1
|
Park NY, Jo DS, Park HJ, Bae JE, Kim YH, Kim JB, Lee HJ, Kim SH, Choi H, Lee HS, Yoshimori T, Lee DS, Lee JA, Kim P, Cho DH. Deciphering melanophagy: role of the PTK2-ITCH-MLANA-OPTN cascade on melanophagy in melanocytes. Autophagy 2024:1-10. [PMID: 39477686 DOI: 10.1080/15548627.2024.2421695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/13/2024] Open
Abstract
Melanosomes play a pivotal role in skin color and photoprotection. In contrast to the well-elucidated pathway of melanosome biogenesis, the process of melanosome degradation, referred to as melanophagy, is largely unexplored. Previously, we discovered that 3,4,5-trimethoxycinnamate thymol ester (TCTE) effectively inhibits skin pigmentation by activating melanophagy. In this study, we discovered a new regulatory signaling cascade that controls melanophagy in TCTE-treated melanocytes. ITCH (itchy E3 ubiquitin protein ligase) facilitates ubiquitination of the melanosome membrane protein MLANA (melan-A) during TCTE-induced melanophagy. This ubiquitinated MLANA is then recognized by an autophagy receptor protein, OPTN (optineurin). Additionally, a phospho-kinase antibody array revealed that TCTE activates PTK2 (protein tyrosine kinase 2), which phosphorylates ITCH, enhancing the ubiquitination of MLANA. Furthermore, inhibition of either PTK2 or ITCH disrupts the ubiquitination of MLANA and the MLANA-OPTN interaction in TCTE-treated cells. Taken together, our findings highlight the critical role of the PTK2-ITCH-MLANA-OPTN cascade in orchestrating melanophagy progression.Abbreviations: α-MSH: alpha-melanocyte-stimulating hormone; dichlone: 2,3-dichloro-1,4-naphthoquinone; ITCH: itchy E3 ubiquitin protein ligase; MITF: melanocyte inducing transcription factor; MLANA: melan-A; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; PINK1: PTEN induced kinase 1; PTK2: protein tyrosine kinase 2; SQSTM1/p62: sequestosome 1; TCTE: 3,4,5-trimethoxycinnamate thymol ester; TPC2: two pore segment channel 2; VDAC1: voltage dependent anion channel 1.
Collapse
Affiliation(s)
- Na Yeon Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Doo Sin Jo
- ORGASIS Corp, Suwon, Gyeonggi-do, Republic of Korea
| | - Hyun Jun Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Ji-Eun Bae
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Yong Hwan Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Joon Bum Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Ha Jung Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
- ORGASIS Corp, Suwon, Gyeonggi-do, Republic of Korea
| | - Sung Hyun Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Hyunjung Choi
- R&D Unit, AmorePacific Corporation, Yongin, Gyeonggi-Do, Republic of Korea
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Dong-Seok Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
- Organelle Institute, KNU, Daegu, Republic of Korea
| | - Jin-A Lee
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Republic of Korea
| | - Pansoo Kim
- ORGASIS Corp, Suwon, Gyeonggi-do, Republic of Korea
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
- ORGASIS Corp, Suwon, Gyeonggi-do, Republic of Korea
- Organelle Institute, KNU, Daegu, Republic of Korea
| |
Collapse
|
2
|
Hu G, Xu HD, Fang J. Sulfur-based fluorescent probes for biological analysis: A review. Talanta 2024; 279:126515. [PMID: 39024854 DOI: 10.1016/j.talanta.2024.126515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
The widespread adoption of small-molecule fluorescence detection methodologies in scientific research and industrial contexts can be ascribed to their inherent merits, including elevated sensitivity, exceptional selectivity, real-time detection capabilities, and non-destructive characteristics. In recent years, there has been a growing focus on small-molecule fluorescent probes engineered with sulfur elements, aiming to detect a diverse array of biologically active species. This review presents a comprehensive survey of sulfur-based fluorescent probes published from 2017 to 2023. The diverse repertoire of recognition sites, including but not limited to N, N-dimethylthiocarbamyl, disulfides, thioether, sulfonyls and sulfoxides, thiourea, thioester, thioacetal and thioketal, sulfhydryl, phenothiazine, thioamide, and others, inherent in these sulfur-based probes markedly amplifies their capacity for detecting a broad spectrum of analytes, such as metal ions, reactive oxygen species, reactive sulfur species, reactive nitrogen species, proteins, and beyond. Owing to the individual disparities in the molecular structures of the probes, analogous recognition units may be employed to discern diverse substrates. Subsequent to this classification, the review provides a concise summary and introduction to the design and biological applications of these probe molecules. Lastly, drawing upon a synthesis of published works, the review engages in a discussion regarding the merits and drawbacks of these fluorescent probes, offering guidance for future endeavors.
Collapse
Affiliation(s)
- Guodong Hu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China.
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, China.
| |
Collapse
|
3
|
Saha S, Mandal A, Ranjan A, Ghosh DK. Membrane tension sensing formin-binding protein 1 is a neuronal nutrient stress-responsive Golgiphagy receptor. Metabolism 2024:156040. [PMID: 39341273 DOI: 10.1016/j.metabol.2024.156040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Nutrient stress-responsive neuronal homeostasis relies on intricate autophagic mechanisms that modulate various organelle integrity and function. The selective autophagy of the Golgi, known as Golgiphagy, regulates secretory processes by modulating vesicle trafficking during nutrient starvation. RESULTS In this study, we explored a genetic screen of BAR-domain-containing proteins to elucidate the role of formin-binding protein 1 (FNBP1) as a Golgiphagy receptor in modulating Golgi dynamics in response to varying nutrient availability in neurons. Mapping the systems network of FNBP1 and its interacting proteins reveals the putative involvement of FNBP1 in autophagy and Golgi-associated processes. While nutrient depletion causes Golgi fragmentation, FNBP1 preferentially localizes to the fragmented Golgi membrane through its 284FEDYTQ289 motif during nutrient stress. Simultaneously, FNBP1 engages in molecular interactions with LC3B through a conserved 131WKQL134 LC3 interacting region, thereby sequestering the fragmented Golgi membrane in neuronal autophagosomes. Increased aggregation of GM130, abnormal clumping of RAB11-positive secretory granules, and enhanced senescent death of FNBP1-depleted starved neurons indicate disruptions of neuronal homeostasis under metabolic stress. CONCLUSION The identification of FNBP1 as a nutrient stress-responsive Golgiphagy receptor expands our insights into the molecular mechanisms underlying Golgiphagy, establishing the crosstalk between nutrient sensing and membrane tension-sensing regulatory autophagic processes of Golgi turnover in neurons.
Collapse
Affiliation(s)
- Smita Saha
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India; Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anirban Mandal
- Department of Microbiology, Mrinalini Datta Mahavidyapith, Kolkata, West Bengal, India
| | - Akash Ranjan
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Debasish Kumar Ghosh
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
4
|
Liu F, Wang G, Zhao L, Chen G, Dong L, Li Q, Zhu D. Toosendanin Induces Lung Squamous Cell Carcinoma Cell Apoptosis and Inhibits Tumor Progression via the BNIP3/AMPK Signaling Pathway. Adv Biol (Weinh) 2024; 8:e2300610. [PMID: 38773915 DOI: 10.1002/adbi.202300610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/28/2024] [Indexed: 05/24/2024]
Abstract
Lung squamous cell carcinoma (LUSC) is the second most common type of non-small cell lung cancer. Toosendanin can target critical cancer cell survival and proliferation. However, the function of toosendanin in LUSC is limited. Cancer cell proliferative capacity is detected using cell morphology, colony formation, and flow cytometry. The invasiveness of the cells is detected by a Transwell assay, western blotting, and RT-qPCR. Nude mice are injected with H226 (1×106) and received an intraperitoneal injection of toosendanin every 2 days for 21 days. RNA sequence transcriptome analysis is performed on toosendanin-treated cells to identify target genes and signaling pathways. With increasing concentrations of toosendanin, the rate of cell proliferation decreases and apoptotic cells increases. The number of migrated cells significantly reduces and epithelial-mesenchymal transition is reversed. Injection of toosendanin in nude mice leads to a reduction in tumor volume, weight, and the number of metastatic tumors. Furthermore, KEGG shows that genes related to the AMPK pathway are highly enriched. BNIP3 is the most differentially expressed gene, and its expression along with phosphorylated-AMPK significantly increases in toosendanin-treated cells. Toosendanin exerts anticancer effects, induces apoptosis in LUSC cells, and inhibits tumor progression via the BNIP3/AMPK signaling pathway.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- AMP-Activated Protein Kinases/metabolism
- Apoptosis/drug effects
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/genetics
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Disease Progression
- Drugs, Chinese Herbal/pharmacology
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Mice, Inbred BALB C
- Mice, Nude
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Fabing Liu
- Department of Cardiothoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Department of Cardiothoracic Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Guangxue Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Liming Zhao
- Department of Emergency, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China
| | - Guohan Chen
- Department of Cardiothoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Lin Dong
- Department of Cardiothoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qinchuan Li
- Department of Cardiothoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Dongyi Zhu
- Department of Respiratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China
| |
Collapse
|
5
|
Martin SJ. The FEBS Journal in 2023: building back better. FEBS J 2023; 290:4-6. [PMID: 36597925 DOI: 10.1111/febs.16711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The FEBS Journal publishes high impact research on diverse topics in the life sciences, with a focus on molecular mechanisms underpinning biological processes. Here, Editor-in-Chief Seamus Martin discusses highlights of the journal from the past year and gives a glimpse into what's in store for 2023.
Collapse
Affiliation(s)
- Seamus J Martin
- The FEBS Journal Editorial Office, Cambridge, UK.,Department of Genetics, Trinity College, Dublin, Ireland
| |
Collapse
|