1
|
Raman D, Wernet N, Gang S, Troemel E. PALS-14 promotes resistance to Nematocida parisii infection in Caenorhabditis elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001325. [PMID: 39473452 PMCID: PMC11519727 DOI: 10.17912/micropub.biology.001325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/15/2024] [Accepted: 10/02/2024] [Indexed: 11/09/2024]
Abstract
Microsporidia are common natural pathogens of the nematode Caenorhabditis elegans . Infection of C. elegans by the microsporidian species Nematocida parisii leads to induction of the Intracellular Pathogen Response (IPR), including transcriptional upregulation of 26 pals genes. The divergent ' pals ' sequence signature is conserved with humans, but PALS proteins have unknown biochemical functions. So far, none of the 26 induced pals genes have a demonstrated role in immunity. Here, we use RNAseq data, RNA interference, and CRISPR/Cas9 mutant analysis to identify the N. parisii -induced pals-14 gene as an immune gene that provides defense against microsporidia infection in C. elegans .
Collapse
Affiliation(s)
- Deevya Raman
- Cell and Developmental Biology, University of California, San Diego, San Diego, CA, United States
| | - Nicole Wernet
- Cell and Developmental Biology, University of California, San Diego, San Diego, CA, United States
| | - Spencer Gang
- Cell and Developmental Biology, University of California, San Diego, San Diego, CA, United States
- Molecular Biology Department, Colorado College, Colorado Springs, Colorado, United States
| | - Emily Troemel
- Cell and Developmental Biology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
2
|
Gang SS, Lažetić V. Microsporidia: Pervasive natural pathogens of Caenorhabditis elegans and related nematodes. J Eukaryot Microbiol 2024; 71:e13027. [PMID: 38702921 DOI: 10.1111/jeu.13027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/02/2024] [Indexed: 05/06/2024]
Abstract
The nematode Caenorhabditis elegans is an invaluable host model for studying infections caused by various pathogens, including microsporidia. Microsporidia represent the first natural pathogens identified in C. elegans, revealing the previously unknown Nematocida genus of microsporidia. Following this discovery, the utilization of nematodes as a model host has rapidly expanded our understanding of microsporidia biology and has provided key insights into the cell and molecular mechanisms of antimicrosporidia defenses. Here, we first review the isolation history, morphological characteristics, life cycles, tissue tropism, genetics, and host immune responses for the four most well-characterized Nematocida species that infect C. elegans. We then highlight additional examples of microsporidia that infect related terrestrial and aquatic nematodes, including parasitic nematodes. To conclude, we assess exciting potential applications of the nematode-microsporidia system while addressing the technical advances necessary to facilitate future growth in this field.
Collapse
Affiliation(s)
- Spencer S Gang
- Molecular Biology Department, Colorado College, Colorado Springs, Colorado, USA
| | - Vladimir Lažetić
- Department of Biological Sciences, Columbian College of Arts & Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
3
|
Batachari LE, Dai AY, Troemel ER. Caenorhabditis elegans RIG-I-like receptor DRH-1 signals via CARDs to activate antiviral immunity in intestinal cells. Proc Natl Acad Sci U S A 2024; 121:e2402126121. [PMID: 38980902 PMCID: PMC11260149 DOI: 10.1073/pnas.2402126121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Upon sensing viral RNA, mammalian RIG-I-like receptors (RLRs) activate downstream signals using caspase activation and recruitment domains (CARDs), which ultimately promote transcriptional immune responses that have been well studied. In contrast, the downstream signaling mechanisms for invertebrate RLRs are much less clear. For example, the Caenorhabditis elegans RLR DRH-1 lacks annotated CARDs and up-regulates the distinct output of RNA interference. Here, we found that similar to mammal RLRs, DRH-1 signals through two tandem CARDs (2CARD) to induce a transcriptional immune response. Expression of DRH-1(2CARD) alone in the intestine was sufficient to induce immune gene expression, increase viral resistance, and promote thermotolerance, a phenotype previously associated with immune activation in C. elegans. We also found that DRH-1 is required in the intestine to induce immune gene expression, and we demonstrate subcellular colocalization of DRH-1 puncta with double-stranded RNA inside the cytoplasm of intestinal cells upon viral infection. Altogether, our results reveal mechanistic and spatial insights into antiviral signaling in C. elegans, highlighting unexpected parallels in RLR signaling between C. elegans and mammals.
Collapse
Affiliation(s)
- Lakshmi E. Batachari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA92093
| | - Alyssa Y. Dai
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA92093
| | - Emily R. Troemel
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
4
|
Batachari LE, Dai AY, Troemel ER. C. elegans RIG-I-like receptor DRH-1 signals via CARDs to activate anti-viral immunity in intestinal cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578694. [PMID: 38370651 PMCID: PMC10871272 DOI: 10.1101/2024.02.05.578694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Upon sensing viral RNA, mammalian RIG-I-like receptors activate downstream signals using caspase activation and recruitment domains (CARDs), which ultimately promote transcriptional immune responses that have been well-studied. In contrast, the downstream signaling mechanisms for invertebrate RIG-I-like receptors are much less clear. For example, the Caenorhabditis elegans RIG-I-like receptor DRH-1 lacks annotated CARDs and upregulates the distinct output of RNA interference (RNAi). Here we found that, similar to mammal RIG-I-like receptors, DRH-1 signals through two tandem caspase activation and recruitment domains (2CARD) to induce a transcriptional immune response. Expression of DRH-1(2CARD) alone in the intestine was sufficient to induce immune gene expression, increase viral resistance, and promote thermotolerance, a phenotype previously associated with immune activation. We also found that DRH-1 is required in the intestine to induce immune gene expression, and we demonstrate subcellular colocalization of DRH-1 puncta with double-stranded RNA inside the cytoplasm of intestinal cells upon viral infection. Altogether, our results reveal mechanistic and spatial insights into anti-viral signaling in C. elegans, highlighting unexpected parallels in RIG-I-like receptor signaling between C. elegans and mammals.
Collapse
Affiliation(s)
- Lakshmi E Batachari
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Alyssa Y Dai
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Emily R Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| |
Collapse
|
5
|
Svedberg D, Winiger RR, Berg A, Sharma H, Tellgren-Roth C, Debrunner-Vossbrinck BA, Vossbrinck CR, Barandun J. Functional annotation of a divergent genome using sequence and structure-based similarity. BMC Genomics 2024; 25:6. [PMID: 38166563 PMCID: PMC10759460 DOI: 10.1186/s12864-023-09924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/18/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Microsporidia are a large taxon of intracellular pathogens characterized by extraordinarily streamlined genomes with unusually high sequence divergence and many species-specific adaptations. These unique factors pose challenges for traditional genome annotation methods based on sequence similarity. As a result, many of the microsporidian genomes sequenced to date contain numerous genes of unknown function. Recent innovations in rapid and accurate structure prediction and comparison, together with the growing amount of data in structural databases, provide new opportunities to assist in the functional annotation of newly sequenced genomes. RESULTS In this study, we established a workflow that combines sequence and structure-based functional gene annotation approaches employing a ChimeraX plugin named ANNOTEX (Annotation Extension for ChimeraX), allowing for visual inspection and manual curation. We employed this workflow on a high-quality telomere-to-telomere sequenced tetraploid genome of Vairimorpha necatrix. First, the 3080 predicted protein-coding DNA sequences, of which 89% were confirmed with RNA sequencing data, were used as input. Next, ColabFold was used to create protein structure predictions, followed by a Foldseek search for structural matching to the PDB and AlphaFold databases. The subsequent manual curation, using sequence and structure-based hits, increased the accuracy and quality of the functional genome annotation compared to results using only traditional annotation tools. Our workflow resulted in a comprehensive description of the V. necatrix genome, along with a structural summary of the most prevalent protein groups, such as the ricin B lectin family. In addition, and to test our tool, we identified the functions of several previously uncharacterized Encephalitozoon cuniculi genes. CONCLUSION We provide a new functional annotation tool for divergent organisms and employ it on a newly sequenced, high-quality microsporidian genome to shed light on this uncharacterized intracellular pathogen of Lepidoptera. The addition of a structure-based annotation approach can serve as a valuable template for studying other microsporidian or similarly divergent species.
Collapse
Affiliation(s)
- Dennis Svedberg
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Science for Life Laboratory, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 90736, Sweden
| | - Rahel R Winiger
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Science for Life Laboratory, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden
| | - Alexandra Berg
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Science for Life Laboratory, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 90736, Sweden
| | - Himanshu Sharma
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Science for Life Laboratory, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 90736, Sweden
| | - Christian Tellgren-Roth
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Charles R Vossbrinck
- Department of Environmental Science, Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - Jonas Barandun
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Science for Life Laboratory, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden.
| |
Collapse
|
6
|
Lažetić V, Batachari LE, Russell AB, Troemel ER. Similarities in the induction of the intracellular pathogen response in Caenorhabditis elegans and the type I interferon response in mammals. Bioessays 2023; 45:e2300097. [PMID: 37667453 PMCID: PMC10694843 DOI: 10.1002/bies.202300097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Although the type-I interferon (IFN-I) response is considered vertebrate-specific, recent findings about the Intracellular Pathogen Response (IPR) in nematode Caenorhabditis elegans indicate that there are similarities between these two transcriptional immunological programs. The IPR is induced during infection with natural intracellular fungal and viral pathogens of the intestine and promotes resistance against these pathogens. Similarly, the IFN-I response is induced by viruses and other intracellular pathogens and promotes resistance against infection. Whether the IPR and the IFN-I response evolved in a divergent or convergent manner is an unanswered and exciting question, which could be addressed by further studies of immunity against intracellular pathogens in C. elegans and other simple host organisms. Here we highlight similar roles played by RIG-I-like receptors, purine metabolism enzymes, proteotoxic stressors, and transcription factors to induce the IPR and IFN-I response, as well as the similar consequences of these defense programs on organismal development.
Collapse
Affiliation(s)
- Vladimir Lažetić
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of Biological SciencesThe George Washington UniversityWashingtonDCUSA
| | - Lakshmi E. Batachari
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Alistair B. Russell
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Emily R. Troemel
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
7
|
Lažetić V, Blanchard MJ, Bui T, Troemel ER. Multiple pals gene modules control a balance between immunity and development in Caenorhabditis elegans. PLoS Pathog 2023; 19:e1011120. [PMID: 37463170 PMCID: PMC10353827 DOI: 10.1371/journal.ppat.1011120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
The immune system continually battles against pathogen-induced pressures, which often leads to the evolutionary expansion of immune gene families in a species-specific manner. For example, the pals gene family expanded to 39 members in the Caenorhabditis elegans genome, in comparison to a single mammalian pals ortholog. Our previous studies have revealed that two members of this family, pals-22 and pals-25, act as antagonistic paralogs to control the Intracellular Pathogen Response (IPR). The IPR is a protective transcriptional response, which is activated upon infection by two molecularly distinct natural intracellular pathogens of C. elegans-the Orsay virus and the fungus Nematocida parisii from the microsporidia phylum. In this study, we identify a previously uncharacterized member of the pals family, pals-17, as a newly described negative regulator of the IPR. pals-17 mutants show constitutive upregulation of IPR gene expression, increased immunity against intracellular pathogens, as well as impaired development and reproduction. We also find that two other previously uncharacterized pals genes, pals-20 and pals-16, are positive regulators of the IPR, acting downstream of pals-17. These positive regulators reverse the effects caused by the loss of pals-17 on IPR gene expression, immunity, and development. We show that the negative IPR regulator protein PALS-17 and the positive IPR regulator protein PALS-20 colocalize inside and at the apical side of intestinal epithelial cells, which are the sites of infection for IPR-inducing pathogens. In summary, our study demonstrates that several pals genes from the expanded pals gene family act as ON/OFF switch modules to regulate a balance between organismal development and immunity against natural intracellular pathogens in C. elegans.
Collapse
Affiliation(s)
- Vladimir Lažetić
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Michael J. Blanchard
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Theresa Bui
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Emily R. Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
8
|
Lažetić V, Blanchard MJ, Bui T, Troemel ER. Multiple pals gene modules control a balance between immunity and development in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.15.524171. [PMID: 36711775 PMCID: PMC9882112 DOI: 10.1101/2023.01.15.524171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The immune system continually battles against pathogen-induced pressures, which often leads to the evolutionary expansion of immune gene families in a species-specific manner. For example, the pals gene family expanded to 39 members in the Caenorhabditis elegans genome, in comparison to a single mammalian pals ortholog. Our previous studies have revealed that two members of this family, pals-22 and pals-25 , act as antagonistic paralogs to control the Intracellular Pathogen Response (IPR). The IPR is a protective transcriptional response, which is activated upon infection by two molecularly distinct natural intracellular pathogens of C. elegans - the Orsay virus and the fungus Nematocida parisii from the microsporidia phylum. In this study, we identify a previously uncharacterized member of the pals family, pals-17 , as a newly described negative regulator of the IPR. pals-17 mutants show constitutive upregulation of IPR gene expression, increased immunity against intracellular pathogens, as well as impaired development and reproduction. We also find that two other previously uncharacterized pals genes, pals-20 and pals-16 , are positive regulators of the IPR, acting downstream of pals-17 . These positive regulators reverse the effects caused by the loss of pals-17 on IPR gene expression, immunity and development. We show that the negative IPR regulator protein PALS-17 and the positive IPR regulator protein PALS-20 colocalize inside intestinal epithelial cells, which are the sites of infection for IPR-inducing pathogens. In summary, our study demonstrates that several pals genes from the expanded pals gene family act as ON/OFF switch modules to regulate a balance between organismal development and immunity against natural intracellular pathogens in C. elegans . AUTHOR SUMMARY Immune responses to pathogens induce extensive rewiring of host physiology. In the short term, these changes are generally beneficial as they can promote resistance against infection. However, prolonged activation of immune responses can have serious negative consequences on host health, including impaired organismal development and fitness. Therefore, the balance between activating the immune system and promoting development must be precisely regulated. In this study, we used genetics to identify a gene in the roundworm Caenorhabditis elegans called pals-17 that acts as a repressor of the Intracellular Pathogen Response (IPR), a defense response against viral and microsporidian infections. We also found that pals-17 is required for the normal development of these animals. Furthermore, we identified two other pals genes, pals-20 and pals-16 , as suppressors of pals-17 mutant phenotypes. Finally, we found that PALS-17 and PALS-20 proteins colocalize inside intestinal cells, where viruses and microsporidia invade and replicate in the host. Taken together, our study demonstrates a balance between organismal development and immunity that is regulated by several genetic ON/OFF switch 'modules' in C. elegans .
Collapse
Affiliation(s)
- Vladimir Lažetić
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Michael J. Blanchard
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Theresa Bui
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Emily R. Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States,Corresponding author
| |
Collapse
|
9
|
IDENTIFICATION AND RETROSPECTIVE EVALUATION OF A FILARIOID NEMATODE SPECIES IN MANAGED GRASSHOPPER SPARROWS ( AMMODRAMUS SAVANNARUM). J Zoo Wildl Med 2023; 53:755-768. [PMID: 36640077 DOI: 10.1638/2021-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 01/09/2023] Open
Abstract
The grasshopper sparrow (Ammodramus savannarum) is a species of ground-dwelling passerine bird with 12 different subspecies. The Florida subspecies (Ammodramus savannarum floridanus) is classified as federally endangered, with the most common threats including habitat loss, nest predation, and floods. A managed breeding program was established at White Oak Conservation (Yulee, FL) in 2015 with eastern grasshopper sparrows (Ammodramus savannarum pratensis) as a model for breeding Florida grasshopper sparrows as part of an assurance colony. A filarioid parasite species (Aproctella sp.) was characterized by PCR after identification by blood films and postmortem examinations of both subspecies housed at White Oak Conservation. This Aproctella species was distinct from others with available sequence. Records from 157 eastern and Florida grasshopper sparrows were reviewed, and correlations between presence of filariasis and subspecies, sex, body condition score, and presence of systemic isosporosis, squamous metaplasia, coelomitis, airsacculitis, or a combination of conditions were investigated. Twenty-nine (18.5%) birds (13 of 71 Florida grasshopper sparrows; 16 of 86 eastern grasshopper sparrows) were positive for filariasis by blood film review, grossly or by tissue imprint at postmortem examination, or histologically. Filariasis was significantly correlated with systemic isosporosis, coelomitis, and airsacculitis; was not correlated with subspecies, sex, or squamous metaplasia; and had a questionable correlation with body condition score. This report provides evidence that this Aproctella species has potential to contribute to morbidity and mortality in the grasshopper sparrow. This information will be helpful for implementing effective measures against suspected vectors and for the development of best practice strategies for the health management of the species in breeding programs.
Collapse
|
10
|
Lažetić V, Wu F, Cohen LB, Reddy KC, Chang YT, Gang SS, Bhabha G, Troemel ER. The transcription factor ZIP-1 promotes resistance to intracellular infection in Caenorhabditis elegans. Nat Commun 2022; 13:17. [PMID: 35013162 PMCID: PMC8748929 DOI: 10.1038/s41467-021-27621-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Defense against intracellular infection has been extensively studied in vertebrate hosts, but less is known about invertebrate hosts; specifically, the transcription factors that induce defense against intracellular intestinal infection in the model nematode Caenorhabditis elegans remain understudied. Two different types of intracellular pathogens that naturally infect the C. elegans intestine are the Orsay virus, which is an RNA virus, and microsporidia, which comprise a phylum of fungal pathogens. Despite their molecular differences, these pathogens induce a common host transcriptional response called the intracellular pathogen response (IPR). Here we show that zip-1 is an IPR regulator that functions downstream of all known IPR-activating and regulatory pathways. zip-1 encodes a putative bZIP transcription factor, and we show that zip-1 controls induction of a subset of genes upon IPR activation. ZIP-1 protein is expressed in the nuclei of intestinal cells, and is at least partially required in the intestine to upregulate IPR gene expression. Importantly, zip-1 promotes resistance to infection by the Orsay virus and by microsporidia in intestinal cells. Altogether, our results indicate that zip-1 represents a central hub for triggers of the IPR, and that this transcription factor has a protective function against intracellular pathogen infection in C. elegans. Intestinal immune responses to intracellular infection of Caenorhabditis elegans and other Invertebrate hosts are not well understood. Here the authors show a key role for the transcription factor ZIP-1 during intestinal intracellular infection.
Collapse
Affiliation(s)
- Vladimir Lažetić
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, CA, USA
| | - Fengting Wu
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, CA, USA
| | - Lianne B Cohen
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, CA, USA
| | - Kirthi C Reddy
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, CA, USA
| | - Ya-Ting Chang
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Spencer S Gang
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, CA, USA
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Emily R Troemel
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, CA, USA.
| |
Collapse
|
11
|
Insights from C. elegans into Microsporidia Biology and Host-Pathogen Relationships. EXPERIENTIA SUPPLEMENTUM 2022; 114:115-136. [PMID: 35544001 PMCID: PMC9208714 DOI: 10.1007/978-3-030-93306-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Microsporidia are poorly understood, ubiquitous eukaryotic parasites that are completely dependent on their hosts for replication. With the discovery of microsporidia species naturally infecting the genetically tractable transparent nematode C. elegans, this host has been used to explore multiple areas of microsporidia biology. Here we review results about microsporidia infections in C. elegans, which began with the discovery of the intestinal-infecting species Nematocida parisii. Recent findings include new species identification in the Nematocida genus, with more intestinal-infecting species, and also a species with broader tissue tropism, the epidermal and muscle-infecting species Nematocida displodere. This species has a longer polar tube infection apparatus, which may enable its wider tissue range. After invasion, multiple Nematocida species appear to fuse host cells, which likely promotes their dissemination within host organs. Localized proteomics identified Nematocida proteins that have direct contact with the C. elegans intestinal cytosol and nucleus, and many of these host-exposed proteins belong to expanded, species-specific gene families. On the host side, forward genetic screens have identified regulators of the Intracellular Pathogen Response (IPR), which is a transcriptional response induced by both microsporidia and the Orsay virus, which is also a natural, obligate intracellular pathogen of the C. elegans intestine. The IPR constitutes a novel immune/stress response that promotes resistance against microsporidia, virus, and heat shock. Overall, the Nematocida/C. elegans system has provided insights about strategies for microsporidia pathogenesis, as well as innate defense pathways against these parasites.
Collapse
|
12
|
Barela Hudgell MA, Smith LC. Sequence Diversity, Locus Structure, and Evolutionary History of the SpTransformer Genes in the Sea Urchin Genome. Front Immunol 2021; 12:744783. [PMID: 34867968 PMCID: PMC8634487 DOI: 10.3389/fimmu.2021.744783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
The generation of large immune gene families is often driven by evolutionary pressure exerted on host genomes by their pathogens, which has been described as the immunological arms race. The SpTransformer (SpTrf) gene family from the California purple sea urchin, Strongylocentrotus purpuratus, is upregulated upon immune challenge and encodes the SpTrf proteins that interact with pathogens during an immune response. Native SpTrf proteins bind both bacteria and yeast, and augment phagocytosis of a marine Vibrio, while a recombinant SpTrf protein (rSpTrf-E1) binds a subset of pathogens and a range of pathogen associated molecular patterns. In the sequenced sea urchin genome, there are four SpTrf gene clusters for a total of 17 genes. Here, we report an in-depth analysis of these genes to understand the sequence complexities of this family, its genomic structure, and to derive a putative evolutionary history for the formation of the gene clusters. We report a detailed characterization of gene structure including the intron type and UTRs with conserved transcriptional start sites, the start codon and multiple stop codons, and locations of polyadenylation signals. Phylogenetic and percent mismatch analyses of the genes and the intergenic regions allowed us to predict the last common ancestral SpTrf gene and a theoretical evolutionary history of the gene family. The appearance of the gene clusters from the theoretical ancestral gene may have been driven by multiple duplication and deletion events of regions containing SpTrf genes. Duplications and ectopic insertion events, indels, and point mutations in the exons likely resulted in the extant genes and family structure. This theoretical evolutionary history is consistent with the involvement of these genes in the arms race in responses to pathogens and suggests that the diversification of these genes and their encoded proteins have been selected for based on the survival benefits of pathogen binding and host protection.
Collapse
Affiliation(s)
| | - L. Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
13
|
Garcia-Sanchez JA, Ewbank JJ, Visvikis O. Ubiquitin-related processes and innate immunity in C. elegans. Cell Mol Life Sci 2021; 78:4305-4333. [PMID: 33630111 PMCID: PMC11072174 DOI: 10.1007/s00018-021-03787-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Innate immunity is an evolutionary ancient defence strategy that serves to eliminate infectious agents while maintaining host health. It involves a complex network of sensors, signaling proteins and immune effectors that detect the danger, then relay and execute the immune programme. Post-translational modifications relying on conserved ubiquitin and ubiquitin-like proteins are an integral part of the system. Studies using invertebrate models of infection, such as the nematode Caenorhabditis elegans, have greatly contributed to our understanding of how ubiquitin-related processes act in immune sensing, regulate immune signaling pathways, and participate to host defence responses. This review highlights the interest of working with a genetically tractable model organism and illustrates how C. elegans has been used to identify ubiquitin-dependent immune mechanisms, discover novel ubiquitin-based resistance strategies that mediate pathogen clearance, and unravel the role of ubiquitin-related processes in tolerance, preserving host fitness during pathogen attack. Special emphasis is placed on processes that are conserved in mammals.
Collapse
Affiliation(s)
- Juan A Garcia-Sanchez
- INSERM, C3M, Côte D'Azur University, Nice, France
- INSERM, CNRS, CIML, Turing Centre for Living Systems, Aix-Marseille University, Marseille, France
| | - Jonathan J Ewbank
- INSERM, CNRS, CIML, Turing Centre for Living Systems, Aix-Marseille University, Marseille, France.
| | | |
Collapse
|