1
|
Yi P, Yu W, Xiong Y, Dong Y, Huang Q, Lin Y, Du Y, Hua F. IL-35: New Target for Immunotherapy Targeting the Tumor Microenvironment. Mol Cancer Ther 2024; 23:148-158. [PMID: 37988561 DOI: 10.1158/1535-7163.mct-23-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/15/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
Interleukin 35(IL-35) is a newly discovered inhibitory cytokine of the IL12 family. More recently, IL-35 was found to be increased in the tumor microenvironment (TME) and peripheral blood of many patients with cancer, indicating that it plays an important role in the TME. Tumors secrete cytokines that recruit myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Treg) into the TME to promote malignant progression, which is a great challenge for cancer treatment. Radiotherapy causes serious adverse effects, and tumor resistance to immune checkpoint inhibitors is still an unsolved challenge. Thus, new cancer therapy approaches are urgently needed. Numerous studies have shown that IL-35 can recruit immunosuppressive cells to enable tumor immune escape by promoting the conversion of immune cells into a tumor growth-promoting phenotype as well as facilitating tumor angiogenesis. IL-35-neutralizing antibodies were found to boost the chemotherapeutic effect of gemcitabine and considerably reduce the microvascular density of pancreatic cancer in mice. Therefore, targeting IL-35 in the TME provides a promising cancer treatment target. In addition, IL-35 may be used as an independent prognostic factor for some tumors in the near future. This review intends to reveal the interplay of IL-35 with immune cells in the TME, which may provide new options for the treatment of cancer.
Collapse
Affiliation(s)
- Pengcheng Yi
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Wenjun Yu
- Fuzhou First People's Hospital of Jiangxi Province, Fuzhou City, Jiangxi Province, P.R. China
| | - Yanhong Xiong
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Yao Dong
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Qiang Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Yunfei Du
- Department of Anesthesiology, Nanchang Central Hospital, Nanchang, Jiangxi, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| |
Collapse
|
2
|
Li X, Peng X, Zhang C, Bai X, Li Y, Chen G, Guo H, He W, Zhou X, Gou X. Bladder Cancer-Derived Small Extracellular Vesicles Promote Tumor Angiogenesis by Inducing HBP-Related Metabolic Reprogramming and SerRS O-GlcNAcylation in Endothelial Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202993. [PMID: 36045101 PMCID: PMC9596856 DOI: 10.1002/advs.202202993] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/27/2022] [Indexed: 06/15/2023]
Abstract
A malformed tumour vascular network provokes the nutrient-deprived tumour microenvironment (TME), which conversely activates endothelial cell (EC) functions and stimulates neovascularization. Emerging evidence suggests that the flexible metabolic adaptability of tumour cells helps to establish a metabolic symbiosis among various cell subpopulations in the fluctuating TME. In this study, the authors propose a novel metabolic link between bladder cancer (BCa) cells and ECs in the nutrient-scarce TME, in which BCa-secreted glutamine-fructose-6-phosphate aminotransferase 1 (GFAT1) via small extracellular vesicles (sEVs) reprograms glucose metabolism by increasing hexosamine biosynthesis pathway flux in ECs and thus enhances O-GlcNAcylation. Moreover, seryl-tRNA synthetase (SerRS) O-GlcNAcylation at serine 101 in ECs promotes its degradation by ubiquitination and impeded importin α5-mediated nuclear translocation. Intranuclear SerRS attenuates vascular endothelial growth factor transcription by competitively binding to the GC-rich region of the proximal promotor. Additionally, GFAT1 knockout in tumour cells blocks SerRS O-GlcNAcylation in ECs and attenuates angiogenesis both in vitro and in vivo. However, administration of GFAT1-overexpressing BCa cells-derived sEVs increase the angiogenetic activity in the ECs of GFAT1-knockout mice. In summary, this study suggests that inhibiting sEV-mediated GFAT1 secretion from BCa cells and targeting SerRS O-GlcNAcylation in ECs may serve as novel strategies for BCa antiangiogenetic therapy.
Collapse
Affiliation(s)
- Xinyuan Li
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Centre for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiang Peng
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Chunlin Zhang
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xuesong Bai
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Yang Li
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Guo Chen
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Huixia Guo
- Centre for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
| | - Weiyang He
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiang Zhou
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xin Gou
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| |
Collapse
|