1
|
O'Donnell AE, Muirhead DK, Brasier AT, Capezzuoli E. Searching for Life in Hot Spring Carbonate Systems: Investigating Raman Spectra of Carotenoid-Bearing Organic Carbonaceous Inclusions from Travertines of Italy. ASTROBIOLOGY 2024; 24:163-176. [PMID: 37955648 DOI: 10.1089/ast.2023.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Carotenoid pigments provide some of the most common exclusively biogenic markers on Earth, and these organic pigments may be present in extraterrestrial life. Raman spectroscopy can be used to identify carotenoids quickly and accurately through the inelastic scattering of laser light. In this study, we show that Raman spectra of organic matter found in hot spring bacterial assemblages exhibit "spectral overprinting" of the carotenoid spectrum by the carbon spectrum as the organic matter progressively breaks down. Here, we present how, with increasing thermal maturity, the relative intensity of the carotenoid spectrum increases, and as maturity increases a low-intensity carbon spectrum forms in the same region as the carotenoid spectrum. This carbon spectrum increases in intensity as the thermal maturity increases further, progressively obscuring the carotenoid spectrum until only the carbon spectrum can be observed. This means key carotenoid biogenic signatures in hot spring deposits may be hidden within carbon spectra. A detailed study of the transition from carotenoid to carbon, Raman spectra may help develop deconvolution processes that assist in positively identifying biogenic carbon over abiogenic carbon. Our results are relevant for the data analysis from the Raman spectroscopy instruments on the Perseverance (National Aeronautics and Space Administration [NASA]) and Rosalind Franklin (European Space Agency [ESA]) rovers.
Collapse
Affiliation(s)
- Alexander E O'Donnell
- Department of Geology and Geophysics, School of Geosciences, University of Aberdeen, Aberdeen, United Kingdom
| | - David K Muirhead
- Department of Geology and Geophysics, School of Geosciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Alexander T Brasier
- Department of Geology and Geophysics, School of Geosciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Enrico Capezzuoli
- Department of Earth Sciences, University of Florence, Firenze, Italy
| |
Collapse
|
2
|
Zheng W, Zhou A, Sahoo SK, Nolan MR, Ostrander CM, Sun R, Anbar AD, Xiao S, Chen J. Recurrent photic zone euxinia limited ocean oxygenation and animal evolution during the Ediacaran. Nat Commun 2023; 14:3920. [PMID: 37400445 DOI: 10.1038/s41467-023-39427-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023] Open
Abstract
The Ediacaran Period (~635-539 Ma) is marked by the emergence and diversification of complex metazoans linked to ocean redox changes, but the processes and mechanism of the redox evolution in the Ediacaran ocean are intensely debated. Here we use mercury isotope compositions from multiple black shale sections of the Doushantuo Formation in South China to reconstruct Ediacaran oceanic redox conditions. Mercury isotopes show compelling evidence for recurrent and spatially dynamic photic zone euxinia (PZE) on the continental margin of South China during time intervals coincident with previously identified ocean oxygenation events. We suggest that PZE was driven by increased availability of sulfate and nutrients from a transiently oxygenated ocean, but PZE may have also initiated negative feedbacks that inhibited oxygen production by promoting anoxygenic photosynthesis and limiting the habitable space for eukaryotes, hence abating the long-term rise of oxygen and restricting the Ediacaran expansion of macroscopic oxygen-demanding animals.
Collapse
Affiliation(s)
- Wang Zheng
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Anwen Zhou
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
- Department of Earth, Ocean and Atmospheric Science and National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32306, USA
| | | | - Morrison R Nolan
- Department of Geosciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Chadlin M Ostrander
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
- Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ruoyu Sun
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Ariel D Anbar
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Shuhai Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jiubin Chen
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
3
|
Sala D, Grossi V, Agogué H, Leboulanger C, Jézéquel D, Sarazin G, Antheaume I, Bernard C, Ader M, Hugoni M. Influence of aphotic haloclines and euxinia on organic biomarkers and microbial communities in a thalassohaline and alkaline volcanic crater lake. GEOBIOLOGY 2022; 20:292-309. [PMID: 34687126 DOI: 10.1111/gbi.12477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Studies on microbial communities, and their associated organic biomarkers, that are found thriving in the aphotic euxinic waters in modern stratified ecosystems are scarce compared to those undertaken in euxinic photic zones. The Dziani Dzaha (Mayotte, Indian Ocean) is a tropical, saline, alkaline crater lake that has recently been presented as a modern analog of Proterozoic Oceans due to its thalassohaline classification (having water of marine origin) and specific biogeochemical characteristics. Continuous intense photosynthetic production and microbial mineralization keep most of the water column permanently aphotic and anoxic preventing the development of a euxinic (sulfidic and anoxic) photic zone despite a high sulfide/sulfate ratio and the presence of permanent or seasonal haloclines. In this study, the molecular composition of the organic matter in Lake Dziani Dzaha was investigated and compared to the microbial diversity evaluated through 16S rRNA gene amplicon sequencing, over two contrasting seasons (rainy vs. dry) that influence water column stratification. Depth profiles of organic biomarker concentrations (chlorophyll-a and lipid biomarkers) and bacterial and archaeal OTU abundances appeared to be strongly dependent on the presence of aphotic haloclines and euxinia. OTU abundances revealed the importance of specific haloalkaliphilic bacterial and archaeal assemblages in phytoplanktonic biomass recycling and the biogeochemical functioning of the lake, suggesting new haloalkaline non-phototrophic anaerobic microbial precursors for some of the lipid biomarkers. Uncultured Firmicutes from the family Syntrophomonadaceae (Clostridiales), and Bacteroidetes from the ML635J-40 aquatic group, emerged as abundant chemotrophic bacterial members in the anoxic or euxinic waters and were probably responsible for the production of short-chain n-alkenes, wax esters, diplopterol, and tetrahymanol. Halocline-dependent euxinia also had a strong impact on the archaeal community which was dominated by Woesearchaeota in the sulfide-free waters. In the euxinic waters, methanogenic Euryarchaeota from the Methanomicrobia, Thermoplasmata, and WSA2 classes dominated and were likely at the origin of common hydrocarbon biomarkers of methanogens (phytane, pentamethyl-eicosenes, and partially hydrogenated squalene).
Collapse
Affiliation(s)
- David Sala
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENSL, UJM, LGL-TPE, Villeurbanne, France
| | - Vincent Grossi
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENSL, UJM, LGL-TPE, Villeurbanne, France
| | - Hélène Agogué
- LIENSs, UMR 7266, La Rochelle Université - CNRS, La Rochelle, France
| | | | - Didier Jézéquel
- Université de Paris, Institut de Physique du Globe de Paris, Paris, France
- INRAE & Université Savoie Mont Blanc, UMR CARRTEL, Thonon-les-Bains, France
| | - Gérard Sarazin
- Université de Paris, Institut de Physique du Globe de Paris, Paris, France
| | - Ingrid Antheaume
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENSL, UJM, LGL-TPE, Villeurbanne, France
| | - Cécile Bernard
- UMR 7245 Molécules de Communication et Adaptations des Microorganismes (MCAM) MNHN-CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Magali Ader
- Université de Paris, Institut de Physique du Globe de Paris, Paris, France
| | - Mylène Hugoni
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
- Univ Lyon, INSA Lyon, CNRS, UMR 5240 Microbiologie Adaptation et Pathogénie, Villeurbanne, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
4
|
Summons RE, Welander PV, Gold DA. Lipid biomarkers: molecular tools for illuminating the history of microbial life. Nat Rev Microbiol 2022; 20:174-185. [PMID: 34635851 DOI: 10.1038/s41579-021-00636-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 11/09/2022]
Abstract
Fossilized lipids preserved in sedimentary rocks offer singular insights into the Earth's palaeobiology. These 'biomarkers' encode information pertaining to the oxygenation of the atmosphere and oceans, transitions in ocean plankton, the greening of continents, mass extinctions and climate change. Historically, biomarker interpretations relied on inventories of lipids present in extant microorganisms and counterparts in natural environments. However, progress has been impeded because only a small fraction of the Earth's microorganisms can be cultured, many environmentally significant microorganisms from the past no longer exist and there are gaping holes in knowledge concerning lipid biosynthesis. The revolution in genomics and bioinformatics has provided new tools to expand our understanding of lipid biomarkers, their biosynthetic pathways and distributions in nature. In this Review, we explore how preserved organic molecules provide a unique perspective on the history of the Earth's microbial life. We discuss how advances in molecular biology have helped elucidate biomarker origins and afforded more robust interpretations of fossil lipids and how the rock record provides vital calibration points for molecular clocks. Such studies are open to further exploitation with the expansion of sequenced microbial genomes in accessible databases.
Collapse
Affiliation(s)
- Roger E Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Paula V Welander
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - David A Gold
- Department of Earth & Planetary Sciences, University of California Davis, Davis, CA, USA
| |
Collapse
|
5
|
Carotenoid biomarkers in Namibian shelf sediments: Anoxygenic photosynthesis during sulfide eruptions in the Benguela Upwelling System. Proc Natl Acad Sci U S A 2021; 118:2106040118. [PMID: 34272281 DOI: 10.1073/pnas.2106040118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aromatic carotenoid-derived hydrocarbon biomarkers are ubiquitous in ancient sediments and oils and are typically attributed to anoxygenic phototrophic green sulfur bacteria (GSB) and purple sulfur bacteria (PSB). These biomarkers serve as proxies for the environmental growth requirements of PSB and GSB, namely euxinic waters extending into the photic zone. Until now, prevailing models for environments supporting anoxygenic phototrophs include microbial mats, restricted basins and fjords with deep chemoclines, and meromictic lakes with shallow chemoclines. However, carotenoids have been reported in ancient open marine settings for which there currently are no known modern analogs that host GSB and PSB. The Benguela Upwelling System offshore Namibia, known for exceptionally high primary productivity, is prone to recurrent toxic gas eruptions whereupon hydrogen sulfide emanates from sediments into the overlying water column. These events, visible in satellite imagery as water masses clouded with elemental sulfur, suggest that the Benguela Upwelling System may be capable of supporting GSB and PSB. Here, we compare distributions of biomarkers in the free and sulfur-bound organic matter of Namibian shelf sediments. Numerous compounds-including acyclic isoprenoids, steranes, triterpanes, and carotenoids-were released from the polar lipid fractions upon Raney nickel desulfurization. The prevalence of isorenieratane and β-isorenieratane in sampling stations along the shelf verified anoxygenic photosynthesis by low-light-adapted, brown-colored GSB in this open marine setting. Renierapurpurane was also present in the sulfur-bound carotenoids and was typically accompanied by lower abundances of renieratane and β-renierapurpurane, thereby identifying cyanobacteria as an additional aromatic carotenoid source.
Collapse
|
6
|
Molecular and isotopic evidence reveals the end-Triassic carbon isotope excursion is not from massive exogenous light carbon. Proc Natl Acad Sci U S A 2020; 117:30171-30178. [PMID: 33199627 DOI: 10.1073/pnas.1917661117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The negative organic carbon isotope excursion (CIE) associated with the end-Triassic mass extinction (ETE) is conventionally interpreted as the result of a massive flux of isotopically light carbon from exogenous sources into the atmosphere (e.g., thermogenic methane and/or methane clathrate dissociation linked to the Central Atlantic Magmatic Province [CAMP]). Instead, we demonstrate that at its type locality in the Bristol Channel Basin (UK), the CIE was caused by a marine to nonmarine transition resulting from an abrupt relative sea level drop. Our biomarker and compound-specific carbon isotopic data show that the emergence of microbial mats, influenced by an influx of fresh to brackish water, provided isotopically light carbon to both organic and inorganic carbon pools in centimeter-scale water depths, leading to the negative CIE. Thus, the iconic CIE and the disappearance of marine biota at the type locality are the result of local environmental change and do not mark either the global extinction event or input of exogenous light carbon into the atmosphere. Instead, the main extinction phase occurs slightly later in marine strata, where it is coeval with terrestrial extinctions and ocean acidification driven by CAMP-induced increases in Pco2; these effects should not be conflated with the CIE. An abrupt sea-level fall observed in the Central European basins reflects the tectonic consequences of the initial CAMP emplacement, with broad implications for all extinction events related to large igneous provinces.
Collapse
|
7
|
Roussel A, Cui X, Summons RE. Biomarker stratigraphy in the Athel Trough of the South Oman Salt Basin at the Ediacaran-Cambrian Boundary. GEOBIOLOGY 2020; 18:663-681. [PMID: 32643313 DOI: 10.1111/gbi.12407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/23/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
The South Oman Salt Basin (SOSB) has been studied extensively for knowledge concerning the habitat of the enigmatic Ediacaran-Cambrian oils that are produced from that region. Geological, geochemical, geophysical, and geochronological investigations have all contributed to improved understanding of the range of late Neoproterozoic depositional environments recorded there. Of particular interest has been the deep Athel depocenter within the SOSB that features a silica-rich interval known as the Al Shomou Member or Athel Silicilyte and the co-eval A4 carbonate-evaporite sequence that straddles the Ediacaran-Cambrian boundary. The deep basin has been suggested to be anoxic and euxinic based on studies of sulfur isotopes, trace metal distributions and other proxies. Organic geochemistry has provided some clues concerning aspects of the depositional environments and microbial communities prevailing during this interval. However, ambiguities remain including a paucity of convincing molecular evidence for euxinia in the photic zone of the basin. Here, we present a comprehensive study of biomarker hydrocarbons, including steroids, triterpenoids, and carotenoids. Among the compounds detected is a distinctive array of aromatic carotenoids. Relatively low abundances of monoaromatic carotenoids, such as chlorobactane, okenane, and β-isorenieratane, suggest the possibility of transient photic zone euxinia with a shallow chemocline or, perhaps, exogenous inputs from microbial mats. However, it is the dominance of renieratane and renierapurpurane over isorenieratane in diaromatic carotenoids and their association with abundant C38 and C39 carotenoids that identifies cyanobacteria as major contributors to the inventory of carotenoids. Our results, based on multiple lines of molecular evidence and statistical analysis, also suggest that the Athel Silicilyte was biogeochemically distinct from the other units of the Ara Group. Overall, our study has important implications for understanding other late Neoproterozoic depositional environments.
Collapse
Affiliation(s)
- Anaïs Roussel
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xingqian Cui
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Roger E Summons
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
8
|
Niche expansion for phototrophic sulfur bacteria at the Proterozoic-Phanerozoic transition. Proc Natl Acad Sci U S A 2020; 117:17599-17606. [PMID: 32647063 PMCID: PMC7395447 DOI: 10.1073/pnas.2006379117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Carotenoid pigments afford valuable clues about the chemistry and biology of both modern and ancient aquatic environments. This study reveals that fossil aromatic carotenoids—long considered biomarkers for anoxygenic, phototrophic sulfur bacteria and their physiological requirement for hydrogen sulfide and illumination—can also be biosynthesized by oxygen-producing cyanobacteria. Cyanobacterial aromatic carotenoids, which are distinct in their chemical structures and occurrence patterns, are the most commonly encountered compounds in Proterozoic marine settings as well as in lakes from more recent eras. In contrast, carotenoids diagnostic for green sulfur bacteria of the family Chlorobiaceae became both prevalent and abundant in marine paleoenvironments beginning in the Phanerozoic Eon. This expansion occurs as marine sulfate inventories increased toward the end of the Proterozoic Eon. Fossilized carotenoid hydrocarbons provide a window into the physiology and biochemistry of ancient microbial phototrophic communities for which only a sparse and incomplete fossil record exists. However, accurate interpretation of carotenoid-derived biomarkers requires detailed knowledge of the carotenoid inventories of contemporary phototrophs and their physiologies. Here we report two distinct patterns of fossilized C40 diaromatic carotenoids. Phanerozoic marine settings show distributions of diaromatic hydrocarbons dominated by isorenieratane, a biomarker derived from low-light-adapted phototrophic green sulfur bacteria. In contrast, isorenieratane is only a minor constituent within Neoproterozoic marine sediments and Phanerozoic lacustrine paleoenvironments, for which the major compounds detected are renierapurpurane and renieratane, together with some novel C39 and C38 carotenoid degradation products. This latter pattern can be traced to cyanobacteria as shown by analyses of cultured taxa and laboratory simulations of sedimentary diagenesis. The cyanobacterial carotenoid synechoxanthin, and its immediate biosynthetic precursors, contain thermally labile, aromatic carboxylic-acid functional groups, which upon hydrogenation and mild heating yield mixtures of products that closely resemble those found in the Proterozoic fossil record. The Neoproterozoic–Phanerozoic transition in fossil carotenoid patterns likely reflects a step change in the surface sulfur inventory that afforded opportunities for the expansion of phototropic sulfur bacteria in marine ecosystems. Furthermore, this expansion might have also coincided with a major change in physiology. One possibility is that the green sulfur bacteria developed the capacity to oxidize sulfide fully to sulfate, an innovation which would have significantly increased their capacity for photosynthetic carbon fixation.
Collapse
|
9
|
Roy A, Pittman M, Saitta ET, Kaye TG, Xu X. Recent advances in amniote palaeocolour reconstruction and a framework for future research. Biol Rev Camb Philos Soc 2020; 95:22-50. [PMID: 31538399 PMCID: PMC7004074 DOI: 10.1111/brv.12552] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 01/24/2023]
Abstract
Preserved melanin pigments have been discovered in fossilised integumentary appendages of several amniote lineages (fishes, frogs, snakes, marine reptiles, non-avialan dinosaurs, birds, and mammals) excavated from lagerstätten across the globe. Melanisation is a leading factor in organic integument preservation in these fossils. Melanin in extant vertebrates is typically stored in rod- to sphere-shaped, lysosome-derived, membrane-bound vesicles called melanosomes. Black, dark brown, and grey colours are produced by eumelanin, and reddish-brown colours are produced by phaeomelanin. Specific morphotypes and nanostructural arrangements of melanosomes and their relation to the keratin matrix in integumentary appendages create the so-called 'structural colours'. Reconstruction of colour patterns in ancient animals has opened an exciting new avenue for studying their life, behaviour and ecology. Modern relationships between the shape, arrangement, and size of avian melanosomes, melanin chemistry, and feather colour have been applied to reconstruct the hues and colour patterns of isolated feathers and plumages of the dinosaurs Anchiornis, Sinosauropteryx, and Microraptor in seminal papers that initiated the field of palaeocolour reconstruction. Since then, further research has identified countershading camouflage patterns, and informed subsequent predictions on the ecology and behaviour of these extinct animals. However, palaeocolour reconstruction remains a nascent field, and current approaches have considerable potential for further refinement, standardisation, and expansion. This includes detailed study of non-melanic pigments that might be preserved in fossilised integuments. A common issue among existing palaeocolour studies is the lack of contextualisation of different lines of evidence and the wide variety of techniques currently employed. To that end, this review focused on fossil amniotes: (i) produces an overarching framework that appropriately reconstructs palaeocolour by accounting for the chemical signatures of various pigments, morphology and local arrangement of pigment-bearing vesicles, pigment concentration, macroscopic colour patterns, and taphonomy; (ii) provides background context for the evolution of colour-producing mechanisms; and (iii) encourages future efforts in palaeocolour reconstructions particularly of less-studied groups such as non-dinosaur archosaurs and non-archosaur amniotes.
Collapse
Affiliation(s)
- Arindam Roy
- Vertebrate Palaeontology Laboratory, Department of Earth SciencesThe University of Hong KongPokfulamHong Kong SARChina
| | - Michael Pittman
- Vertebrate Palaeontology Laboratory, Department of Earth SciencesThe University of Hong KongPokfulamHong Kong SARChina
| | - Evan T. Saitta
- Integrative Research Center, Section of Earth SciencesField Museum of Natural History1400 S. Lake Shore Drive, ChicagoIL60605U.S.A.
| | - Thomas G. Kaye
- Foundation for Scientific Advancement7023 Alhambra Drive, Sierra VistaAZ85650U.S.A.
| | - Xing Xu
- Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of Sciences142 Xizhimenwai Street.Beijing100044China
| |
Collapse
|
10
|
Broda K, Marynowski L, Rakociński M, Zatoń M. Coincidence of photic zone euxinia and impoverishment of arthropods in the aftermath of the Frasnian-Famennian biotic crisis. Sci Rep 2019; 9:16996. [PMID: 31740678 PMCID: PMC6861261 DOI: 10.1038/s41598-019-52784-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/18/2019] [Indexed: 11/09/2022] Open
Abstract
The lowermost Famennian deposits of the Kowala quarry (Holy Cross Mountains, Poland) are becoming famous for their rich fossil content such as their abundant phosphatized arthropod remains (mostly thylacocephalans). Here, for the first time, palaeontological and geochemical data were integrated to document abundance and diversity patterns in the context of palaeoenvironmental changes. During deposition, the generally oxic to suboxic conditions were interrupted at least twice by the onset of photic zone euxinia (PZE). Previously, PZE was considered as essential in preserving phosphatised fossils from, e.g., the famous Gogo Formation, Australia. Here, we show, however, that during PZE, the abundance of arthropods drastically dropped. The phosphorous content during PZE was also very low in comparison to that from oxic-suboxic intervals where arthropods are the most abundant. As phosphorous is essential for phosphatisation but also tends to flux off the sediment during bottom water anoxia, we propose that the PZE in such a case does not promote the fossilisation of the arthropods but instead leads to their impoverishment and non-preservation. Thus, the PZE conditions with anoxic bottom waters cannot be presumed as universal for exceptional fossil preservation by phosphatisation, and caution must be paid when interpreting the fossil abundance on the background of redox conditions.
Collapse
Affiliation(s)
- Krzysztof Broda
- Department of Palaeontology and Stratigraphy, University of Silesia in Katowice, Faculty of Earth Sciences, Będzińska 60, 41-205, Sosnowiec, Poland.
| | - Leszek Marynowski
- Department of Geochemistry, Mineralogy and Petrography, University of Silesia in Katowice, Faculty of Earth Sciences, Będzińska 60, 41-205, Sosnowiec, Poland
| | - Michał Rakociński
- Department of Palaeontology and Stratigraphy, University of Silesia in Katowice, Faculty of Earth Sciences, Będzińska 60, 41-205, Sosnowiec, Poland
| | - Michał Zatoń
- Department of Palaeontology and Stratigraphy, University of Silesia in Katowice, Faculty of Earth Sciences, Będzińska 60, 41-205, Sosnowiec, Poland
| |
Collapse
|
11
|
Osterrothová K, Culka A, Němečková K, Kaftan D, Nedbalová L, Procházková L, Jehlička J. Analyzing carotenoids of snow algae by Raman microspectroscopy and high-performance liquid chromatography. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 212:262-271. [PMID: 30658280 DOI: 10.1016/j.saa.2019.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
We tested the potential of Raman microspectroscopy to determine carotenoid pigments - both primary (lutein, beta-carotene) and secondary (astaxanthin) carotenoids - in the different species and life-cycle stages of snow algae from the order Chlamydomonadales (Chlorophyta). We compared the performance of Raman spectrometry to a reference method of biological pigment analysis, high-performance liquid chromatography (HPLC). The three main carotenoid Raman bands of the astaxanthin-rich red cysts were located at 1520, 1156 and 1006 cm-1. The shifts (orange aplanozygotes and green motile cells with flagella) in the position of the ν1(CC) Raman band of the polyenic chain is consistent with the expected changes in the ratios of the various carotenoid pigments. Flagellated green cells commonly contain lutein as a major carotenoid, together with minor amounts of β‑carotene and varying amounts of antheraxanthin, violaxanthin and neoxanthin. Aplanozygotes contain mixtures of both primary and secondary carotenoids. In most cases, the ν1(CC) band is an overlapping set of bands, which is due to the signal of all carotenoid pigments in the sample, and a deconvolution along with the band position shifts (mainly ν1) could be used to characterize the mixture of carotenoids. However, the ability of Raman spectroscopy to discriminate between structurally slightly differing carotenoid pigments or several carotenoids in an admixture in an unknown biological system remains limited.
Collapse
Affiliation(s)
- Kateřina Osterrothová
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, Prague 128 43, Czech Republic.
| | - Adam Culka
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, Prague 128 43, Czech Republic
| | - Kateřina Němečková
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, Prague 128 43, Czech Republic
| | - David Kaftan
- Center Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Lenka Procházková
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Jan Jehlička
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, Prague 128 43, Czech Republic
| |
Collapse
|
12
|
Smolarek-Lach J, Marynowski L, Trela W, Wignall PB. Mercury Spikes Indicate a Volcanic Trigger for the Late Ordovician Mass Extinction Event: An Example from a Deep Shelf of the Peri-Baltic Region. Sci Rep 2019; 9:3139. [PMID: 30816186 PMCID: PMC6395715 DOI: 10.1038/s41598-019-39333-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/17/2019] [Indexed: 11/17/2022] Open
Abstract
The Late Ordovician mass extinction (LOME) was the second largest Phanerozoic crisis, but its cause remains elusive. Several triggering mechanisms have been proposed over the years, including bioevolutionary events, oceanographic changes, and geotectonic processes. Here, we report the presence of Hg spikes in the Zbrza PIG-1 borehole from the Upper Ordovician deep shelf sections of the peri-Baltic region. A strong positive anomaly in the lower late Katian (Hg/TOC = 2537.3 ppb/wt%) was noted. No correlation between Hg and TOC (R2 = 0.07) was distinguished in the Hirnantian, although several positive anomalies were found. Because the Hg/Mo ratio showed trends very similar to those of Hg/TOC, it seems likely that TOC values reflect the redox conditions. In order to evaluate the role of anoxia in levels of Hg enrichment several redox indicators were measured. These showed that the elevated mercury values in the Hirnantian are not caused by anoxia/euxinia because euxinic biomarkers (maleimides and aryl isoprenoids) are present in very low abundance and pyrite framboids are absent. In total, positive Hg/TOC anomalies occur in the lower late Katian, at the Katian - Hirnantian boundary, and in the late Hirnantian. The lack of a strong Hg/TOC correlation, Ni enrichments, and the absence of ‘anoxic indicators’ (no biomarkers, no framboids, low Mo concentration) at these levels, supports the interpretation that Hg enrichment is due to enhanced environmental loading. We conclude that our Hg and Hg/TOC values were associated with volcanic pulses which triggered the massive environmental changes resulting in the Late Ordovician mass extinction.
Collapse
Affiliation(s)
| | - Leszek Marynowski
- Faculty of Earth Sciences, University of Silesia, Sosnowiec, 41-200, Poland
| | - Wiesław Trela
- Polish Geological Institute ‒ National Research Institute, Kielce, 25-953, Poland
| | - Paul B Wignall
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
13
|
Martinez AM, Boyer DL, Droser ML, Barrie C, Love GD. A stable and productive marine microbial community was sustained through the end-Devonian Hangenberg Crisis within the Cleveland Shale of the Appalachian Basin, United States. GEOBIOLOGY 2019; 17:27-42. [PMID: 30248226 DOI: 10.1111/gbi.12314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/02/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
The end-Devonian Hangenberg Crisis constituted one of the greatest ecological and environmental perturbations of the Paleozoic Era. To date, however, it has been difficult to precisely constrain the occurrence of the Hangenberg Crisis in the Appalachian Basin of the United States and thus to directly assess the effects of this crisis on marine microbial communities and paleoenvironmental conditions. Here, we integrate organic and inorganic chemostratigraphic records compiled from two discrete outcrop locations to characterize the onset and paleoenvironmental transitions associated with the Hangenberg Crisis within the Cleveland Shale member of the Ohio Shale. The upper Cleveland Shale records both positive carbon (δ13 Corg ) and nitrogen (δ15 Ntotal ) isotopic excursions, and replenished trace metal inventories with links to eustatic rise. These dual but apparently temporally offset isotope excursions may be useful for stratigraphic correlation with other productive end-Devonian epeiric marine locations. Deposition of the black shale succession occurred locally beneath a redox-stratified water column with euxinic zones, with signs of strengthening denitrification during the Hangenberg Crisis interval, but with an otherwise stable and algal-rich marine microbial community structure sustained in the surface mixed layer as ascertained by lipid biomarker assemblages. Discernible trace fossil signals in some horizons suggest, however, that bioturbation and seafloor oxygenation occurred episodically throughout this succession and highlight that geochemical proxies often fail to capture these rapid and sporadic redox fluctuations in ancient black shales. The paleoenvironmental conditions, source biota, and accumulations of black shale are consistent with expressions of the Hangenberg Crisis globally, suggesting this event is likely captured within the uppermost strata of the Cleveland Shale in North America.
Collapse
Affiliation(s)
- Aaron M Martinez
- Department of Earth Sciences, University of California, Riverside, Riverside, California
| | - Diana L Boyer
- Department of Chemistry, Physics and Geology, Winthrop University, Rock Hill, South Carolina
| | - Mary L Droser
- Department of Earth Sciences, University of California, Riverside, Riverside, California
| | | | - Gordon D Love
- Department of Earth Sciences, University of California, Riverside, Riverside, California
| |
Collapse
|
14
|
Reinhardt M, Duda JP, Blumenberg M, Ostertag-Henning C, Reitner J, Heim C, Thiel V. The taphonomic fate of isorenieratene in Lower Jurassic shales-controlled by iron? GEOBIOLOGY 2018; 16:237-251. [PMID: 29569335 DOI: 10.1111/gbi.12284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Fossil derivatives of isorenieratene, an accessory pigment in brown-colored green sulfur bacteria, are often used as tracers for photic zone anoxia through Earth's history, but their diagenetic behavior is still incompletely understood. Here, we assess the preservation of isorenieratene derivatives in organic-rich shales (1.5-8.4 wt.% TOC) from two Lower Jurassic anoxic systems (Bächental oil shale, Tyrol, Austria; Posidonia Shale, Baden-Württemberg, Germany). Bitumens and kerogens were investigated using catalytic hydropyrolysis (HyPy), closed-system hydrous pyrolysis (in gold capsules), gas chromatography-mass spectrometry (GC-MS) and gas chromatography combustion isotope ratio-mass spectrometry (GC-C-IRMS). Petrography and biomarkers indicate a syngenetic relationship between bitumens and kerogens. All bitumens contain abundant isorenieratane, diverse complex aromatized isorenieratene derivatives, and a pseudohomologous series of 2,3,6-trimethyl aryl isoprenoids. In contrast, HyPy and mild closed-system hydrous pyrolysis of the kerogens yielded only minor amounts of these compounds. Given the overall low maturity of the organic matter (below oil window), it appears that isorenieratene and its abundant derivatives from the bitumen had not been incorporated into the kerogens. Accordingly, sulfur cross-linking, the key mechanism for sequestration of functionalized lipids into kerogens in anoxic systems, was not effective in the Jurassic environments studied. We explain this by (i) early cyclization/aromatization and (ii) hydrogenation reactions that have prevented effective sulfurization. In addition, (iii) sulfide was locally removed via anoxygenic photosynthesis and efficiently trapped by the reaction with sedimentary iron, as further indicated by elevated iron contents (4.0-8.7 wt.%) and the presence of abundant pyrite aggregates in the rock matrix. Although the combined processes have hampered the kerogen incorporation of isorenieratene and its derivatives, they may have promoted the long-term preservation of these biomarkers in the bitumen fraction via early defunctionalization. This particular taphonomy of aromatic carotenoids has to be considered in studies of anoxic iron-rich environments (e.g., the Proterozoic ocean).
Collapse
Affiliation(s)
- M Reinhardt
- Department of Geobiology, Geoscience Centre, University of Göttingen, Göttingen, Germany
- Planets and Comets, Max Planck Institute for Solar System Research, Göttingen, Germany
| | - J-P Duda
- Department of Geobiology, Geoscience Centre, University of Göttingen, Göttingen, Germany
- 'Origin of Life' Group, Göttingen Academy of Sciences and Humanities, Göttingen, Germany
| | - M Blumenberg
- Federal Institute for Geosciences and Natural Resources, Hannover, Germany
| | - C Ostertag-Henning
- Federal Institute for Geosciences and Natural Resources, Hannover, Germany
| | - J Reitner
- Department of Geobiology, Geoscience Centre, University of Göttingen, Göttingen, Germany
- 'Origin of Life' Group, Göttingen Academy of Sciences and Humanities, Göttingen, Germany
| | - C Heim
- Department of Geobiology, Geoscience Centre, University of Göttingen, Göttingen, Germany
| | - V Thiel
- Department of Geobiology, Geoscience Centre, University of Göttingen, Göttingen, Germany
| |
Collapse
|
15
|
Malherbe C, Hutchinson IB, Ingley R, Boom A, Carr AS, Edwards H, Vertruyen B, Gilbert B, Eppe G. On the Habitability of Desert Varnish: A Combined Study by Micro-Raman Spectroscopy, X-ray Diffraction, and Methylated Pyrolysis-Gas Chromatography-Mass Spectrometry. ASTROBIOLOGY 2017; 17:1123-1137. [PMID: 29039682 DOI: 10.1089/ast.2016.1512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In 2020, the ESA ExoMars and NASA Mars 2020 missions will be launched to Mars to search for evidence of past and present life. In preparation for these missions, terrestrial analog samples of rock formations on Mars are studied in detail in order to optimize the scientific information that the analytical instrumentation will return. Desert varnishes are thin mineral coatings found on rocks in arid and semi-arid environments on Earth that are recognized as analog samples. During the formation of desert varnishes (which takes many hundreds of years), organic matter is incorporated, and microorganisms may also play an active role in the formation process. During this study, four complementary analytical techniques proposed for Mars missions (X-ray diffraction [XRD], Raman spectroscopy, elemental analysis, and pyrolysis-gas chromatography-mass spectrometry [Py-GC-MS]) were used to interrogate samples of desert varnish and describe their capacity to sustain life under extreme scenarios. For the first time, both the geochemistry and the organic compounds associated with desert varnish are described with the use of identical sets of samples. XRD and Raman spectroscopy measurements were used to nondestructively interrogate the mineralogy of the samples. In addition, the use of Raman spectroscopy instruments enabled the detection of β-carotene, a highly Raman-active biomarker. The content and the nature of the organic material in the samples were further investigated with elemental analysis and methylated Py-GC-MS, and a bacterial origin was determined to be likely. In the context of planetary exploration, we describe the habitable nature of desert varnish based on the biogeochemical composition of the samples. Possible interference of the geological substrate on the detectability of pyrolysis products is also suggested. Key Words: Desert varnish-Habitability-Raman spectroscopy-Py-GC-MS-XRD-ExoMars-Planetary science. Astrobiology 17, 1123-1137.
Collapse
Affiliation(s)
- C Malherbe
- 1 Department of Physics and Astronomy, University of Leicester , Leicester, UK
- 2 Laboratory of Inorganic Analytical Chemistry, Department of Chemistry, University of Liège , Liège, Belgium
| | - I B Hutchinson
- 1 Department of Physics and Astronomy, University of Leicester , Leicester, UK
| | - R Ingley
- 1 Department of Physics and Astronomy, University of Leicester , Leicester, UK
| | - A Boom
- 3 Department of Geography, University of Leicester , Leicester, UK
| | - A S Carr
- 3 Department of Geography, University of Leicester , Leicester, UK
| | - H Edwards
- 1 Department of Physics and Astronomy, University of Leicester , Leicester, UK
| | - B Vertruyen
- 4 LCIS/GREENMAT, Department of Chemistry, University of Liège , Liège, Belgium
| | - B Gilbert
- 2 Laboratory of Inorganic Analytical Chemistry, Department of Chemistry, University of Liège , Liège, Belgium
| | - G Eppe
- 2 Laboratory of Inorganic Analytical Chemistry, Department of Chemistry, University of Liège , Liège, Belgium
| |
Collapse
|
16
|
Tang T, Mohr W, Sattin SR, Rogers DR, Girguis PR, Pearson A. Geochemically distinct carbon isotope distributions in Allochromatium vinosum DSM 180 T grown photoautotrophically and photoheterotrophically. GEOBIOLOGY 2017; 15:324-339. [PMID: 28042698 DOI: 10.1111/gbi.12221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Anoxygenic, photosynthetic bacteria are common at redox boundaries. They are of interest in microbial ecology and geosciences through their role in linking the carbon, sulfur, and iron cycles, yet much remains unknown about how their flexible carbon metabolism-permitting either autotrophic or heterotrophic growth-is recorded in the bulk sedimentary and lipid biomarker records. Here, we investigated patterns of carbon isotope fractionation in a model photosynthetic sulfur-oxidizing bacterium, Allochromatium vinosum DSM180T . In one treatment, A. vinosum was grown with CO2 as the sole carbon source, while in a second treatment, it was grown on acetate. Different intracellular isotope patterns were observed for fatty acids, phytol, individual amino acids, intact proteins, and total RNA between the two experiments. Photoautotrophic CO2 fixation yielded typical isotopic ordering for the lipid biomarkers: δ13 C values of phytol > n-alkyl lipids. In contrast, growth on acetate greatly suppressed intracellular isotopic heterogeneity across all molecular classes, except for a marked 13 C-depletion in phytol. This caused isotopic "inversion" in the lipids (δ13 C values of phytol < n-alkyl lipids). The finding suggests that inverse δ13 C patterns of n-alkanes and pristane/phytane in the geologic record may be at least in part a signal for photoheterotrophy. In both experimental scenarios, the relative isotope distributions could be predicted from an isotope flux-balance model, demonstrating that microbial carbon metabolisms can be interrogated by combining compound-specific stable isotope analysis with metabolic modeling. Isotopic differences among molecular classes may be a means of fingerprinting microbial carbon metabolism, both in the modern environment and the geologic record.
Collapse
Affiliation(s)
- T Tang
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - W Mohr
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - S R Sattin
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - D R Rogers
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Chemistry, Stonehill College, Easton, MA, USA
| | - P R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - A Pearson
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| |
Collapse
|
17
|
Kaiho K, Saito R, Ito K, Miyaji T, Biswas R, Tian L, Sano H, Shi Z, Takahashi S, Tong J, Liang L, Oba M, Nara FW, Tsuchiya N, Chen ZQ. Effects of soil erosion and anoxic-euxinic ocean in the Permian-Triassic marine crisis. Heliyon 2016; 2:e00137. [PMID: 27547833 PMCID: PMC4983274 DOI: 10.1016/j.heliyon.2016.e00137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 05/11/2016] [Accepted: 07/27/2016] [Indexed: 11/05/2022] Open
Abstract
The largest mass extinction of biota in the Earth’s history occurred during the Permian–Triassic transition and included two extinctions, one each at the latest Permian (first phase) and earliest Triassic (second phase). High seawater temperature in the surface water accompanied by euxinic deep-intermediate water, intrusion of the euxinic water to the surface water, a decrease in pH, and hypercapnia have been proposed as direct causes of the marine crisis. For the first-phase extinction, we here add a causal mechanism beginning from massive soil and rock erosion and leading to algal blooms, release of toxic components, asphyxiation, and oxygen-depleted nearshore bottom water that created environmental stress for nearshore marine animals. For the second-phase extinction, we show that a soil and rock erosion/algal bloom event did not occur, but culmination of anoxia–euxinia in intermediate waters did occur, spanning the second-phase extinction. We investigated sedimentary organic molecules, and the results indicated a peak of a massive soil erosion proxy followed by peaks of marine productivity proxy. Anoxic proxies of surface sediments and water occurred in the shallow nearshore sea at the eastern and western margins of the Paleotethys at the first-phase extinction horizon, but not at the second-phase extinction horizon. Our reconstruction of ocean redox structure at low latitudes indicates that a gradual increase in temperature spanning the two extinctions could have induced a gradual change from a well-mixed oxic to a stratified euxinic ocean beginning immediately prior to the first-phase extinction, followed by culmination of anoxia in nearshore surface waters and of anoxia and euxinia in the shallow-intermediate waters at the second-phase extinction over a period of approximately one million years or more. Enhanced global warming, ocean acidification, and hypercapnia could have caused the second-phase extinction approximately 60 kyr after the first-phase extinction. The causes of the first-phase extinction were not only those environmental stresses but also environmental stresses caused by the soil and rock erosion/algal bloom event.
Collapse
Affiliation(s)
- Kunio Kaiho
- Department of Earth Science, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Ryosuke Saito
- Department of Earth Science, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Kosuke Ito
- Department of Earth Science, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Takashi Miyaji
- Department of Earth Science, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Raman Biswas
- Department of Earth Science, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Li Tian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Hiroyoshi Sano
- Department of Earth and Planetary Sciences, Kyushu University, Fukuoka, Japan
| | - Zhiqiang Shi
- Chengdu University of Technology, Chengdu, China
| | - Satoshi Takahashi
- Department of Earth Science, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Jinnan Tong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Lei Liang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Masahiro Oba
- Department of Earth Science, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Fumiko W Nara
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Noriyoshi Tsuchiya
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Zhong-Qiang Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
18
|
|