1
|
Abstract
Coronavirus Disease-19 (COVID-19) pandemic is caused by SARS-CoV-2 that has infected more than 600 million people and killed more than 6 million people worldwide. This infection affects mainly certain groups of people that have high susceptibility to present severe COVID-19 due to comorbidities. Moreover, the long-COVID-19 comprises a series of symptoms that may remain in some patients for months after infection that further compromises their health. Thus, since this pandemic is profoundly affecting health, economy, and social life of societies, a deeper understanding of viral replication cycle could help to envisage novel therapeutic alternatives that limit or stop COVID-19. Several findings have unexpectedly discovered that mitochondria play a critical role in SARS-CoV-2 cell infection. Indeed, it has been suggested that this organelle could be the origin of its replication niches, the double membrane vesicles (DMV). In this regard, mitochondria derived vesicles (MDV), involved in mitochondria quality control, discovered almost 15 years ago, comprise a subpopulation characterized by a double membrane. MDV shedding is induced by mitochondrial stress, and it has a fast assembly dynamic, reason that perhaps has precluded their identification in electron microscopy or tomography studies. These and other features of MDV together with recent SARS-CoV-2 protein interactome and other findings link SARS-CoV-2 to mitochondria and support that these vesicles are the precursors of SARS-CoV-2 induced DMV. In this work, the morphological, biochemical, molecular, and cellular evidence that supports this hypothesis is reviewed and integrated into the current model of SARS-CoV-2 cell infection. In this scheme, some relevant questions are raised as pending topics for research that would help in the near future to test this hypothesis. The intention of this work is to provide a novel framework that could open new possibilities to tackle SARS-CoV-2 pandemic through mitochondria and DMV targeted therapies.
Collapse
Affiliation(s)
- Pavel Montes de Oca-B
- Neurociencia Cognitiva, Instituto de Fisiologia-UNAM, CDMX, CDMX, 04510, Mexico
- Unidad de Neurobiologia Dinamica, Instituto Nacional de Neurologia y Neurocirugia, CDMX, CDMX, 14269, Mexico
| |
Collapse
|
2
|
Saleki K, Alijanizadeh P, Azadmehr A. Is neuropilin-1 the neuroimmune initiator of multi-system hyperinflammation in COVID-19? Biomed Pharmacother 2023; 167:115558. [PMID: 37748412 DOI: 10.1016/j.biopha.2023.115558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023] Open
Abstract
A major immunopathological feature of Coronavirus disease-2019 (COVID-19) is excessive inflammation in the form of "cytokine storm". The storm is characterized by injurious levels of cytokines which form a complicated network damaging different organs, including the lungs and the brain. The main starter of "cytokine network" hyperactivation in COVID-19 has not been discovered yet. Neuropilins (NRPs) are transmembrane proteins that act as neuronal guidance and angiogenesis modulators. The crucial function of NRPs in forming the nervous and vascular systems has been well-studied. NRP1 and NRP2 are the two identified homologs of NRP. NRP1 has been shown as a viral entry pathway for SARS-CoV2, which facilitates neuroinvasion by the virus within the central or peripheral nervous systems. These molecules directly interact with various COVID-19-related molecules, such as specific regions of the spike protein (major immune element of SARS-CoV2), vascular endothelial growth factor (VEGF) receptors, VEGFR1/2, and ANGPTL4 (regulator of vessel permeability and integrity). NRPs mainly play a role in hyperinflammatory injury of the CNS and lungs, and also the liver, kidney, pancreas, and heart in COVID-19 patients. New findings have suggested NRPs good candidates for pharmacotherapy of COVID-19. However, therapeutic targeting of NRP1 in COVID-19 is still in the preclinical phase. This review presents the implications of NRP1 in multi-organ inflammation-induced injury by SARS-CoV2 and provides insights for NRP1-targeting treatments for COVID-19 patients.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences(SBMU), Tehran, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Abbas Azadmehr
- Immunology Department, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
3
|
Gomazkov OA. Neuropilin Is a New Player in the Pathogenesis of COVID-19. NEUROCHEM J+ 2022. [PMCID: PMC9294753 DOI: 10.1134/s1819712422020064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract—A family of glycoproteins called neuropilins is gaining attention as a new contributor to the pathogenesis of COVID-19. The concept of penetration of SARS-CoV-2 into host cells is traditionally associated with the receptor role of the ACE2 protein. New evidence suggests that it is possible to enhance pulmonary viral infection by involvement of neuropilins. Neuropilins have two prominent features: (a) a wide range of participation in cellular and tissue processes; (b) a concomitant enhancement of effects associated with the co-reception of regulatory proteins. These features determine the special role of functionally disseminated neuropilins in the pathogenesis of vascular system damage, immunothrombosis, and organ damage with comorbid manifestations during COVID-19. However, the presentation of neuropilins as a generalized therapeutic target that has a corrective effect on the affected areas is an ambiguous approach and requires a selective strategy.
Collapse
Affiliation(s)
- O. A. Gomazkov
- Orekhovich Scientific Research Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
4
|
Gao J, Mei H, Sun J, Li H, Huang Y, Tang Y, Duan L, Liu D, Pang Y, Wang Q, Gao Y, Song K, Zhao J, Zhang C, Liu J. Neuropilin-1-Mediated SARS-CoV-2 Infection in Bone Marrow-Derived Macrophages Inhibits Osteoclast Differentiation. Adv Biol (Weinh) 2022; 6:e2200007. [PMID: 35195371 PMCID: PMC9073998 DOI: 10.1002/adbi.202200007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/25/2022] [Indexed: 01/27/2023]
Abstract
In humans, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause medical complications across various tissues and organs. Despite the advances to understanding the pathogenesis of SARS-CoV-2, its tissue tropism and interactions with host cells have not been fully understood. Existing clinical data have revealed disordered calcium and phosphorus metabolism in Coronavirus Disease 2019 (COVID-19) patients, suggesting possible infection or damage in the human skeleton system by SARS-CoV-2. Herein, SARS-CoV-2 infection in mouse models with wild-type and beta strain (B.1.351) viruses is investigated, and it is found that bone marrow-derived macrophages (BMMs) can be efficiently infected in vivo. Single-cell RNA sequencing (scRNA-Seq) analyses of infected BMMs identify distinct clusters of susceptible macrophages, including those related to osteoblast differentiation. Interestingly, SARS-CoV-2 entry on BMMs is dependent on the expression of neuropilin-1 (NRP1) rather than the widely recognized receptor angiotensin-converting enzyme 2 (ACE2). The loss of NRP1 expression during BMM-to-osteoclast differentiation or NRP1 neutralization and knockdown can significantly inhibit SARS-CoV-2 infection in BMMs. Importantly, it is found that authentic SARS-CoV-2 infection impedes BMM-to-osteoclast differentiation. Collectively, this study provides evidence for NRP1-mediated SARS-CoV-2 infection in BMMs and establishes a potential link between disturbed osteoclast differentiation and disordered skeleton metabolism in COVID-19 patients.
Collapse
Affiliation(s)
- Junjie Gao
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Shanghai Sixth People's HospitalShanghai200233China
| | - Hong Mei
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Jing Sun
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182China
| | - Hao Li
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Shanghai Sixth People's HospitalShanghai200233China
| | - Yuege Huang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China,Shanghai Clinical Research and Trial CenterShanghai201210China,Gene Editing CenterSchool of Life Science and TechnologyShanghaiTech UniversityShanghai201210China,University of Chinese Academy of SciencesBeijing100049China
| | - Yanhong Tang
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182China
| | - Linwei Duan
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182China
| | - Delin Liu
- Centre for Orthopaedic ResearchSchool of SurgeryThe University of Western AustraliaNedlandsWestern Australia6009Australia
| | - Yidan Pang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Shanghai Sixth People's HospitalShanghai200233China
| | - Qiyang Wang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Shanghai Sixth People's HospitalShanghai200233China
| | - Youshui Gao
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Shanghai Sixth People's HospitalShanghai200233China
| | - Ke Song
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Jincun Zhao
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182China
| | - Changqing Zhang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Shanghai Sixth People's HospitalShanghai200233China
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China,Shanghai Clinical Research and Trial CenterShanghai201210China,Gene Editing CenterSchool of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| |
Collapse
|
5
|
Baindara P, Roy D, Mandal SM, Schrum AG. Conservation and Enhanced Binding of SARS-CoV-2 Omicron Spike Protein to Coreceptor Neuropilin-1 Predicted by Docking Analysis. Infect Dis Rep 2022; 14:243-249. [PMID: 35447881 PMCID: PMC9024780 DOI: 10.3390/idr14020029] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/03/2022] Open
Abstract
The Omicron variant of SARS-CoV-2 bears peptide sequence alterations that correlate with a higher infectivity than was observed in the original SARS-CoV-2 isolated from Wuhan, China. We analyzed the CendR motif of spike protein and performed in silico molecular docking with neuropilin-1 (Nrp1), a receptor–ligand interaction known to support infection by the original variant. Our analysis predicts conserved and slightly increased energetic favorability of binding for Omicron CendR:Nrp1. We propose that the viral spike:Nrp1 coreceptor pathway may contribute to the infectivity of the Omicron variant of SARS-CoV-2.
Collapse
Affiliation(s)
- Piyush Baindara
- Departments of Molecular Microbiology & Immunology, Surgery, and Biomedical, Biological, & Chemical Engineering, School of Medicine, College of Engineering, University of Missouri, Columbia, MO 65211, USA;
- Correspondence:
| | - Dinata Roy
- Department of Zoology, Mizoram University, Aizawl 796004, Mizoram, India;
| | - Santi M. Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India;
| | - Adam G. Schrum
- Departments of Molecular Microbiology & Immunology, Surgery, and Biomedical, Biological, & Chemical Engineering, School of Medicine, College of Engineering, University of Missouri, Columbia, MO 65211, USA;
| |
Collapse
|
6
|
The roles of Eph receptors, neuropilin-1, P2X7, and CD147 in COVID-19-associated neurodegenerative diseases: inflammasome and JaK inhibitors as potential promising therapies. Cell Mol Biol Lett 2022; 27:10. [PMID: 35109786 PMCID: PMC8809072 DOI: 10.1186/s11658-022-00311-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 12/20/2022] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic has spread worldwide, and finding a safe therapeutic strategy and effective vaccine is critical to overcoming severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, elucidation of pathogenesis mechanisms, especially entry routes of SARS-CoV-2 may help propose antiviral drugs and novel vaccines. Several receptors have been demonstrated for the interaction of spike (S) protein of SARS-CoV-2 with host cells, including angiotensin-converting enzyme (ACE2), ephrin ligands and Eph receptors, neuropilin 1 (NRP-1), P2X7, and CD147. The expression of these entry receptors in the central nervous system (CNS) may make the CNS prone to SARS-CoV-2 invasion, leading to neurodegenerative diseases. The present review provides potential pathological mechanisms of SARS-CoV-2 infection in the CNS, including entry receptors and cytokines involved in neuroinflammatory conditions. Moreover, it explains several neurodegenerative disorders associated with COVID-19. Finally, we suggest inflammasome and JaK inhibitors as potential therapeutic strategies for neurodegenerative diseases.
Collapse
|
7
|
Theoharides TC. Could SARS-CoV-2 Spike Protein Be Responsible for Long-COVID Syndrome? Mol Neurobiol 2022; 59:1850-1861. [PMID: 35028901 PMCID: PMC8757925 DOI: 10.1007/s12035-021-02696-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023]
Abstract
SARS-CoV-2 infects cells via its spike protein binding to its surface receptor on target cells and results in acute symptoms involving especially the lungs known as COVID-19. However, increasing evidence indicates that many patients develop a chronic condition characterized by fatigue and neuropsychiatric symptoms, termed long-COVID. Most of the vaccines produced so far for COVID-19 direct mammalian cells via either mRNA or an adenovirus vector to express the spike protein, or administer recombinant spike protein, which is recognized by the immune system leading to the production of neutralizing antibodies. Recent publications provide new findings that may help decipher the pathogenesis of long-COVID. One paper reported perivascular inflammation in brains of deceased patients with COVID-19, while others showed that the spike protein could damage the endothelium in an animal model, that it could disrupt an in vitro model of the blood-brain barrier (BBB), and that it can cross the BBB resulting in perivascular inflammation. Moreover, the spike protein appears to share antigenic epitopes with human molecular chaperons resulting in autoimmunity and can activate toll-like receptors (TLRs), leading to release of inflammatory cytokines. Moreover, some antibodies produced against the spike protein may not be neutralizing, but may change its conformation rendering it more likely to bind to its receptor. As a result, one wonders whether the spike protein entering the brain or being expressed by brain cells could activate microglia, alone or together with inflammatory cytokines, since protective antibodies could not cross the BBB, leading to neuro-inflammation and contributing to long-COVID. Hence, there is urgent need to better understand the neurotoxic effects of the spike protein and to consider possible interventions to mitigate spike protein-related detrimental effects to the brain, possibly via use of small natural molecules, especially the flavonoids luteolin and quercetin.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Suite 304, Boston, MA, 02111, USA.
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA.
- Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, 02111, USA.
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL, 33759, USA.
| |
Collapse
|