherapy of CRC. This review provides insight to further understand the role of exosomes in CRC progression and identify valuable biomarkers that facilitate the clinical management of CRC patients.
Collapse
Affiliation(s)
- Juan Hui
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an 710032, China
| | - Mingzhen Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an 710032, China
| | - Guangzhou An
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
- Department of Radiation Protection Medicine, Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, Faculty of Preventive Medicine, Air Force Medical University, Xi’an 710032, China
| | - Hui Zhang
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an 710032, China
| | - Xin Wang
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an 710032, China
| |
Collapse
|
39
|
Xu Y, Luan G, Liu F, Zhang Y, Li Z, Liu Z, Yang T. Exosomal miR-200b-3p induce macrophage polarization by regulating transcriptional repressor ZEB1 in hepatocellular carcinoma. Hepatol Int 2023; 17:889-903. [PMID: 36930410 DOI: 10.1007/s12072-023-10507-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE Accumulating evidence has elucidated that the interaction between cancer cells and M2 macrophages plays an important role in the tumorigenesis of hepatocellular carcinoma (HCC). However, the mechanism connecting tumor-derived exosomes, M2 polarization of macrophages, and liver metastasis remain unclear. Therefore, it is necessary to explore their influence on the tumor microenvironment of HCC. METHODS Transmission electron microscopy, nanometer particle testing, and special biomarker analysis were utilized to characterize exosomes, while the differential expression of microRNAs was evaluated using high-throughput sequencing technology. The functions of miR-200b-3p exosomes were confirmed using in vitro and in vivo assays. The interactions between microRNAs and ZEB1 as well as cancer cells and macrophages were measured using RNA pull-down and luciferase gene reporter assays. RESULTS Using in silico analysis, we identified high levels of miR-200b-3p exosome expression in patients with HCC, particularly with relapsed HCC. We demonstrated that HCC cell-derived miR-200b-3p exosomes were internalized by M0 macrophages and induced M2 polarization by downregulating ZEB1 and upregulating interleukin-4. As a result, the JAK/STAT signaling pathway was activated in M2 macrophages, leading to increased PIM1 and VEGFα expression. These cell factors accelerated the proliferation and metastasis of HCC, resulting in a feedback loop between HCC cells and M2 macrophages. CONCLUSION The study illustrates that HCC cell-derived miR-200b-3p exosomes facilitate the proliferation and polarization of macrophages by modulating cytokine secretion and the JAK/STAT signaling pathway, leading to the metastasis of HCC. These findings demonstrate the existence of a novel feedback loop between cancer cells and immune cells in the tumor microenvironment, presenting a new concept in cancer research.
Collapse
Affiliation(s)
- Ying Xu
- Shandong Cancer Hospital and Institute, Shandong Fist Medical University and Shandong Academy of Medical Science, No 440, Jiyan Road, Ji'nan, Shandong, China.
| | | | - Feng Liu
- The First Affiliated Hospital of Shandong First Medical University, Shandong, China
| | - Yuhua Zhang
- Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Zhongchao Li
- Shandong Cancer Hospital and Institute, Shandong Fist Medical University and Shandong Academy of Medical Science, No 440, Jiyan Road, Ji'nan, Shandong, China
| | - Ziming Liu
- Shandong Fist Medical University and Shandong Academy of Medical Science, Shandong, China
| | - Tao Yang
- Binzhou Medical University Hospital, Shandong, China
| |
Collapse
|
40
|
Li T, Jiao J, Ke H, Ouyang W, Wang L, Pan J, Li X. Role of exosomes in the development of the immune microenvironment in hepatocellular carcinoma. Front Immunol 2023; 14:1200201. [PMID: 37457718 PMCID: PMC10339802 DOI: 10.3389/fimmu.2023.1200201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Despite numerous improved treatment methods used in recent years, hepatocellular carcinoma (HCC) is still a disease with a high mortality rate. Many recent studies have shown that immunotherapy has great potential for cancer treatment. Exosomes play a significant role in negatively regulating the immune system in HCC. Understanding how these exosomes play a role in innate and adaptive immunity in HCC can significantly improve the immunotherapeutic effects on HCC. Further, engineered exosomes can deliver different drugs and RNA molecules to regulate the immune microenvironment of HCC by regulating the aforementioned immune pathway, thereby significantly improving the mortality rate of HCC. This study aimed to declare the role of exosomes in the development of the immune microenvironment in HCC and list engineered exosomes that could be used for clinical transformation therapy. These findings might be beneficial for clinical patients.
Collapse
Affiliation(s)
- Tanghua Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiapeng Jiao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haoteng Ke
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wenshan Ouyang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Luobin Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jin Pan
- The Department of Electronic Engineering, The Chinese University of Hong Kong, Hongkong, Hongkong SAR, China
| | - Xin Li
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
41
|
Venetis K, Sajjadi E, Ivanova M, Peccatori FA, Fusco N, Guerini-Rocco E. Characterization of the immune environment in pregnancy-associated breast cancer. Future Oncol 2023. [PMID: 37376974 DOI: 10.2217/fon-2022-1321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Pregnancy-associated breast cancer (PrBC) is a rare and clinically challenging condition. Specific immune mechanisms and pathways are involved in maternal-fetal tolerance and tumor-host immunoediting. The comprehension of the molecular processes underpinning this immune synergy in PrBC is needed to improve patients' clinical management. Only a few studies focused on the immune biology of PrBC and attempted to identify bona fide biomarkers. Therefore, clinically actionable information remains extremely puzzling for these patients. In this review article, we discuss the current knowledge on the immune environment of PrBC, in comparison with pregnancy-unrelated breast cancer and in the context of maternal immune changes during pregnancy. A particular emphasis is given to the actual role of potential immune-related biomarkers for PrBC clinical management.
Collapse
Affiliation(s)
- Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
| | - Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
- Department of Oncology & Hemato-Oncology, University of Milan, Milan, 20122, Italy
| | - Mariia Ivanova
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
| | - Fedro Alessandro Peccatori
- Fertility & Procreation Unit, Division of Gynecologic Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
- Department of Oncology & Hemato-Oncology, University of Milan, Milan, 20122, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
- Department of Oncology & Hemato-Oncology, University of Milan, Milan, 20122, Italy
| |
Collapse
|
42
|
Hu T, Huang Y, Liu J, Shen C, Wu F, He Z. Biomimetic Cell-Derived Nanoparticles: Emerging Platforms for Cancer Immunotherapy. Pharmaceutics 2023; 15:1821. [PMID: 37514008 PMCID: PMC10383408 DOI: 10.3390/pharmaceutics15071821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer immunotherapy can significantly prevent tumor growth and metastasis by activating the autoimmune system without destroying normal cells. Although cancer immunotherapy has made some achievements in clinical cancer treatment, it is still restricted by systemic immunotoxicity, immune cell dysfunction, cancer heterogeneity, and the immunosuppressive tumor microenvironment (ITME). Biomimetic cell-derived nanoparticles are attracting considerable interest due to their better biocompatibility and lower immunogenicity. Moreover, biomimetic cell-derived nanoparticles can achieve different preferred biological effects due to their inherent abundant source cell-relevant functions. This review summarizes the latest developments in biomimetic cell-derived nanoparticles for cancer immunotherapy, discusses the applications of each biomimetic system in cancer immunotherapy, and analyzes the challenges for clinical transformation.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuezhou Huang
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Liu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chao Shen
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fengbo Wu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhiyao He
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
43
|
Maiborodin IV, Maslov RV, Marchukov SV, Klochkova SV, Sheplev BV, Maiborodina VI, Ryaguzov ME, Lushnikova EL. Possible Kidney Complications after Application of Cell Technologies for the Repair of the Resected Liver. Bull Exp Biol Med 2023:10.1007/s10517-023-05825-y. [PMID: 37336807 DOI: 10.1007/s10517-023-05825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 06/21/2023]
Abstract
The state of rat kidneys after injection of bone marrow multipotent stromal cells (MSC) labeled with Vybrant CM-Dil into intact or resected liver was studied by fluorescence microscopy. The main structural changes in the kidneys after MSC injection into intact and partially resected liver manifested as granular dystrophy and necrobiotic/necrotic changes in single epithelial cells of the distal tubules and collecting ducts, thrombosis of some vessels, progression of an ascending urinary tract infection (detection of dust-like fluorescent objects), which can be due to the immunomodulating or even immunosuppressive influence of MSC and their detritus. MSC injected into the intact or resected liver, as well as the products of their degradation were not detected in the kidneys at all terms of observation. After injection of MSC into partially resected liver, manifestations of bacterial contamination of the renal medulla appeared later. The injection of MSC into the liver can be complicated by thrombosis of the renal vessels, which should be taken into account when using this administration route in the cell therapy.
Collapse
Affiliation(s)
- I V Maiborodin
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia.
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - R V Maslov
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - S V Marchukov
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - S V Klochkova
- Department of Human Anatomy, Institute of Medicine, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - B V Sheplev
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - V I Maiborodina
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - M E Ryaguzov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E L Lushnikova
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| |
Collapse
|
44
|
Kao YC, Chang YW, Lai CP, Chang NW, Huang CH, Chen CS, Huang HC, Juan HF. Ectopic ATP synthase stimulates the secretion of extracellular vesicles in cancer cells. Commun Biol 2023; 6:642. [PMID: 37322056 PMCID: PMC10272197 DOI: 10.1038/s42003-023-05008-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
ABSTARCT Ectopic ATP synthase on the plasma membrane (eATP synthase) has been found in various cancer types and is a potential target for cancer therapy. However, whether it provides a functional role in tumor progression remains unclear. Here, quantitative proteomics reveals that cancer cells under starvation stress express higher eATP synthase and enhance the production of extracellular vesicles (EVs), which are vital regulators within the tumor microenvironment. Further results show that eATP synthase generates extracellular ATP to stimulate EV secretion by enhancing P2X7 receptor-triggered Ca2+ influx. Surprisingly, eATP synthase is also located on the surface of tumor-secreted EVs. The EVs-surface eATP synthase increases the uptake of tumor-secreted EVs in Jurkat T-cells via association with Fyn, a plasma membrane protein found in immune cells. The eATP synthase-coated EVs uptake subsequently represses the proliferation and cytokine secretion of Jurkat T-cells. This study clarifies the role of eATP synthase on EV secretion and its influence on immune cells.
Collapse
Affiliation(s)
- Yi-Chun Kao
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Yi-Wen Chang
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Charles P Lai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
| | - Nai-Wen Chang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Chen-Hao Huang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 106, Taiwan
| | - Chien-Sheng Chen
- Department of Food Safety / Hygiene and Risk Management, National Cheng Kung University, Tainan, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Hsueh-Fen Juan
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan.
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan.
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 106, Taiwan.
- Center for Computational and Systems Biology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
45
|
Dhar R, Devi A, Gorai S, Jha SK, Alexiou A, Papadakis M. Exosome and epithelial-mesenchymal transition: A complex secret of cancer progression. J Cell Mol Med 2023. [PMID: 37183560 DOI: 10.1111/jcmm.17755] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/16/2023] Open
Abstract
This short communication will enlighten the readers about the exosome and the epithelial-mesenchymal transition (EMT) related to several complicated events. It also highlighted the therapeutic potential of exosomes against EMT. Exosome toxicology, exosome heterogeneity, and a single exosome profiling approach are also covered in this article. In the future, exosomes could help us get closer to cancer vaccine and precision oncology.
Collapse
Affiliation(s)
- Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India
| | | | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
- AFNP Med, Wien, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Witten, Germany
| |
Collapse
|
46
|
Nicodemou A, Bernátová S, Čeháková M, Danišovič Ľ. Emerging Roles of Mesenchymal Stem/Stromal-Cell-Derived Extracellular Vesicles in Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15051453. [PMID: 37242693 DOI: 10.3390/pharmaceutics15051453] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Despite the tremendous efforts of many researchers and clinicians, cancer remains the second leading cause of mortality worldwide. Mesenchymal stem/stromal cells (MSCs) are multipotent cells residing in numerous human tissues and presenting unique biological properties, such as low immunogenicity, powerful immunomodulatory and immunosuppressive capabilities, and, in particular, homing abilities. Therapeutic functions of MSCs are mediated mostly by the paracrine effect of released functional molecules and other variable components, and among them the MSC-derived extracellular vesicles (MSC-EVs) seem to be one of the central mediators of the therapeutic functions of MSCs. MSC-EVs are membrane structures secreted by the MSCs, rich in specific proteins, lipids, and nucleic acids. Amongst these, microRNAs have achieved the most attention currently. Unmodified MSC-EVs can promote or inhibit tumor growth, while modified MSC-EVs are involved in the suppression of cancer progression via the delivery of therapeutic molecules, including miRNAs, specific siRNAs, or suicide RNAs, as well as chemotherapeutic drugs. Here, we present an overview of the characteristics of the MSCs-EVs and describe the current methods for their isolation and analysis, the content of their cargo, and modalities for the modification of MSC-EVs in order for them to be used as drug delivery vehicles. Finally, we describe different roles of MSC-EVs in the tumor microenvironment and summarize current advances of MCS-EVs in cancer research and therapy. MSC-EVs are expected to be a novel and promising cell-free therapeutic drug delivery vehicle for the treatment of cancer.
Collapse
Affiliation(s)
- Andreas Nicodemou
- Lambda Life a. s., Levocska 3617/3, 851 01 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Soňa Bernátová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Michaela Čeháková
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Ľuboš Danišovič
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Centre for Tissue Engineering and Regenerative Medicine-Translational Research Unit in the Branch of Regenerative Medicine, Faculty of Medicine, Comenius University, Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
47
|
Macedo-Pereira A, Martins C, Lima J, Sarmento B. Digging the intercellular crosstalk via extracellular vesicles: May exosomes be the drug delivery solution for target glioblastoma? J Control Release 2023; 358:98-115. [PMID: 37120033 DOI: 10.1016/j.jconrel.2023.04.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Glioblastoma (GBM) is an adult's most aggressive brain tumor. The advances in molecular pathology and cell signaling pathways have deepened researchers' understanding of intercellular communication mechanisms that can induce tumor progression, namely the release of extracellular vesicles. Exosomes are small extracellular vesicles in various biological fluids released by almost all cells, thus carrying various biomolecules specific to their parental cell. Several pieces of evidence indicate that exosomes mediate intercellular communication in the tumor microenvironment and cross the blood-brain barrier (BBB), valuable tools for diagnostic and therapeutic applications under the scope of brain diseases such as brain tumors. This review aims to resume the several biological characteristics and the interplay between glioblastoma and exosomes, describing highlight studies that demonstrate the role of exosomes in the tumor microenvironment of GBM and their potential for non-invasive diagnoses and therapeutic approaches, namely, as nanocarriers for drug or gene delivery and cancer vaccines.
Collapse
Affiliation(s)
- Ana Macedo-Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo, Allen 208, 4200-393 Porto, Portugal; FMUP - Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Cláudia Martins
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo, Allen 208, 4200-393 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Jorge Lima
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo, Allen 208, 4200-393 Porto, Portugal; FMUP - Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo, Allen 208, 4200-393 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; IUCS - CESPU, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
48
|
Strader S, West AB. The interplay between monocytes, α-synuclein and LRRK2 in Parkinson's disease. Biochem Soc Trans 2023; 51:747-758. [PMID: 37013975 PMCID: PMC11110874 DOI: 10.1042/bst20201091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
The accumulation of aggregated α-synuclein in susceptible neurons in the brain, together with robust activation of nearby myeloid cells, are pathological hallmarks of Parkinson's disease (PD). While microglia represent the dominant type of myeloid cell in the brain, recent genetic and whole-transcriptomic studies have implicated another type of myeloid cell, bone-marrow derived monocytes, in disease risk and progression. Monocytes in circulation harbor high concentrations of the PD-linked enzyme leucine-rich repeat kinase 2 (LRRK2) and respond to both intracellular and extracellular aggregated α-synuclein with a variety of strong pro-inflammatory responses. This review highlights recent findings from studies that functionally characterize monocytes in PD patients, monocytes that infiltrate into cerebrospinal fluid, and emerging analyses of whole myeloid cell populations in the PD-affected brain that include monocyte populations. Central controversies discussed include the relative contribution of monocytes acting in the periphery from those that might engraft in the brain to modify disease risk and progression. We conclude that further investigation into monocyte pathways and responses in PD, especially the discovery of additional markers, transcriptomic signatures, and functional classifications, that better distinguish monocyte lineages and responses in the brain from other types of myeloid cells may reveal points for therapeutic intervention, as well as a better understanding of ongoing inflammation associated with PD.
Collapse
Affiliation(s)
- Samuel Strader
- Duke Center for Neurodegeneration and Neurotherapeutics, Department of Pharmacology and Cancer Biology, Duke University, 3 Genome Court, Durham, 27710, North Carolina, U.S.A
| | - Andrew B. West
- Duke Center for Neurodegeneration and Neurotherapeutics, Department of Pharmacology and Cancer Biology, Duke University, 3 Genome Court, Durham, 27710, North Carolina, U.S.A
| |
Collapse
|
49
|
Samarpita S, Li X. Leveraging Exosomes as the Next-Generation Bio-Shuttles: The Next Biggest Approach against Th17 Cell Catastrophe. Int J Mol Sci 2023; 24:ijms24087647. [PMID: 37108809 PMCID: PMC10142210 DOI: 10.3390/ijms24087647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, the launch of clinical-grade exosomes is rising expeditiously, as they represent a new powerful approach for the delivery of advanced therapies and for diagnostic purposes for various diseases. Exosomes are membrane-bound extracellular vesicles that can act as biological messengers between cells, in the context of health and disease. In comparison to several lab-based drug carriers, exosome exhibits high stability, accommodates diverse cargo loads, elicits low immunogenicity and toxicity, and therefore manifests tremendous perspectives in the development of therapeutics. The efforts made to spur exosomes in drugging the untreatable targets are encouraging. Currently, T helper (Th) 17 cells are considered the most prominent factor in the establishment of autoimmunity and several genetic disorders. Current reports have indicated the importance of targeting the development of Th17 cells and the secretion of its paracrine molecule, interleukin (IL)-17. However, the present-day targeted approaches exhibit drawbacks, such as high cost of production, rapid transformation, poor bioavailability, and importantly, causing opportunistic infections that ultimately hamper their clinical applications. To overcome this hurdle, the potential use of exosomes as vectors seem to be a promising approach for Th17 cell-targeted therapies. With this standpoint, this review discusses this new concept by providing a snapshot of exosome biogenesis, summarizes the current clinical trials of exosomes in several diseases, analyzes the prospect of exosomes as an established drug carrier and delineates the present challenges, with an emphasis on their practical applications in targeting Th17 cells in diseases. We further decode the possible future scope of exosome bioengineering for targeted drug delivery against Th17 cells and its catastrophe.
Collapse
Affiliation(s)
- Snigdha Samarpita
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
50
|
Oshchepkova A, Zenkova M, Vlassov V. Extracellular Vesicles for Therapeutic Nucleic Acid Delivery: Loading Strategies and Challenges. Int J Mol Sci 2023; 24:ijms24087287. [PMID: 37108446 PMCID: PMC10139028 DOI: 10.3390/ijms24087287] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles released into the extracellular milieu by cells of various origins. They contain different biological cargoes, protecting them from degradation by environmental factors. There is an opinion that EVs have a number of advantages over synthetic carriers, creating new opportunities for drug delivery. In this review, we discuss the ability of EVs to function as carriers for therapeutic nucleic acids (tNAs), challenges associated with the use of such carriers in vivo, and various strategies for tNA loading into EVs.
Collapse
Affiliation(s)
- Anastasiya Oshchepkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| | - Marina Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|