3
|
Yang N, Zhao B, Hu S, Bao Z, Liu M, Chen Y, Wu X. Characterization of POU2F1 Gene and Its Potential Impact on the Expression of Genes Involved in Fur Color Formation in Rex Rabbit. Genes (Basel) 2020; 11:genes11050575. [PMID: 32443864 PMCID: PMC7288328 DOI: 10.3390/genes11050575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/26/2022] Open
Abstract
The naturally colorful fur of the Rex rabbit is becoming increasingly popular in the modern textile market. Our previous study found that POU class 2 homeobox 1 gene (POU2F1) potentially affects the expression of genes involved in fur color formation in the Rex rabbit, but the function and regulation of POU2F1 has not been reported. In this study, the expression patterns of POU2F1 in Rex rabbits of various colors, as well as in different organs, were analyzed by RT-qPCR. Interference and overexpression of POU2F1 were used to identify the potential effects of POU2F1 on other genes related to fur color formation. The results show that the levels of POU2F1 expression were significantly higher in the dorsal skin of the brown and protein yellow Rex rabbits, compared with that of the black one. POU2F1 mRNAs were widespread in the tissues examined in this study and showed the highest level in the lungs. By transfecting rabbit melanocytes with an POU2F1-overexpression plasmid, we found that the POU2F1 protein was located at the nucleus, and the protein showed the classic characteristics of a transcription factor. In addition, abnormal expression of POU2F1 significantly affected the expression of pigmentation-related genes, including SLC7A11, MITF, SLC24A5, MC1R, and ASIP, revealing the regulatory roles of POU2F1 on pigmentation. The results provide the basis for further exploration of the role of POU2F1 in fur color formation of the Rex rabbit.
Collapse
Affiliation(s)
- Naisu Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (N.Y.); (B.Z.); (S.H.); (Z.B.); (M.L.); (Y.C.)
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (N.Y.); (B.Z.); (S.H.); (Z.B.); (M.L.); (Y.C.)
| | - Shuaishuai Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (N.Y.); (B.Z.); (S.H.); (Z.B.); (M.L.); (Y.C.)
| | - Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (N.Y.); (B.Z.); (S.H.); (Z.B.); (M.L.); (Y.C.)
| | - Ming Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (N.Y.); (B.Z.); (S.H.); (Z.B.); (M.L.); (Y.C.)
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (N.Y.); (B.Z.); (S.H.); (Z.B.); (M.L.); (Y.C.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (N.Y.); (B.Z.); (S.H.); (Z.B.); (M.L.); (Y.C.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-514-8799-7194
| |
Collapse
|
5
|
Wang Y, Wang X, Chen J, Li S, Zhai H, Wang Z. Melatonin pretreatment attenuates acute methamphetamine-induced aggression in male ICR mice. Brain Res 2019; 1715:196-202. [PMID: 30953606 DOI: 10.1016/j.brainres.2019.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 11/30/2022]
Abstract
Aggression is one of the symptoms of methamphetamine (MA) use and withdrawal, which can exacerbate MA addiction and relapse. Many studies have demonstrated that poor sleep is significantly associated with aggression. Melatonin has been indicated to be effective in treating sleep disorders induced by MA, and it can also protect neuronal cells against MA-induced neurotoxicity. However, the underlying effects of melatonin on MA-reduced aggression remain unclarified. This study was designed to evaluate the effects of melatonin on acute MA-induced aggressive behavior in male ICR mice and the effects on neurotransmitters related to aggression. Fifty male ICR mice were randomly assigned to control and treatment groups pretreated with MA (3 mg/kg) or melatonin (2.5, 5, 10 mg/kg) plus MA. Aggressive behaviors were observed through isolation-induced aggression in the resident-intruder model. High-performance liquid chromatography combined with electrochemical detection (HPLC-ECD) was used to anatomize the levels of dopamine (DA) and its metabolites, 3,4-dihydroxyphenyl acetic acid (DOPAC) and homovanillic acid (HVA), and the concentrations of serotonin (5-HT) and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA), in the hippocampus involved in behavior processing. The results showed that acute MA administration decreased latency to initial attacks and thereby increased the number and total duration of attacks. Furthermore, HVA level as well as 5-HIAA and 5-HT turnover estimated by 5-HIAA/5-HT ratios declined compared to those in the vehicle group. The medium melatonin pretreatment dose (5 mg/kg) could significantly reverse acute MA-induced aggressive behavior in the form of prolonging latency to initial attacks and thereby attenuating the number of attacks and total duration of attacks. HVA and 5-HIAA levels, 5-HT turnover estimated by 5-HIAA/5-HT ratios, and DA turnover estimated by HVA/DA ratios and (DOPAC + HVA)/DA ratios were elevated compared to those in the MA group. These results indicate that the DA and 5-HT systems are involved in the processes of MA-induced aggressive behaviors and that melatonin has the capacity to reverse MA-induced aggressive behaviors.
Collapse
Affiliation(s)
- Yuncui Wang
- Department of Epidemiology & Health Statistics, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China; School of Nursing, Hubei University of Chinese Medicine, No. 1 West Huangjia Lake Road, Hong Shan District, Wuhan 430065, China.
| | - Xiaohong Wang
- School of Chinese Materia Medicine, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing 102488, China.
| | - Jiayan Chen
- Department of Epidemiology & Health Statistics, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Shuaiqi Li
- Department of Epidemiology & Health Statistics, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Haifeng Zhai
- National Institute on Drug Dependence, Peking University, 38#, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Zengzhen Wang
- Department of Epidemiology & Health Statistics, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China.
| |
Collapse
|
7
|
Chadaeva I, Ponomarenko P, Rasskazov D, Sharypova E, Kashina E, Kleshchev M, Ponomarenko M, Naumenko V, Savinkova L, Kolchanov N, Osadchuk L, Osadchuk A. Natural Selection Equally Supports the Human Tendencies in Subordination and Domination: A Genome-Wide Study With in silico Confirmation and in vivo Validation in Mice. Front Genet 2019; 10:73. [PMID: 30873204 PMCID: PMC6404730 DOI: 10.3389/fgene.2019.00073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/28/2019] [Indexed: 12/29/2022] Open
Abstract
We proposed the following heuristic decision-making rule: "IF {an excess of a protein relating to the nervous system is an experimentally known physiological marker of low pain sensitivity, fast postinjury recovery, or aggressive, risk/novelty-seeking, anesthetic-like, or similar agonistic-intolerant behavior} AND IF {a single nucleotide polymorphism (SNP) causes overexpression of the gene encoding this protein} THEN {this SNP can be a SNP marker of the tendency in dominance} WHILE {underexpression corresponds to subordination} AND vice versa." Using this decision-making rule, we analyzed 231 human genes of neuropeptidergic, non-neuropeptidergic, and neurotrophinergic systems that encode neurotrophic and growth factors, interleukins, neurotransmitters, receptors, transporters, and enzymes. These proteins are known as key factors of human social behavior. We analyzed all the 5,052 SNPs within the 70 bp promoter region upstream of the position where the protein-coding transcript starts, which were retrieved from databases Ensembl and dbSNP using our previously created public Web service SNP_TATA_Comparator (http://beehive.bionet.nsc.ru/cgi-bin/mgs/tatascan/start.pl). This definition of the promoter region includes all TATA-binding protein (TBP)-binding sites. A total of 556 and 552 candidate SNP markers contributing to the dominance and the subordination, respectively, were uncovered. On this basis, we determined that 231 human genes under study are subject to natural selection against underexpression (significance p < 0.0005), which equally supports the human tendencies in domination and subordination such as the norm of a reaction (plasticity) of the human social hierarchy. These findings explain vertical transmission of domination and subordination traits previously observed in rodent models. Thus, the results of this study equally support both sides of the century-old unsettled scientific debate on whether both aggressiveness and the social hierarchy among humans are inherited (as suggested by Freud and Lorenz) or are due to non-genetic social education, when the children are influenced by older individuals across generations (as proposed by Berkowitz and Fromm).
Collapse
Affiliation(s)
- Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | | | | | | | - Maxim Kleshchev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Vladimir Naumenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | | | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Ludmila Osadchuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexandr Osadchuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
8
|
Librado P, Gamba C, Gaunitz C, Der Sarkissian C, Pruvost M, Albrechtsen A, Fages A, Khan N, Schubert M, Jagannathan V, Serres-Armero A, Kuderna LFK, Povolotskaya IS, Seguin-Orlando A, Lepetz S, Neuditschko M, Thèves C, Alquraishi S, Alfarhan AH, Al-Rasheid K, Rieder S, Samashev Z, Francfort HP, Benecke N, Hofreiter M, Ludwig A, Keyser C, Marques-Bonet T, Ludes B, Crubézy E, Leeb T, Willerslev E, Orlando L. Ancient genomic changes associated with domestication of the horse. Science 2017; 356:442-445. [DOI: 10.1126/science.aam5298] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Ancient genomics of horse domesticationThe domestication of the horse was a seminal event in human cultural evolution. Libradoet al.obtained genome sequences from 14 horses from the Bronze and Iron Ages, about 2000 to 4000 years ago, soon after domestication. They identified variants determining coat color and genes selected during the domestication process. They could also see evidence of admixture with archaic horses and the demography of the domestication process, which included the accumulation of deleterious variants. The horse appears to have undergone a different type of domestication process than animals that were domesticated simply for food.Science, this issue p.442
Collapse
Affiliation(s)
- Pablo Librado
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
| | - Cristina Gamba
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
| | - Charleen Gaunitz
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
| | - Clio Der Sarkissian
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
| | - Mélanie Pruvost
- Institut Jacques Monod, UMR 7592 CNRS, Université Paris Diderot, 75205 Paris cedex 13, France
| | - Anders Albrechtsen
- Bioinformatics Center, Department of Biology, University of Copenhagen, 2200N Copenhagen, Denmark
| | - Antoine Fages
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
- Laboratoire d’Anthropobiologie Moléculaire et d’Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, 31000 Toulouse, France
| | - Naveed Khan
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Mikkel Schubert
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
| | | | - Aitor Serres-Armero
- Institute of Evolutionary Biology (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Center for Genomic Regulation (CNAG-CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Lukas F. K. Kuderna
- Institute of Evolutionary Biology (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Center for Genomic Regulation (CNAG-CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Inna S. Povolotskaya
- Institute of Evolutionary Biology (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Center for Genomic Regulation (CNAG-CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Andaine Seguin-Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
- National High-Throughput DNA Sequencing Center, Copenhagen, Denmark
| | - Sébastien Lepetz
- Centre National de la Recherche Scientifique, Muséum national d’histoire naturelle, Sorbonne Universités, Archéozoologie, Archéobotanique, Sociétés, Pratiques et Environnements (UMR 7209), 55 rue Buffon, 75005 Paris, France
| | | | - Catherine Thèves
- Laboratoire d’Anthropobiologie Moléculaire et d’Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, 31000 Toulouse, France
| | - Saleh Alquraishi
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed H. Alfarhan
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khaled Al-Rasheid
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Stefan Rieder
- Agroscope, Swiss National Stud Farm, 1580 Avenches, Switzerland
| | - Zainolla Samashev
- Branch of Institute of Archaeology Margulan, Republic Avenue 24-405, 010000 Astana, Republic of Kazakhstan
| | - Henri-Paul Francfort
- CNRS, UMR 7041 Archéologie et Sciences de l’Antiquité, Archéologie de l'Asie Centrale, Maison René Ginouvès, 21 allée de l’Université, 92023 Nanterre, France
| | - Norbert Benecke
- German Archaeological Institute, Department of Natural Sciences, Berlin, 14195 Berlin, Germany
| | - Michael Hofreiter
- University of Potsdam, Faculty of Mathematics and Natural Sciences, Institute for Biochemistry and Biology, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Arne Ludwig
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany
| | - Christine Keyser
- Laboratoire d’Anthropobiologie Moléculaire et d’Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, 31000 Toulouse, France
- Institut de Médecine Légale, Université de Strasbourg, Strasbourg, France
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Center for Genomic Regulation (CNAG-CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
| | - Bertrand Ludes
- Laboratoire d’Anthropobiologie Moléculaire et d’Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, 31000 Toulouse, France
- Institut Médico-Légal, Université Paris Descartes, Paris, France
| | - Eric Crubézy
- Laboratoire d’Anthropobiologie Moléculaire et d’Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, 31000 Toulouse, France
| | - Tosso Leeb
- Institute of Genetics, University of Bern, 3001 Bern, Switzerland
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
- Laboratoire d’Anthropobiologie Moléculaire et d’Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, 31000 Toulouse, France
| |
Collapse
|