1
|
Puzzo C, Festucci F, Curcio G, Gigantesco A, Adriani W. Exploring transgenerational inheritance in epigenotypes of DAT heterozygous rats: Circadian anomalies and attentional vulnerability. Behav Brain Res 2024; 464:114921. [PMID: 38408522 DOI: 10.1016/j.bbr.2024.114921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Dopamine (DA) is mainly involved in locomotor activity, reward processes and maternal behaviors. Rats with KO gene for dopamine transporter (DAT), coding for a truncated DAT protein, are in hyperdopaminergic conditions and thus develop stereotyped behaviors and hyperactivity. Our aim was to test the prior transgenerational modulation of wild and truncated alleles as expressed in heterozygous DAT rats: specifically, we addressed the possible sequelae due to genotype and gender of the ancestors, with regard to behavioral differences in F1, F2, F3 rats. We studied non-classical DAT heterozygotes (HETs) based on two specular lines, with putative grand-maternal vs. grand-paternal imprinting. MAT females (F1; offspring of KO male and WT female) mated with a KO male to generate MIX offspring (F2). Specularly, PAT females (F1; offspring of KO female and WT male) mated with a KO male to generate PIX offspring (F2). Similarly to PAT, we obtained MUX (F2; HET offspring of MAT sire and KO dam); we also observed the F3 (MYX: HET offspring of KO male and MUX female, thus with DAT-KO maternal grandmother like also for PIX). We studied their circadian cycle of locomotor activity and their behavior in the elevated-plus-maze (EPM). Locomotor hyper-activity occurs in F1, the opposite occurs in F2, with MYX rats appearing undistinguishable from WT ones. Open-arm preference emerged in PIX and MIX rats. Only MAT and MYX rats showed a significant vulnerability for ADHD-like inattentive symptoms (duration of rearing in the EPM; Viggiano et al., 2002). A risk-taking profile is evident in the F2 phenotype, while inattentiveness from F1 progeny tends to be transferred to F3. We hypothesize that DAT-related phenotypes result from effective inheritance through pedigree of imprints that are dependent on grandparents, suggesting a protective role for gestation within a hyperdopaminergic uterus. For major features, similar odd (F1, F3) generations appear opposed to even (F2) ones; for minor specific features, the phenotype transfer may affect the progenies with a male but not a female DAT-KO ancestor.
Collapse
Affiliation(s)
- Concetto Puzzo
- Faculty of Psychology, Università Telematica Internazionale Uninettuno, Rome, Italy; Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Fabiana Festucci
- Dept. of Biotechnological and Applied Clinical Sciences, Università degli Studi dell'Aquila, L'Aquila, Italy
| | - Giuseppe Curcio
- Dept. of Biotechnological and Applied Clinical Sciences, Università degli Studi dell'Aquila, L'Aquila, Italy.
| | - Antonella Gigantesco
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Walter Adriani
- Faculty of Psychology, Università Telematica Internazionale Uninettuno, Rome, Italy; Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
2
|
Puzzo C, D'Angiò R, Albanese S, Orlando D, Mangili I, Capobianco M, Liberati AS, Adriani W. Inheritance of wild and truncated DAT alleles from grand-parents: Opposite transgenerational consequences on the behavioral phenotype in adolescent DAT heterozygous rats. Neurosci Lett 2023; 810:137352. [PMID: 37321389 DOI: 10.1016/j.neulet.2023.137352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Dopamine plays important roles in implicit memory and motivation of behavior. Environmental inputs can produce transgenerational epigenetic changes. This concept also includes the uterus: experimentally, we sought to create hyper-dopaminergic uterine conditions through ineffective dopamine-transporter (DAT) protein, obtained by inserting a stop-codon into the SLC6A3 gene. By crossing WT-dam with KO-sire (or vice-versa), we obtained a 100% DAT-heterozygous (HET) offspring with known derivation of the wild allele: MAT rats are offspring of WT-female and KO-male; PAT rats are offspring of KO-female and WT-male. We reconstructed inheritance of alleles, by crossing PAT-male with MAT-female or vice-versa, obtaining GIX (PAT-male with MAT-female) and DIX (MAT-male with PAT-female) rats (such offspring present specular paths in allele inheritance from grandparents). We conducted three experiments: first, we assessed maternal behaviour (four epigenotypes: WT, MAT, PAT and WHZ=HET-pups fostered-to-a WT-dam); in the second, we analysed sleep-wake cycles of GIX and DIX epigenotypes with their WIT siblings as controls; in the third, we explored the impact of WT or MAT mother on WT or HET pups. MAT-dams (with GIX-pups) express excessive licking/grooming. However, in the mere presence of "sick" epigenotype, PAT-dams (with DIX-pups) and also WHZ (i.e., WT-dams but with HET-pups) expressed greater nest-building care towards the offspring, compared to "true-wild" litters (WT-dams with WT-pups). In Exp. 2 at adolescence, GIX epigenotype showed locomotor hyperactivity during late waking-phase, while DIX epigenotype exhibited pronounced hypoactivity compared to controls. In Exp. 3, we confirmed that HET adolescent pups receiving cares from a MAT-dam may develop additional hyperactivity when awake, but additional hypoactivity during rest-hours. Thus, behavioral changes observed in DAT-heterozygous offspring have opposite courses based on of DAT-allele inheritance from a grandparent through the sire or the dam. In conclusion, behavioural changes in the offspring have antithetic courses with respect to inheritance of DAT-allele via sperm or egg.
Collapse
Affiliation(s)
- Concetto Puzzo
- Faculty of Psychology, International Telematic University Uninettuno, Rome, Italy; Center for Behavioral Sciences and Mental Health, IstitutoSuperiore di Sanità, Rome, Italy
| | - Roberta D'Angiò
- Faculty of Psychology, International Telematic University Uninettuno, Rome, Italy
| | - Sara Albanese
- Faculty of Psychology, International Telematic University Uninettuno, Rome, Italy
| | - Daniela Orlando
- Faculty of Psychology, International Telematic University Uninettuno, Rome, Italy
| | - Ileana Mangili
- Faculty of Psychology, International Telematic University Uninettuno, Rome, Italy
| | - Micaela Capobianco
- Faculty of Psychology, International Telematic University Uninettuno, Rome, Italy
| | - Anna Sara Liberati
- Faculty of Psychology, International Telematic University Uninettuno, Rome, Italy; Forensic Science Academy, Via Palmiro Togliatti 11, Castel San Giorgio, Salerno, Italy
| | - Walter Adriani
- Faculty of Psychology, International Telematic University Uninettuno, Rome, Italy; Center for Behavioral Sciences and Mental Health, IstitutoSuperiore di Sanità, Rome, Italy.
| |
Collapse
|
3
|
Belov D, Fesenko Z, Efimov A, Lakstygal A, Efimova E. Different sensitivity to anesthesia according to ECoG data in dopamine transporter knockout and heterozygous rats. Neurosci Lett 2022; 788:136839. [PMID: 35964824 DOI: 10.1016/j.neulet.2022.136839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Dopamine in the brain is involved in many important functions, including the regulation of wakefulness. There is also some evidence suggesting that the dopamine function is crucial in anesthetic function. The state of anesthesia is characterized by a change in the level of consciousness and a change in brain electrical activity. Due to impaired mechanisms of dopamine transportation back to the synaptic terminal, dopamine transporter (DAT) knockout and heterozygous rats have increased levels of the extracellular dopamine. In our work, we registered ECoG disturbances in knockout and heterozygous rats, as well as disturbances in tone and activity in acute experiments under the anesthesia Zoletil (tiletamine and zolazepam) from the somatosensory cortex using a NeuroNexus flat multielectrode array to study gamma activity. We also used four low-resistance electrodes to control the slow rhythm. Both low-resistance and high-resistance electrodes showed differences in the ECoG spectrum of heterozygotes and total knockouts from the wild type and from each other. Heterozygous rats for the DAT gene (HET) showed increased rapid beta and gamma activity and decreased slow delta activity, while complete knockouts (KO), on the contrary, showed increased delta activity and decreased beta and gamma activity. Thus, the ECoG spectrum of HET is shifted to the right, while that of KO is shifted to the left. Full knockouts also showed decreased spatial synchronization in the 30-100 Hz gamma range compared to the wild type (WT). It is assumed that sedation of HET and KO is shifted towards opposite directions compared to WT under the same anesthesia conditions.
Collapse
Affiliation(s)
- Dmitry Belov
- V.A. Almazov NMRC, 2 Akkuratova, St., St. Petersburg 197341, Russia.
| | - Zoia Fesenko
- Department of Biology, Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg 199034, Russia; Institute of Translational Biomedicine, Saint Petersburg State University, 7-9 Universitetskaya nab., Saint Petersburg 199034, Russia
| | - Andrey Efimov
- Institute of Translational Biomedicine, Saint Petersburg State University, 7-9 Universitetskaya nab., Saint Petersburg 199034, Russia
| | - Anton Lakstygal
- Department of Biology, Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg 199034, Russia
| | - Evgeniya Efimova
- Institute of Translational Biomedicine, Saint Petersburg State University, 7-9 Universitetskaya nab., Saint Petersburg 199034, Russia
| |
Collapse
|
4
|
Festucci F, Annunzi E, Pepe M, Curcio G, D'Addario C, Adriani W. Dopamine-transporter heterozygous rats carrying maternal wild-type allele are more vulnerable to the development of compulsive behavior. Synapse 2022; 76:31-44. [PMID: 35772468 DOI: 10.1002/syn.22244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/07/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022]
Abstract
Compulsivity is defined as an unstoppable tendency towards repetitive and habitual actions, which are reiterated despite negative consequences. Polydipsia is induced preclinically by intermittent reward leading rodents to ingest large amounts of fluids. We focused on the role of dopamine transporter (DAT) and inheritance factors in compulsive behavior. Our sample consisted of DAT heterozygous (HET) rats with different genetic inheritance (MAT-HET, born from WT-dams x KO-fathers; MIX-HET, born from HET-dams x KO-fathers). As controls, we used both wild-type (WT) rats and their socially-isolated (WTi) siblings. We ran the schedule-induced polydipsia (SIP) protocol, to induce compulsive behavior; then the Y-maze and marble-burying tests, to verify its actual development. Only MAT-HET (who inherited the functional DAT allele from the WT mother) is vulnerable to developing compulsive behavior. MAT-HET rats drank increasingly more water during SIP and showed significant perseverance in the Y-maze test and exhibited compulsive actions in the marble-burying test. Interestingly, compulsive behaviors of MAT-HET rats correlate with expression ex-vivo of different genes in different areas. Regarding the prefrontal cortex (PFC), D2R correlates with Y-maze "perseverance" in addition to BDNF; considering the amygdala (AMY), both D3R and OXTR correlate with SIP "licks". Indeed, compulsivity may be linked to D2R and BDNF in PFC, while extreme anxiety in MAT-HET rats may be associated with D3R and OXTR in the amygdala. These results confirm some similarities between MAT-HET and DAT-KO subjects and link the epigenetic context of the DAT gene to the development of compulsive behavior. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fabiana Festucci
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Eugenia Annunzi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d' Annunzio" of Chieti-Pescara, Italy
| | - Martina Pepe
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Curcio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Walter Adriani
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
5
|
Behavioral Phenotype in Heterozygous DAT Rats: Transgenerational Transmission of Maternal Impact and the Role of Genetic Asset. Brain Sci 2022; 12:brainsci12040469. [PMID: 35448000 PMCID: PMC9032929 DOI: 10.3390/brainsci12040469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022] Open
Abstract
Dopamine transporter (DAT) is involved in dopamine (DA) reuptake in presynaptic terminals. Deletion of DAT results in a hyperdopaminergic KO-rat phenotype. To conduct our studies in heterozygous DAT rats, several pedigree lines were created, with known derivation of the allele (i.e., maternal or paternal). Our purpose was to elucidate the role of parental origin rather than maternal care, assessing if maternal maltreatments generated sequelae in female offspring. In the first experiment, female rats and their pups were observed during postnatal lactation. Control dams were WT and heterozygous ones were MAT (but K-MAT, with previous experience of early maltreatment by their KO adoptive dams). WT dams were highly attracted to their offspring (predictably, they spent a lot of time licking their pups); in contrast, K-MAT dams showed strangely comparable levels of caring for their pups and exploring the environment. Subsequently, peculiar features of the circadian cycle were found in adolescent rats with different epigenotypes (WT, MUX = offspring of MAT father, MIK = offspring of K-MAT dam). The MIK epigenotype produced locomotor hyperactivity also during resting hours, well above typical values. The MUX epigenotype, on the other hand, was less active and presented a depression-like profile. This study is unique: maltreatment was generated in a spontaneous way from a DAT-KO mother to offspring. We highlight how future studies will address separate contributions by genotype and upbringing. In conclusion, paternal-allele asset generates sequelae diametrically opposed to the inheritance of early maternal trauma.
Collapse
|
6
|
Pepe M, Calcaprina B, Vaquer F, Laviola G, Adriani W. DAT-truncated epigenetics: heterozigosity of the grand-mother rat temperates the vulnerable phenotype in second-generation offspring. Int J Dev Neurosci 2022; 82:168-179. [PMID: 35156234 DOI: 10.1002/jdn.10172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 11/07/2022] Open
Abstract
Behavioral phenotype differs among epigenotypes of dopamine-transporter heterozygous (DAT-HET) rats. Epigenetic regulations act through trans-generational effects, referring to phenotypic variations emerging at second or third generation. To investigate trans-generational influences exerted by maternal grandmothers, we developed breeding schemes where only the genotype of maternal grandmothers varied. Heterozygous females, to serve as MAT vs MIX mothers, were generated, respectively, from WTxKO=MAT and MATxKO=MIX breeding, with KO males acting as grandfather. The HET experimental groups, generated from either MAT or MIX mothers, were called MIX-by-MAT and MIX2 (male-fathers KO; asset-M: wild\healthy-allele from dam); or SOT and SIX (male-fathers WT; asset-P: mutated-allele from dam). Thus, sequelae of first-encounter between wild\healthy and mutated DAT-alleles (in maternal-lineage) were compared at first- (MAT-dam, WT-grandmother) vs. at second- (MIX-dam, HET-grandmother) generation. We characterized, within these epigenotypes, (1) circadian home-cage activity; (2) preference for social stimuli. Marked alterations of circadian activity appeared in HETs, if offspring of MAT-dams, compared to MIX2 (HET offspring of MIX-dams) which, in turn, were undistinguishable from WT-controls. A clear-cut social preference by WT-rats was expressed towards SIX compared to SOT stimulus-rats, confirming reduced social motivations. In conclusion, significant epigenetic modulations took place in DAT-HET rats, as a function of maternal grandmother's genotype.
Collapse
Affiliation(s)
- Martina Pepe
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Calcaprina
- Faculty of Psychology, Università Telematica Internazionale "Uninettuno", Rome, Italy
| | - Francesca Vaquer
- Faculty of Psychology, Università Telematica Internazionale "Uninettuno", Rome, Italy
| | - Giovanni Laviola
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Walter Adriani
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.,Faculty of Psychology, Università Telematica Internazionale "Uninettuno", Rome, Italy
| |
Collapse
|
7
|
Liberati AS, Calcaprina B, Adriani W. Keeping Track of the Genealogy of Heterozygotes Using Epigenetic Reference Codes and Breeding Tables. Front Behav Neurosci 2022; 15:781235. [PMID: 35221940 PMCID: PMC8874286 DOI: 10.3389/fnbeh.2021.781235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Studying neurobehavioral consequences of the hypofunctional dopamine transporter (DAT) across several generations entails the need to monitor allelic transmission to offspring, taking into account both maternal and paternal inheritance. Since each type of heterozygote expresses differential phenotypes, based on lineage of inheritance for wild and mutated alleles (from male or female ancestors), it is important to track transgenerational epigenetic effects. We deemed it essential to assign specific abbreviations identifying their characteristics. Therefore, we devised a Mendelian-inspired table to keep track of these. Starting from two progenitors (WT and KO) we named resulting heterozygous progenies MAT and PAT to differentiate them based on inheritance of the wild allele (from the mother or father). Tracing subsequent generations, similar logic has been followed: if coupling HET dams with KO males, initials “M” [(grand)maternal] and “P” [(grand)paternal] are kept, but “AT” is turned into “IX” (MIX and PIX), while if breeding HETs with WTs, “M” is changed to “W” resembling an upside down “M” and “P” to “S” for “sperm” (WAT and SOT). To underline the development within “hyperdopaminergic-uterus” a central letter “U” is added (MUX, PUX, and QULL), while a Greek initial (μAT, μIX, and νIX) underlines the uterine-worsened origin of the allele. In HET × HET breeding (GIX and DIX), the mutated allele can be inherited from both sides of the genealogical line. However, when the mother is MAT, wild and mutated alleles encounter for the first time, causing putative anomalies in the progeny. Replacing dam with a second-generation female (MIX and MUX) may mitigate epigenetic effects on third-generation offspring; therefore suffixes (“-f,” “-fu,” “-ϕ,” and “-ϕu”) emphasize that subsequent-generation dams imply that the alleles already encountered in HET (rather than WT) grand-dams.
Collapse
Affiliation(s)
- Anna Sara Liberati
- Faculty of Psychology, Università Telematica Internazionale “Uninettuno,” Rome, Italy
| | - Barbara Calcaprina
- Faculty of Psychology, Università Telematica Internazionale “Uninettuno,” Rome, Italy
| | - Walter Adriani
- Faculty of Psychology, Università Telematica Internazionale “Uninettuno,” Rome, Italy
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Walter Adriani,
| |
Collapse
|
8
|
Festucci F, Buccheri C, Parvopassu A, Oggiano M, Bortolato M, Laviola G, Curcio G, Adriani W. "Himalayan Bridge": A New Unstable Suspended Bridge to Investigate Rodents' Venturesome Behavior. Front Behav Neurosci 2021; 15:637074. [PMID: 33994967 PMCID: PMC8113634 DOI: 10.3389/fnbeh.2021.637074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/17/2021] [Indexed: 11/16/2022] Open
Abstract
While both risk-taking and avoidant behaviors are necessary for survival, their imbalanced expression can lead to impulse-control and anxiety disorders, respectively. In laboratory rodents, the conflict between risk proneness and anxiety can be studied by using their innate fear of heights. To explore this aspect in detail and investigate venturesome behavior, here we used a "Himalayan Bridge," a rat-adapted version of the suspended wire bridge protocol originally developed for mice. The apparatus is composed of two elevated scaffolds connected by bridges of different lengths and stability at 1 m above a foam rubber-covered floor. Rats were allowed to cross the bridge to reach food, and crossings, pawslips, turnabouts, and latencies to cross were measured. Given the link between risky behavior and adolescence, we used this apparatus to investigate the different responses elicited by a homecage mate on the adolescent development of risk-taking behavior. Thus, 24 wild-type (WT) subjects were divided into three different housing groups: WT rats grown up with WT adult rats; control WT adolescent rats (grown up with WT adolescents), which showed a proclivity to risk; and WT rats grown up with an adult rat harboring a truncated mutation for their dopamine transporter (DAT). This latter group exhibited risk-averse responses reminiscent of lower venturesomeness. Our results suggest that the Himalayan Bridge may be useful to investigate risk perception and seeking; thus, it should be included in the behavioral phenotyping of rat models of psychiatric disorders and cognitive dysfunctions.
Collapse
Affiliation(s)
- Fabiana Festucci
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Clelia Buccheri
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Parvopassu
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| | - Giovanni Laviola
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Curcio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Walter Adriani
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
9
|
Micro-Vesicles of Moringa oleifera Seeds in Heterozygous Rats for DAT Gene: Effects of Oral Intake on Behavioral Profile and Hematological Parameters. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052322. [PMID: 33652987 PMCID: PMC7956377 DOI: 10.3390/ijerph18052322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022]
Abstract
Previous studies have shown multiple biological properties of Moringa oleifera, a plant native to Africa and Asia. In the present study, potential physiological properties of microvesicles extracted from Moringa oleifera seeds were assessed. For this purpose, we investigated behavioral profile and hematological parameters in a recent rat model characterized by dysregulation in dopamine transporter, a key regulator of dopaminergic system. Experimental design consisted of male Wistar-DAT rats aged between two and four months: wild-type (WT) (n = 5) and heterozygous (DATHET) (n = 4) control groups, which drank tap water; WT (n = 5) and DATHET (n = 6) groups which drank a solution of Moringa microvesicles and water (2: 68 mL per day), which was orally administered for two months. Rats were monitored for spontaneous locomotor activity on a 24/7 basis. In the early lit hours, treated DATHET subjects showed higher locomotor activity, proposing a sleep-delay effect of Moringa. In forced swimming test, WT subjects who took Moringa exhibited more depressive behavior. In DATHET rats, Moringa seemed to potentiate the struggle to find a way out, counteracting an initial panic. Hemoglobin and hematocrit underwent opposite changes in either genotype, supporting the opposite effects on behavioral phenotype observed. Future work is clearly needed to further explore these preliminary profiles.
Collapse
|