1
|
Marchesani F, Rebecchi F, Pieroni M, Faggiano S, Annunziato G, Spaggiari C, Bruno S, Rinaldi S, Giaccari R, Costantino G, Campanini B. Chemical Probes to Investigate Central Nervous System Disorders: Design, Synthesis and Mechanism of Action of a Potent Human Serine Racemase Inhibitor. ACS Med Chem Lett 2024; 15:1298-1305. [PMID: 39140049 PMCID: PMC11318019 DOI: 10.1021/acsmedchemlett.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 08/15/2024] Open
Abstract
The intricate signaling network within the central nervous system (CNS) involving N-methyl-d-aspartate receptors (NMDARs) has been recognized as a key player in severe neurodegenerative diseases. The indirect modulation of NMDAR-mediated neurotransmission through inhibition of serine racemase (SR)-the enzyme responsible for the synthesis of the NMDAR coagonist d-serine-has been suggested as a therapeutic strategy to treat these conditions. Despite the inherent challenges posed by SR conformational flexibility, a ligand-based drug design strategy has successfully produced a series of potent covalent inhibitors structurally related to amino acid analogues. Among these inhibitors, O-(2-([1,1'-biphenyl]-4-yl)-1-carboxyethyl)hydroxylammonium chloride (28) has emerged as a valuable candidate with a K d of about 5 μM, which makes it one of the most potent hSR inhibitors reported to date. This molecule is expected to inspire the identification of selective hSR inhibitors that might find applications as tools in the study and treatment of several CNS pathologies.
Collapse
Affiliation(s)
| | | | - Marco Pieroni
- Department
of Food and Drug, University of Parma, 43124 Parma, Italy
- P4T
Group, University of Parma, 43124 Parma, Italy
- Interdepartmental
Research Center for the Innovation of Health Products “Biopharmanet-tec”, University of Parma, 43124 Parma, Italy
- Centro
Interdipartimentale Misure (CIM) “G. Casnati”, University of Parma, 43124 Parma, Italy
| | - Serena Faggiano
- Department
of Food and Drug, University of Parma, 43124 Parma, Italy
- Institute
of Biophysics, National Research Council, 56124 Pisa, Italy
| | - Giannamaria Annunziato
- Department
of Food and Drug, University of Parma, 43124 Parma, Italy
- Centro
Interdipartimentale Misure (CIM) “G. Casnati”, University of Parma, 43124 Parma, Italy
| | - Chiara Spaggiari
- Department
of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Stefano Bruno
- Department
of Food and Drug, University of Parma, 43124 Parma, Italy
- Interdepartmental
Research Center for the Innovation of Health Products “Biopharmanet-tec”, University of Parma, 43124 Parma, Italy
| | - Sofia Rinaldi
- Department
of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Roberta Giaccari
- Department
of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Gabriele Costantino
- Department
of Food and Drug, University of Parma, 43124 Parma, Italy
- Interdepartmental
Research Center for the Innovation of Health Products “Biopharmanet-tec”, University of Parma, 43124 Parma, Italy
- Centro
Interdipartimentale Misure (CIM) “G. Casnati”, University of Parma, 43124 Parma, Italy
| | - Barbara Campanini
- Department
of Food and Drug, University of Parma, 43124 Parma, Italy
- Interdepartmental
Research Center for the Innovation of Health Products “Biopharmanet-tec”, University of Parma, 43124 Parma, Italy
| |
Collapse
|
2
|
Anjo SI, He Z, Hussain Z, Farooq A, McIntyre A, Laughton CA, Carvalho AN, Finelli MJ. Protein Oxidative Modifications in Neurodegenerative Diseases: From Advances in Detection and Modelling to Their Use as Disease Biomarkers. Antioxidants (Basel) 2024; 13:681. [PMID: 38929122 PMCID: PMC11200609 DOI: 10.3390/antiox13060681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidation-reduction post-translational modifications (redox-PTMs) are chemical alterations to amino acids of proteins. Redox-PTMs participate in the regulation of protein conformation, localization and function, acting as signalling effectors that impact many essential biochemical processes in the cells. Crucially, the dysregulation of redox-PTMs of proteins has been implicated in the pathophysiology of numerous human diseases, including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. This review aims to highlight the current gaps in knowledge in the field of redox-PTMs biology and to explore new methodological advances in proteomics and computational modelling that will pave the way for a better understanding of the role and therapeutic potential of redox-PTMs of proteins in neurodegenerative diseases. Here, we summarize the main types of redox-PTMs of proteins while providing examples of their occurrence in neurodegenerative diseases and an overview of the state-of-the-art methods used for their detection. We explore the potential of novel computational modelling approaches as essential tools to obtain insights into the precise role of redox-PTMs in regulating protein structure and function. We also discuss the complex crosstalk between various PTMs that occur in living cells. Finally, we argue that redox-PTMs of proteins could be used in the future as diagnosis and prognosis biomarkers for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sandra I. Anjo
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-517 Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Zhicheng He
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Zohaib Hussain
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Aruba Farooq
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alan McIntyre
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Charles A. Laughton
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Andreia Neves Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Mattéa J. Finelli
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
3
|
Marchesani F, Zangelmi E, Murtas G, Costanzi E, Ullah R, Peracchi A, Bruno S, Pollegioni L, Mozzarelli A, Storici P, Campanini B. L-Serine Biosynthesis in The Human Central Nervous System: Structure and Function of Phosphoserine Aminotransferase. Protein Sci 2023; 32:e4609. [PMID: 36851825 PMCID: PMC10031235 DOI: 10.1002/pro.4609] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/12/2023] [Accepted: 02/23/2023] [Indexed: 03/01/2023]
Abstract
Organisms from all kingdoms of life synthesize L-serine from 3-phosphoglycerate through the phosphorylated pathway, a three-step diversion of glycolysis. Phosphoserine aminotransferase (PSAT) catalyzes the intermediate step, the pyridoxal 5'-phosphate-dependent transamination of 3-phosphohydroxypyruvate and L-glutamate to O-phosphoserine and α-ketoglutarate. PSAT is particularly relevant in the central nervous system of mammals because L-serine is the metabolic precursor of D-serine, cysteine, phospholipids, and nucleotides. Several mutations in the human psat gene have been linked to serine deficiency disorders, characterized by severe neurological symptoms. Furthermore, PSAT is overexpressed in many tumors and this overexpression has been associated with poor clinical outcomes. Here, we report the detailed functional and structural characterization of the recombinant human PSAT. The reaction catalyzed by PSAT is reversible, with an equilibrium constant of about 10, and the enzyme is very efficient, with a kcat /Km of 5.9 × 106 M-1 s-1 , thus contributing in driving the pathway towards the products despite the extremely unfavorable first step catalyzed by 3-phosphoglycerate dehydrogenase. The three-dimensional X-ray crystal structure of PSAT was solved in the substrate-free as well as in the O-phosphoserine-bound forms. Both structures contain eight protein molecules in the asymmetric unit, arranged in four dimers, with a bound cofactor in each subunit. In the substrate-free form, the active site of PSAT contains a sulfate ion that, in the substrate-bound form, is replaced by the phosphate group of O-phosphoserine. Interestingly, fast crystal soaking used to produce the substrate-bound form allowed the trapping of different intermediates along the catalytic cycle. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Erika Zangelmi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Elisa Costanzi
- Protein Facility, Elettra Sincrotrone Trieste S.C.p.A., Trieste, Italy
| | - Raheem Ullah
- Protein Facility, Elettra Sincrotrone Trieste S.C.p.A., Trieste, Italy
- Present address: Structural Biology Lab, NIBGE, Faisalabad, Pakistan
| | - Alessio Peracchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | | - Paola Storici
- Protein Facility, Elettra Sincrotrone Trieste S.C.p.A., Trieste, Italy
| | | |
Collapse
|
4
|
Verde C, Giordano D, Bruno S. NO and Heme Proteins: Cross-Talk between Heme and Cysteine Residues. Antioxidants (Basel) 2023; 12:antiox12020321. [PMID: 36829880 PMCID: PMC9952723 DOI: 10.3390/antiox12020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Heme proteins are a diverse group that includes several unrelated families. Their biological function is mainly associated with the reactivity of the heme group, which-among several other reactions-can bind to and react with nitric oxide (NO) and other nitrogen compounds for their production, scavenging, and transport. The S-nitrosylation of cysteine residues, which also results from the reaction with NO and other nitrogen compounds, is a post-translational modification regulating protein activity, with direct effects on a variety of signaling pathways. Heme proteins are unique in exhibiting this dual reactivity toward NO, with reported examples of cross-reactivity between the heme and cysteine residues within the same protein. In this work, we review the literature on this interplay, with particular emphasis on heme proteins in which heme-dependent nitrosylation has been reported and those for which both heme nitrosylation and S-nitrosylation have been associated with biological functions.
Collapse
Affiliation(s)
- Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Napoli, Italy
| | - Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Napoli, Italy
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
- Biopharmanet-TEC, University of Parma, 43124 Parma, Italy
- Correspondence:
| |
Collapse
|
5
|
Montali C, Abbruzzetti S, Franzen A, Casini G, Bruno S, Delcanale P, Burgstaller S, Ramadani-Muja J, Malli R, Gensch T, Viappiani C. Nitric Oxide Sensing by a Blue Fluorescent Protein. Antioxidants (Basel) 2022; 11:2229. [PMID: 36421416 PMCID: PMC9686608 DOI: 10.3390/antiox11112229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 09/19/2023] Open
Abstract
S-Nitrosylation of cysteine residues is an important molecular mechanism for dynamic, post-translational regulation of several proteins, providing a ubiquitous redox regulation. Cys residues are present in several fluorescent proteins (FP), including members of the family of Aequorea victoria Green Fluorescent Protein (GFP)-derived FPs, where two highly conserved cysteine residues contribute to a favorable environment for the autocatalytic chromophore formation reaction. The effect of nitric oxide on the fluorescence properties of FPs has not been investigated thus far, despite the tremendous role FPs have played for 25 years as tools in cell biology. We have examined the response to nitric oxide of fluorescence emission by the blue-emitting fluorescent protein mTagBFP2. To our surprise, upon exposure to micromolar concentrations of nitric oxide, we observed a roughly 30% reduction in fluorescence quantum yield and lifetime. Recovery of fluorescence emission is observed after treatment with Na-dithionite. Experiments on related fluorescent proteins from different families show similar nitric oxide sensitivity of their fluorescence. We correlate the effect with S-nitrosylation of Cys residues. Mutation of Cys residues in mTagBFP2 removes its nitric oxide sensitivity. Similarly, fluorescent proteins devoid of Cys residues are insensitive to nitric oxide. We finally show that mTagBFP2 can sense exogenously generated nitric oxide when expressed in a living mammalian cell. We propose mTagBFP2 as the starting point for a new class of genetically encoded nitric oxide sensors based on fluorescence lifetime imaging.
Collapse
Affiliation(s)
- Chiara Montali
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Arne Franzen
- Institute of Biological Information Processing (IBI-1: Molecular and Cellular Physiology), Forschungszentrum Jülich, Leo-Brandt-Straße, D-52428 Jülich, Germany
| | - Giorgia Casini
- Institute of Biological Information Processing (IBI-1: Molecular and Cellular Physiology), Forschungszentrum Jülich, Leo-Brandt-Straße, D-52428 Jülich, Germany
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Pietro Delcanale
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Sandra Burgstaller
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Jeta Ramadani-Muja
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Thomas Gensch
- Institute of Biological Information Processing (IBI-1: Molecular and Cellular Physiology), Forschungszentrum Jülich, Leo-Brandt-Straße, D-52428 Jülich, Germany
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| |
Collapse
|
6
|
Wu S, Zhou J, Zhang H, Barger SW. Serine Racemase Expression Differentiates Aging from Alzheimer's Brain. Curr Alzheimer Res 2022; 19:494-502. [PMID: 35929621 DOI: 10.2174/1567205019666220805105106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 01/27/2023]
Abstract
Aging is an inevitable process characterized by progressive loss of physiological integrity and increased susceptibility to cancer, diabetes, cardiovascular, and neurodegenerative diseases; aging is the primary risk factor for Alzheimer's disease (AD), the most common cause of dementia. AD is characterized by brain pathology, including extracellular deposition of amyloid aggregation and intracellular accumulation of neurofibrillary tangles composed of hyperphosphorylated tau protein. In addition, losses of synapses and a wide range of neurons are pivotal pathologies in the AD brain. Accumulating evidence demonstrates hypoactivation of hippocampal neural networks in the aging brain, whereas AD-related mild cognitive impairment (AD-MCI) begins with hyperactivation, followed by a diminution of hippocampal activity as AD develops. The biphasic trends of the activity of the hippocampal neural network are consistent with the alteration of N-methyl-D-aspartate receptor (NMDA-R) activity from aging to prodromal (AD-MCI) to mid-/late stage AD. D-serine, a product of racemization catalyzed by serine racemase (SR), is an important co-agonist of the NMDA-R which is involved in synaptic events including neurotransmission, synaptogenesis, long-term potentiation (LTP), development, and excitotoxicity. SR and D-serine are decreased in the hippocampus of the aging brain, correlating with impairment of cognitive function. By contrast, SR is increased in AD brain, which is associated with a greater degree of cognitive dysfunction. Emerging studies suggest that D-serine levels in the brain or in cerebral spinal fluid from AD patients are higher than in age-matched controls, but the results are inconsistent. Very recently, serum D-serine levels in AD were reported to correlate with sex and clinical dementia rating (CDR) stage. This review will discuss alterations of NMDA-R and SR in aging and AD brain, and the mechanisms underlying the differential regulation of SR will be probed. Collectively, we propose that SR may be a molecular switch that distinguishes the effects of aging from those of AD on the brain.
Collapse
Affiliation(s)
- Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, State Key Laboratory of Optometry, Wenzhou, Zhejiang 325003, P.R. China
| | - Jing Zhou
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, State Key Laboratory of Optometry, Wenzhou, Zhejiang 325003, P.R. China
| | - He Zhang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, State Key Laboratory of Optometry, Wenzhou, Zhejiang 325003, P.R. China.,College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, P.R. China
| | - Steven W Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock AR, USA.,Geriatric Research, Education & Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock AR, USA
| |
Collapse
|
7
|
Human Serine Racemase Weakly Binds the Third PDZ Domain of PSD-95. Int J Mol Sci 2022; 23:ijms23094959. [PMID: 35563349 PMCID: PMC9105370 DOI: 10.3390/ijms23094959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Human serine racemase (hSR) is a pyridoxal-5'-phosphate (PLP)-dependent dimer that catalyzes the formation of D-serine from L-serine, as well as the dehydration of both L- and D-serine to pyruvate and ammonia. As D-serine is a co-agonist of N-methyl-D-aspartate receptors (NMDARs), hSR is a key enzyme in glutamatergic neurotransmission. hSR activity is finely regulated by Mg2+, ATP, post-translational modifications, and the interaction with protein partners. In particular, the C-terminus of murine SR binds the third PDZ domain (PDZ3) of postsynaptic density protein 95 (PSD-95), a member of the membrane-associated guanylate kinase (MAGUK) family involved in the trafficking and localization of glutamate receptors. The structural details of the interaction and the stability of the complex have not been elucidated yet. We evaluated the binding of recombinant human PSD-95 PDZ3 to hSR by glutaraldehyde cross-linking, pull-down assays, isothermal titration calorimetry, nuclear magnetic resonance, and enzymatic assays. Overall, a weak interaction was observed, confirming the binding for the human orthologs but supporting the hypothesis that a third protein partner (i.e., stargazin) is required for the regulation of hSR activity by PSD-95 and to stabilize their interaction.
Collapse
|
8
|
Koulouris CR, Gardiner SE, Harris TK, Elvers KT, Mark Roe S, Gillespie JA, Ward SE, Grubisha O, Nicholls RA, Atack JR, Bax BD. Tyrosine 121 moves revealing a ligandable pocket that couples catalysis to ATP-binding in serine racemase. Commun Biol 2022; 5:346. [PMID: 35410329 PMCID: PMC9001717 DOI: 10.1038/s42003-022-03264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
Human serine racemase (hSR) catalyses racemisation of L-serine to D-serine, the latter of which is a co-agonist of the NMDA subtype of glutamate receptors that are important in synaptic plasticity, learning and memory. In a 'closed' hSR structure containing the allosteric activator ATP, the inhibitor malonate is enclosed between the large and small domains while ATP is distal to the active site, residing at the dimer interface with the Tyr121 hydroxyl group contacting the α-phosphate of ATP. In contrast, in 'open' hSR structures, Tyr121 sits in the core of the small domain with its hydroxyl contacting the key catalytic residue Ser84. The ability to regulate SR activity by flipping Tyr121 from the core of the small domain to the dimer interface appears to have evolved in animals with a CNS. Multiple X-ray crystallographic enzyme-fragment structures show Tyr121 flipped out of its pocket in the core of the small domain. Data suggest that this ligandable pocket could be targeted by molecules that inhibit enzyme activity.
Collapse
Affiliation(s)
- Chloe R Koulouris
- Sussex Drug Discovery Centre, University of Sussex, Brighton, BN1 9QG, UK
| | - Sian E Gardiner
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Tessa K Harris
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Karen T Elvers
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - S Mark Roe
- Department of Biochemistry and Biomedicine, University of Sussex, Brighton, BN1 9QJ, UK
| | - Jason A Gillespie
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Simon E Ward
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Olivera Grubisha
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Robert A Nicholls
- MRC Laboratory of Molecular Biology, Francis Crick Ave, CB2 0QH, Cambridge, UK
| | - John R Atack
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK.
| | - Benjamin D Bax
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK.
| |
Collapse
|
9
|
Marchesani F, Zangelmi E, Bruno S, Bettati S, Peracchi A, Campanini B. A Novel Assay for Phosphoserine Phosphatase Exploiting Serine Acetyltransferase as the Coupling Enzyme. Life (Basel) 2021; 11:life11060485. [PMID: 34073563 PMCID: PMC8229081 DOI: 10.3390/life11060485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 01/01/2023] Open
Abstract
Phosphoserine phosphatase (PSP) catalyzes the final step of de novo L-serine biosynthesis—the hydrolysis of phosphoserine to serine and inorganic phosphate—in humans, bacteria, and plants. In published works, the reaction is typically monitored through the discontinuous malachite green phosphate assay or, more rarely, through a continuous assay that couples phosphate release to the phosphorolysis of a chromogenic nucleoside by the enzyme purine nucleoside phosphorylase (PNP). These assays suffer from numerous drawbacks, and both rely on the detection of phosphate. We describe a new continuous assay that monitors the release of serine by exploiting bacterial serine acetyltransferase (SAT) as a reporter enzyme. SAT acetylates serine, consuming acetyl-CoA and releasing CoA-SH. CoA-SH spontaneously reacts with Ellman’s reagent to produce a chromophore that absorbs light at 412 nm. The catalytic parameters estimated through the SAT-coupled assay are fully consistent with those obtained with the published methods, but the new assay exhibits several advantages. Particularly, it depletes L-serine, thus allowing more prolonged linearity in the kinetics. Moreover, as the SAT-coupled assay does not rely on phosphate detection, it can be used to investigate the inhibitory effect of phosphate on PSP.
Collapse
Affiliation(s)
- Francesco Marchesani
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (F.M.); (S.B.)
| | - Erika Zangelmi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy;
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (F.M.); (S.B.)
| | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy;
- Institute of Biophysics, National Research Council, 56124 Pisa, Italy
| | - Alessio Peracchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy;
- Correspondence: (A.P.); (B.C.); Tel.: +39-0521-905137 (A.P.); +39-0521-906333 (B.C.)
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (F.M.); (S.B.)
- Correspondence: (A.P.); (B.C.); Tel.: +39-0521-905137 (A.P.); +39-0521-906333 (B.C.)
| |
Collapse
|
10
|
Sacchi S, Rabattoni V, Miceli M, Pollegioni L. Yin and Yang in Post-Translational Modifications of Human D-Amino Acid Oxidase. Front Mol Biosci 2021; 8:684934. [PMID: 34041270 PMCID: PMC8141710 DOI: 10.3389/fmolb.2021.684934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/23/2021] [Indexed: 11/30/2022] Open
Abstract
In the central nervous system, the flavoprotein D-amino acid oxidase is responsible for catabolizing D-serine, the main endogenous coagonist of N-methyl-D-aspartate receptor. Dysregulation of D-serine brain levels in humans has been associated with neurodegenerative and psychiatric disorders. This D-amino acid is synthesized by the enzyme serine racemase, starting from the corresponding L-enantiomer, and degraded by both serine racemase (via an elimination reaction) and the flavoenzyme D-amino acid oxidase. To shed light on the role of human D-amino acid oxidase (hDAAO) in D-serine metabolism, the structural/functional relationships of this enzyme have been investigated in depth and several strategies aimed at controlling the enzymatic activity have been identified. Here, we focused on the effect of post-translational modifications: by using a combination of structural analyses, biochemical methods, and cellular studies, we investigated whether hDAAO is subjected to nitrosylation, sulfhydration, and phosphorylation. hDAAO is S-nitrosylated and this negatively affects its activity. In contrast, the hydrogen sulfide donor NaHS seems to alter the enzyme conformation, stabilizing a species with higher affinity for the flavin adenine dinucleotide cofactor and thus positively affecting enzymatic activity. Moreover, hDAAO is phosphorylated in cerebellum; however, the protein kinase involved is still unknown. Taken together, these findings indicate that D-serine levels can be also modulated by post-translational modifications of hDAAO as also known for the D-serine synthetic enzyme serine racemase.
Collapse
Affiliation(s)
- Silvia Sacchi
- "The Protein Factory 2.0", Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi Dell'Insubria, Varese, Italy
| | - Valentina Rabattoni
- "The Protein Factory 2.0", Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi Dell'Insubria, Varese, Italy
| | - Matteo Miceli
- "The Protein Factory 2.0", Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi Dell'Insubria, Varese, Italy
| | - Loredano Pollegioni
- "The Protein Factory 2.0", Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi Dell'Insubria, Varese, Italy
| |
Collapse
|