1
|
Zheng CQ, Zeng LJ, Liu ZH, Miao CF, Yao LY, Song HT, Hu XM, Zhou X. Insights into the Roles of Natural Killer Cells in Osteoarthritis. Immunol Invest 2024; 53:766-787. [PMID: 38622991 DOI: 10.1080/08820139.2024.2337025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Osteoarthritis (OA) is now widely acknowledged as a low-grade inflammatory condition, in which the intrinsic immune system plays a significant role in its pathogenesis. While the involvement of macrophages and T cells in the development of OA has been extensively reviewed, recent research has provided mounting evidence supporting the crucial contribution of NK cells in both the initiation and advancement of OA. Accumulated evidence has emerged in recent years indicating that NK cells play a critical role in OA development and progression. This review will outline the ongoing understanding of the utility of NK cells in the etiology of OA, focusing on how NK cells interact with chondrocytes, synoviocytes, osteoclasts, and other immune cells to influence the course of OA disease.
Collapse
Affiliation(s)
- Chang-Qing Zheng
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou, People's Republic of China
| | - Ling-Jun Zeng
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou, People's Republic of China
| | - Zhi-Hong Liu
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou, People's Republic of China
| | - Chen-Fang Miao
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou, People's Republic of China
| | - Ling-Yan Yao
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou, People's Republic of China
| | - Hong-Tao Song
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou, People's Republic of China
| | - Xiao-Mu Hu
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou, People's Republic of China
| | - Xin Zhou
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou, People's Republic of China
| |
Collapse
|
2
|
Wang S, Xiao W, Duan Z, Fu Y, Fang J, Xu T, Yang D, Li G, Guan Y, Zhang Y. Depression heightened the association of the systemic immune-inflammation index with all-cause mortality among osteoarthritis patient. J Affect Disord 2024; 355:239-246. [PMID: 38552917 DOI: 10.1016/j.jad.2024.03.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/04/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Systemic immune-inflammatory index (SII) has been recognized as a novel inflammatory indicator in numerous diseases. It remains unknown how SII affects all-cause mortality among patients with osteoarthritis (OA). In this prospective cohort study, we intended to examine the relationship of SII with all-cause mortality among OA populations and assess the interaction between depression and SII. METHODS Data was collected from National Health and Nutrition Examination Survey (NHANES) in 2005-2018. The National Death Index (NDI) provided vital status records. Multivariable Cox regression analyses with cubic spines were applied to estimate the association between SII and all-cause and CVD mortality. Stratified analysis and interaction tests assessed the interaction of SII and depression on all-cause mortality. RESULTS In total 3174 OA adults were included. The lowest quartile Q1 (HR:1.44, 95%CI:1.02-2.04) and highest quartile Q4 (HR:1.44, 95%CI:1.02-2.04) of SII presented a higher risk of death compared with those in second quartile Q2 (Ref.) and third quartile Q3 (HR:1.23, 95%CI:0.89-1.68. Restricted cubic splines analysis revealed a U-shaped association of SII with all-cause mortality, the inflection points were 412.93 × 109/L. The interaction test observed a more significant relationship of SII with all-cause mortality in depression patients than in non-depression patients, indicating that depression can modify this association. LIMITATIONS First, the observational study design failed to make causal inferences. Second, the baseline SII cannot reflect the long-term level of inflammation. Finally, there may be potential bias. CONCLUSION SII was U-shaped associated with all-cause mortality in OA patients, and this association was significantly heightened by depression.
Collapse
Affiliation(s)
- Sen Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wenyu Xiao
- Department of Orthopaedics, Shanghai Tenth People's Hospital Chongming Branch, School of Medicine, Tongji University, Shanghai 202157, China
| | - Zhengwei Duan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuesong Fu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jiaqi Fang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tianyang Xu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Dong Yang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Guodong Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yonghao Guan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Yiwei Zhang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
3
|
Han X, Bai F, Li P, Bai X, Zhang Y, Wang W. Identification of novel potential drugs for the treatment and prevention of osteoarthritis. Biochem Biophys Rep 2024; 37:101647. [PMID: 38304574 PMCID: PMC10830515 DOI: 10.1016/j.bbrep.2024.101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/27/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Objectives Osteoarthritis (OA) is characterized by a high prevalence, poor prognosis, and a propensity to lead to disability. Despite the availability of standard therapies, they are associated with potential side effects and don't provide a complete cure for patients. Consequently, there is an urgent demand for the development of novel drugs. Method The gene expression profiles (GSE64394, GSE178557 and GSE215039) of normal and OA chondrocytes samples were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified by the "LIMMA" R package. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were conducted using the R package clusterProfiler. A protein-protein (PPI) interaction network was performed to identify hub genes by using the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape. Small molecule compounds linked to OA were predicted through the NetworkAnalyst platform. Finally, molecular docking was conducted using AutoDock and Pymol software. Results We identified 98 DEGs primarily implicated in endochondral ossification, extracellular matrix degradation, and Wnt signaling pathways. 23 DEGs were closely associated with OA, and 10 hub genes were found to be potential drug targets for OA. Two new targeted compounds, tetrachlorodibenzodioxin (TCDD) and valproic acid (VPA), were screened. And they both exhibited strong binding affinity to their respective targets. Conclusions Reducing exposure to TCDD could be a crucial strategy in preventing OA, and VPA has gained recognition as a novel drug candidate for OA treatment.
Collapse
Affiliation(s)
- Xiaosong Han
- Department of Osteology, the First People's Hospital of Zunyi, Zunyi, Guizhou, 563099, China
| | - Fan Bai
- Department of Osteology, the First People's Hospital of Zunyi, Zunyi, Guizhou, 563099, China
| | - Peng Li
- Department of Osteology, the First People's Hospital of Zunyi, Zunyi, Guizhou, 563099, China
| | - Xiaojin Bai
- Department of Osteology, the First People's Hospital of Zunyi, Zunyi, Guizhou, 563099, China
| | - Yanli Zhang
- Biological Medicine Research and Development Center, Yangtze Delta of Zhejiang, Hangzhou, Zhejiang, 314006, China
| | - Wenmin Wang
- Biological Medicine Research and Development Center, Yangtze Delta of Zhejiang, Hangzhou, Zhejiang, 314006, China
| |
Collapse
|
4
|
Huang L, Dong G, Peng J, Li T, Zou M, Hu K, Shu Y, Cheng T, Hao L. The role of exosomes and their enhancement strategies in the treatment of osteoarthritis. Hum Cell 2023; 36:1887-1900. [PMID: 37603220 DOI: 10.1007/s13577-023-00970-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/12/2023] [Indexed: 08/22/2023]
Abstract
With the increasingly prominent problem of population aging, osteoarthritis (OA), which is closely related to aging, has become a serious illness affecting the lives and health of elderly individuals. However, effective treatments are still lacking. OA is typically considered a low-grade inflammatory state. The inflammatory infiltration of macrophages, neutrophils, T cells, and other cells is common in diseased joints. These cells create the inflammatory environment of OA and are involved in the onset and progression of the disease. Exosomes, a type of complex vesicle containing abundant RNA molecules and proteins, play a crucial role in the physiological and pathological processes of an organism. In comparison to other therapeutic methods such as stem cells, exosomes have distinct advantages of precise targeting and low immunogenicity. Moreover, research and techniques related to exosomes are more mature, indicating a promising future in disease treatment. Many studies have shown that the impact of exosomes on the inflammatory microenvironment directly or indirectly leads to the occurrence of various diseases. Furthermore, exosomes can be helpful in the management of illnesses. This article provides a comprehensive review and update on the research of exosomes, a type of extracellular vesicle, in the treatment of OA by modulating the inflammatory microenvironment. It also combines innovative studies on the modification of exosomes. In general, the application of exosomes in the treatment of OA has been validated, and the introduction of modified exosome technology holds potential for enhancing its therapeutic efficacy.
Collapse
Affiliation(s)
- Linzhen Huang
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Ge Dong
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Jie Peng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ting Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Mi Zou
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Kaibo Hu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yuan Shu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Tao Cheng
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Liang Hao
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
5
|
Wang C, Chen M, Lu X, Yang S, Yang M, Fang Y, Lai R, Duan Z. Isolation and Characterization of Poeciguamerin, a Peptide with Dual Analgesic and Anti-Thrombotic Activity from the Poecilobdella manillensis Leech. Int J Mol Sci 2023; 24:11097. [PMID: 37446275 DOI: 10.3390/ijms241311097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
When Poecilobdella manillensis attacks its prey, the prey bleeds profusely but feels little pain. We and other research teams have identified several anticoagulant molecules in the saliva of P. manillensis, but the substance that produces the paralyzing effect in P. manillensis is not known. In this study, we successfully isolated, purified, and identified a serine protease inhibitor containing an antistasin-like domain from the salivary secretions of P. manillensis. This peptide (named poeciguamerin) significantly inhibited elastase activity and slightly inhibited FXIIa and kallikrein activity, but had no effect on FXa, trypsin, or thrombin activity. Furthermore, poeciguamerin exhibited analgesic activity in the foot-licking and tail-withdrawal mouse models and anticoagulant activity in the FeCl3-induced carotid artery thrombosis mouse model. In this study, poeciguamerin was found to be a promising elastase inhibitor with potent analgesic and antithrombotic activity for the inhibition of pain and thrombosis after surgery or in inflammatory conditions.
Collapse
Affiliation(s)
- Chaoming Wang
- Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengrou Chen
- Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Lu
- Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- School of Life Sciences, Tianjin University, Tianjin 300000, China
| | - Shuo Yang
- Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqun Fang
- Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ren Lai
- Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center/National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Zilei Duan
- Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
6
|
Fine N, Lively S, Séguin CA, Perruccio AV, Kapoor M, Rampersaud R. Intervertebral disc degeneration and osteoarthritis: a common molecular disease spectrum. Nat Rev Rheumatol 2023; 19:136-152. [PMID: 36702892 DOI: 10.1038/s41584-022-00888-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/27/2023]
Abstract
Intervertebral disc degeneration (IDD) and osteoarthritis (OA) affecting the facet joint of the spine are biomechanically interdependent, typically occur in tandem, and have considerable epidemiological and pathophysiological overlap. Historically, the distinctions between these degenerative diseases have been emphasized. Therefore, research in the two fields often occurs independently without adequate consideration of the co-dependence of the two sites, which reside within the same functional spinal unit. Emerging evidence from animal models of spine degeneration highlight the interdependence of IDD and facet joint OA, warranting a review of the parallels between these two degenerative phenomena for the benefit of both clinicians and research scientists. This Review discusses the pathophysiological aspects of IDD and OA, with an emphasis on tissue, cellular and molecular pathways of degeneration. Although the intervertebral disc and synovial facet joint are biologically distinct structures that are amenable to reductive scientific consideration, substantial overlap exists between the molecular pathways and processes of degeneration (including cartilage destruction, extracellular matrix degeneration and osteophyte formation) that occur at these sites. Thus, researchers, clinicians, advocates and policy-makers should consider viewing the burden and management of spinal degeneration holistically as part of the OA disease continuum.
Collapse
Affiliation(s)
- Noah Fine
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Starlee Lively
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Cheryle Ann Séguin
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Bone and Joint Institute, University of Western Ontario London, London, Ontario, Canada
| | - Anthony V Perruccio
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Raja Rampersaud
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada. .,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Liu XH, Ding JY, Zhu ZH, Wu XC, Song YJ, Xu XL, Ding DF. Recent advances in enzyme-related biomaterials for arthritis treatment. Front Chem 2022; 10:988051. [PMID: 36051622 PMCID: PMC9424673 DOI: 10.3389/fchem.2022.988051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 12/27/2022] Open
Abstract
Arthritis is a group of highly prevalent joint disorders, and osteoarthritis (OA) and rheumatoid arthritis are the two most common types. The high prevalence of arthritis causes severe burdens on individuals, society and the economy. Currently, the primary treatment of arthritis is to relieve symptoms, but the development of arthritis cannot be effectively prevented. Studies have revealed that the disrupted balance of enzymes determines the pathological changes in arthritis. In particular, the increased levels of matrix metalloproteinases and the decreased expression of endogenous antioxidant enzymes promote the progression of arthritis. New therapeutic strategies have been developed based on the expression characteristics of these enzymes. Biomaterials have been designed that are responsive when the destructive enzymes MMPs are increased or have the activities of the antioxidant enzymes that play a protective role in arthritis. Here, we summarize recent studies on biomaterials associated with MMPs and antioxidant enzymes involved in the pathological process of arthritis. These enzyme-related biomaterials have been shown to be beneficial for arthritis treatment, but there are still some problems that need to be solved to improve efficacy, especially penetrating the deeper layer of articular cartilage and targeting osteoclasts in subchondral bone. In conclusion, enzyme-related nano-therapy is challenging and promising for arthritis treatment.
Collapse
Affiliation(s)
- Xin-Hao Liu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Ying Ding
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Heng Zhu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi-Chen Wu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jia Song
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- *Correspondence: Xiao-Ling Xu, ; Dao-Fang Ding,
| | - Dao-Fang Ding
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xiao-Ling Xu, ; Dao-Fang Ding,
| |
Collapse
|
8
|
The Involvement of Neutrophils in the Pathophysiology and Treatment of Osteoarthritis. Biomedicines 2022; 10:biomedicines10071604. [PMID: 35884909 PMCID: PMC9313259 DOI: 10.3390/biomedicines10071604] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a chronic disability that significantly impairs quality of life. OA is one of the most prevalent joint pathologies in the world, characterized by joint pain and stiffness due to the degeneration of articular cartilage and the remodeling of subchondral bone. OA pathogenesis is unique in that it involves simultaneous reparative and degradative mechanisms. Low-grade inflammation as opposed to high-grade allows for this coexistence. Previously, macrophages and T cells have been identified as playing major roles in the inflammation and destruction of OA joints, but recent studies have demonstrated that neutrophils also contribute to the pathogenesis. Neutrophils are the first immune cells to enter the synovium after joint injury, and neutrophilic activity is indispensably a requisite for the progression of OA. Neutrophils act through multiple mechanisms including tissue degeneration via neutrophil elastase (NE), osteophyte development, and the release of inflammatory cytokines and chemokines. As the actions of neutrophils in OA are discovered, the potential for novel therapeutic targets as well as diagnostic methods are revealed. The use of chondrogenic progenitor cells (CPCs), microRNAs, and exosomes are among the newest therapeutic advances in OA treatment, and this review reveals how they can be used to mitigate destructive neutrophil activity.
Collapse
|
9
|
Cross-Tissue Analysis Using Machine Learning to Identify Novel Biomarkers for Knee Osteoarthritis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9043300. [PMID: 35785145 PMCID: PMC9246600 DOI: 10.1155/2022/9043300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/28/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022]
Abstract
Background Knee osteoarthritis (KOA) is a common degenerative joint disease. In this study, we aimed to identify new biomarkers of KOA to improve the accuracy of diagnosis and treatment. Methods GSE98918 and GSE51588 were downloaded from the Gene Expression Omnibus database as training sets, with a total of 74 samples. Gene differences were analyzed by Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway, and Disease Ontology enrichment analyses for the differentially expressed genes (DEGs), and GSEA enrichment analysis was carried out for the training gene set. Through least absolute shrinkage and selection operator regression analysis, the support vector machine recursive feature elimination algorithm, and gene expression screening, the range of DEGs was further reduced. Immune infiltration analysis was carried out, and the prediction results of the combined biomarker logistic regression model were verified with GSE55457. Results In total, 84 DEGs were identified through differential gene expression analysis. The five biomarkers that were screened further showed significant differences in cartilage, subchondral bone, and synovial tissue. The diagnostic accuracy of the model synthesized using five biomarkers through logistic regression was better than that of a single biomarker and significantly better than that of a single clinical trait. Conclusions CX3CR1, SLC7A5, ARL4C, TLR7, and MTHFD2 might be used as novel biomarkers to improve the accuracy of KOA disease diagnosis, monitor disease progression, and improve the efficacy of clinical treatment.
Collapse
|