1
|
Colman DR, Keller LM, Arteaga-Pozo E, Andrade-Barahona E, St Clair B, Shoemaker A, Cox A, Boyd ES. Covariation of hot spring geochemistry with microbial genomic diversity, function, and evolution. Nat Commun 2024; 15:7506. [PMID: 39209850 PMCID: PMC11362583 DOI: 10.1038/s41467-024-51841-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The geosphere and the microbial biosphere have co-evolved for ~3.8 Ga, with many lines of evidence suggesting a hydrothermal habitat for life's origin. However, the extent that contemporary thermophiles and their hydrothermal habitats reflect those that likely existed on early Earth remains unknown. To address this knowledge gap, 64 geochemical analytes were measured and 1022 metagenome-assembled-genomes (MAGs) were generated from 34 chemosynthetic high-temperature springs in Yellowstone National Park and analysed alongside 444 MAGs from 35 published metagenomes. We used these data to evaluate co-variation in MAG taxonomy, metabolism, and phylogeny as a function of hot spring geochemistry. We found that cohorts of MAGs and their functions are discretely distributed across pH gradients that reflect different geochemical provinces. Acidic or circumneutral/alkaline springs harbor MAGs that branched later and are enriched in sulfur- and arsenic-based O2-dependent metabolic pathways that are inconsistent with early Earth conditions. In contrast, moderately acidic springs sourced by volcanic gas harbor earlier-branching MAGs that are enriched in anaerobic, gas-dependent metabolisms (e.g. H2, CO2, CH4 metabolism) that have been hypothesized to support early microbial life. Our results provide insight into the influence of redox state in the eco-evolutionary feedbacks between thermophiles and their habitats and suggest moderately acidic springs as early Earth analogs.
Collapse
Affiliation(s)
- Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| | - Lisa M Keller
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Emilia Arteaga-Pozo
- Department of Chemistry and Geochemistry, Montana Technological University, Butte, MT, USA
| | - Eva Andrade-Barahona
- Department of Chemistry and Geochemistry, Montana Technological University, Butte, MT, USA
| | - Brian St Clair
- Department of Chemistry and Geochemistry, Montana Technological University, Butte, MT, USA
| | - Anna Shoemaker
- Department of Earth Sciences, Montana State University, Bozeman, MT, USA
| | - Alysia Cox
- Department of Chemistry and Geochemistry, Montana Technological University, Butte, MT, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
2
|
Šaraba V, Milovanovic J, Nikodinovic-Runic J, Budin C, de Boer T, Ciric M. Brackish Groundwaters Contain Plastic- and Cellulose-Degrading Bacteria. MICROBIAL ECOLOGY 2023; 86:2747-2755. [PMID: 37535083 DOI: 10.1007/s00248-023-02278-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
The selected brackish groundwater occurrences in the geotectonic regions of Inner Dinarides of western Serbia (Obrenovačka Banja) and Serbian crystalline core (Lomnički Kiseljak and Velika Vrbnica) were sampled for isolation and identification of plastic- and lignocellulose-degrading bacteria, as well as for the assessment of their enzymatic potential. The examined occurrences belong to the cold and warm (subthermal), weakly alkaline, neutral, and weakly acidic groundwater, and their genetic types are HCO3-Na + K and HCO3-Ca, Mg. The most abundant genera identified by next-generation 16S sequencing of cultivated groundwater samples belong to Aeromonas and Exiguobacterium. Of isolates screened on plastic and lignocellulosic substrates, 85.3% demonstrated growth and/or degrading activity on at least one tested substrate, with 27.8% isolates degrading plastic substrate Impranil® DLN-SD (SD), 1.9% plastic substrate bis(2-hydroxyethyl)terephthalate, and 5.6% carboxymethyl cellulose (CMC). Isolates degrading SD that were identified by 16S rDNA sequencing belonged to genera Stenotrophomonas, Flavobacterium, Pantoea, Enterobacter, Pseudomonas, Serratia, Acinetobacter, and Proteus, while isolates degrading CMC belonged to genera Rhizobium and Shewanella. All investigated brackish groundwaters harbor bacteria with potential in degradation of plastics or cellulose. Taking into account that microplastics contamination of groundwater resources is becoming a significant problem, the finding of plastic-degrading bacteria may have potential in bioremediation treatments of polluted groundwater. Subterranean ecosystems, which are largely untapped resources of biotechnologically relevant enzymes, are not traditionally considered the environment of choice for screening for plastic- and cellulose-degrading bacteria and therefore deserve a special attention from this aspect.
Collapse
Affiliation(s)
- Vladimir Šaraba
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Milovanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | | | | | - Milica Ciric
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
3
|
Lai D, Hedlund BP, Mau RL, Jiao JY, Li J, Hayer M, Dijkstra P, Schwartz E, Li WJ, Dong H, Palmer M, Dodsworth JA, Zhou EM, Hungate BA. Resource partitioning and amino acid assimilation in a terrestrial geothermal spring. THE ISME JOURNAL 2023; 17:2112-2122. [PMID: 37741957 PMCID: PMC10579274 DOI: 10.1038/s41396-023-01517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
High-temperature geothermal springs host simplified microbial communities; however, the activities of individual microorganisms and their roles in the carbon cycle in nature are not well understood. Here, quantitative stable isotope probing (qSIP) was used to track the assimilation of 13C-acetate and 13C-aspartate into DNA in 74 °C sediments in Gongxiaoshe Hot Spring, Tengchong, China. This revealed a community-wide preference for aspartate and a tight coupling between aspartate incorporation into DNA and the proliferation of aspartate utilizers during labeling. Both 13C incorporation into DNA and changes in the abundance of taxa during incubations indicated strong resource partitioning and a significant phylogenetic signal for aspartate incorporation. Of the active amplicon sequence variants (ASVs) identified by qSIP, most could be matched with genomes from Gongxiaoshe Hot Spring or nearby springs with an average nucleotide similarity of 99.4%. Genomes corresponding to aspartate primary utilizers were smaller, near-universally encoded polar amino acid ABC transporters, and had codon preferences indicative of faster growth rates. The most active ASVs assimilating both substrates were not abundant, suggesting an important role for the rare biosphere in the community response to organic carbon addition. The broad incorporation of aspartate into DNA over acetate by the hot spring community may reflect dynamic cycling of cell lysis products in situ or substrates delivered during monsoon rains and may reflect N limitation.
Collapse
Affiliation(s)
- Dengxun Lai
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
- Nevada Institute for Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - Rebecca L Mau
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Junhui Li
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Michaela Hayer
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Paul Dijkstra
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China and Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, USA
| | - Marike Palmer
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA, USA
| | - En-Min Zhou
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- School of Resource Environment and Earth Science, Yunnan University, Kunming, China
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| |
Collapse
|
4
|
Weeks K, Trembath-Reichert E, Boyer G, Fecteau K, Howells A, De Martini F, Gile GH, Shock EL. Characterization of microbiomic and geochemical compositions across the photosynthetic fringe. Front Microbiol 2023; 14:1176606. [PMID: 37187542 PMCID: PMC10178925 DOI: 10.3389/fmicb.2023.1176606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Hot spring outflow channels provide geochemical gradients that are reflected in microbial community compositions. In many hot spring outflows, there is a distinct visual demarcation as the community transitions from predominantly chemotrophs to having visible pigments from phototrophs. It has been hypothesized that this transition to phototrophy, known as the photosynthetic fringe, is a result of the pH, temperature, and/or sulfide concentration gradients in the hot spring outflows. Here, we explicitly evaluated the predictive capability of geochemistry in determining the location of the photosynthetic fringe in hot spring outflows. A total of 46 samples were taken from 12 hot spring outflows in Yellowstone National Park that spanned pH values from 1.9 to 9.0 and temperatures from 28.9 to 92.2°C. Sampling locations were selected to be equidistant in geochemical space above and below the photosynthetic fringe based on linear discriminant analysis. Although pH, temperature, and total sulfide concentrations have all previously been cited as determining factors for microbial community composition, total sulfide did not correlate with microbial community composition with statistical significance in non-metric multidimensional scaling. In contrast, pH, temperature, ammonia, dissolved organic carbon, dissolved inorganic carbon, and dissolved oxygen did correlate with the microbial community composition with statistical significance. Additionally, there was observed statistical significance between beta diversity and the relative position to the photosynthetic fringe with sites above the photosynthetic fringe being significantly different from those at or below the photosynthetic fringe according to canonical correspondence analysis. However, in combination, the geochemical parameters considered in this study only accounted for 35% of the variation in microbial community composition determined by redundancy analysis. In co-occurrence network analyses, each clique correlated with either pH and/or temperature, whereas sulfide concentrations only correlated with individual nodes. These results indicate that there is a complex interplay between geochemical variables and the position of the photosynthetic fringe that cannot be fully explained by statistical correlations with the individual geochemical variables included in this study.
Collapse
Affiliation(s)
- Katelyn Weeks
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | | | - Grayson Boyer
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Kristopher Fecteau
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, United States
| | - Alta Howells
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- NASA Postdoctoral Program Fellow at NASA Ames Research Center, Moffett Field, CA, United States
| | - Francesca De Martini
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Department of Life Sciences, Mesa Community College, Mesa, AZ, United States
| | - Gillian H. Gile
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Everett L. Shock
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
5
|
Ugwuanyi IR, Fogel ML, Bowden R, Steele A, De Natale G, Troise C, Somma R, Piochi M, Mormone A, Glamoclija M. Comparative metagenomics at Solfatara and Pisciarelli hydrothermal systems in Italy reveal that ecological differences across substrates are not ubiquitous. Front Microbiol 2023; 14:1066406. [PMID: 36819055 PMCID: PMC9930910 DOI: 10.3389/fmicb.2023.1066406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction Continental hydrothermal systems (CHSs) are geochemically complex, and they support microbial communities that vary across substrates. However, our understanding of these variations across the complete range of substrates in CHS is limited because many previous studies have focused predominantly on aqueous settings. Methods Here we used metagenomes in the context of their environmental geochemistry to investigate the ecology of different substrates (i.e., water, mud and fumarolic deposits) from Solfatara and Pisciarelli. Results and Discussion Results indicate that both locations are lithologically similar with distinct fluid geochemistry. In particular, all substrates from Solfatara have similar chemistry whereas Pisciarelli substrates have varying chemistry; with water and mud from bubbling pools exhibiting high SO4 2- and NH4 + concentrations. Species alpha diversity was found to be different between locations but not across substrates, and pH was shown to be the most important driver of both diversity and microbial community composition. Based on cluster analysis, microbial community structure differed significantly between Pisciarelli substrates but not between Solfatara substrates. Pisciarelli mud pools, were dominated by (hyper)thermophilic archaea, and on average, bacteria dominated Pisciarelli fumarolic deposits and all investigated Solfatara environments. Carbon fixation and sulfur oxidation were the most important metabolic pathways fueled by volcanic outgassing at both locations. Together, results demonstrate that ecological differences across substrates are not a widespread phenomenon but specific to the system. Therefore, this study demonstrates the importance of analyzing different substrates of a CHS to understand the full range of microbial ecology to avoid biased ecological assessments.
Collapse
Affiliation(s)
- Ifeoma R. Ugwuanyi
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, United States,Ifeoma R. Ugwuanyi, ✉
| | - Marilyn L. Fogel
- EDGE Institute, University of California, Riverside, Riverside, CA, United States
| | - Roxane Bowden
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, United States
| | - Andrew Steele
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, United States
| | - Giuseppe De Natale
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy,Consiglio Nazionale delle Ricerche INO, Naples, Italy
| | - Claudia Troise
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy,Consiglio Nazionale delle Ricerche INO, Naples, Italy
| | - Renato Somma
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy,Consiglio Nazionale delle Ricerche IRISS, Naples, Italy
| | - Monica Piochi
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy
| | - Angela Mormone
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy
| | - Mihaela Glamoclija
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, United States,*Correspondence: Mihaela Glamoclija, ✉
| |
Collapse
|
6
|
Fernandes-Martins MC, Colman DR, Boyd ES. Relationships between fluid mixing, biodiversity, and chemosynthetic primary productivity in Yellowstone hot springs. Environ Microbiol 2023; 25:1022-1040. [PMID: 36651919 DOI: 10.1111/1462-2920.16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
The factors that influence biodiversity and productivity of hydrothermal ecosystems are not well understood. Here we investigate the relationship between fluid mixing, biodiversity, and chemosynthetic primary productivity in three co-localized hot springs (RSW, RSN, and RSE) in Yellowstone National Park that have different geochemistry. All three springs are sourced by reduced hydrothermal fluid, but RSE and RSN receive input of vapour phase gas and oxidized groundwaters, with input of both being substantially higher in RSN. Metagenomic sequencing revealed that communities in RSN were more biodiverse than those of RSE and RSW in all dimensions evaluated. Microcosm activity assays indicate that rates of dissolved inorganic carbon (DIC) uptake were also higher in RSN than in RSE and RSW. Together, these results suggest that increased mixing of reduced volcanic fluid with oxidized fluids generates additional niche space capable of supporting increasingly biodiverse communities that are more productive. These results provide insight into the factors that generate and maintain chemosynthetic biodiversity in hydrothermal systems and that influence the distribution, abundance, and diversity of microbial life in communities supported by chemosynthesis. These factors may also extend to other ecosystems not supported by photosynthesis, including the vast subterranean biosphere and biospheres beneath ice sheets and glaciers.
Collapse
Affiliation(s)
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
7
|
Dunham EC, Keller LM, Skidmore ML, Mitchell KR, Boyd ES. Iron Minerals Influence the Assembly of Microbial Communities in a Basaltic Glacial Catchment. FEMS Microbiol Ecol 2022; 99:6960670. [PMID: 36565717 DOI: 10.1093/femsec/fiac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/18/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022] Open
Abstract
The influence of mineralogy on the assembly of microbial communities in glacial environments has been difficult to assess due to complications in isolating mineralogy from other variables. Here we assess the abundance and composition of microbial communities that colonized defined minerals incubated for 12 months in two meltwater streams (N and S) emanating from Kaldalónsjökull (Kal), a basalt-hosted glacier in Iceland. The two streams shared similar meltwater geochemistry as well as bedrock and proglacial sediment elemental compositions. Yet genomic DNA and PCR-amplifiable 16S rRNA genes were detected only in Kal S. The amount of recoverable DNA was highest for hematite incubated in Kal S and the composition of 16S rRNA genes recovered from Kal S sediments was most like those recovered from hematite and magnetite, an effect driven largely by similarities in the relative abundance of the putative hydrogenotrophic iron reducer Rhodoferax. We suggest this is attributable to comminution and weathering reactions involving exposed iron silicate minerals that generate and release hydrogen and Fe(III) that can be coupled to support microbial metabolism in Kaldalónsjökull, and possibly other basaltic habitats. The low abundance of cells in Kal N could be due to low availability of Fe(III) or another substrate.
Collapse
Affiliation(s)
- Eric C Dunham
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, United States
| | - Lisa M Keller
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, United States
| | - Mark L Skidmore
- Department of Earth Sciences, Montana State University, Bozeman, MT 59717, United States
| | - K Rebecca Mitchell
- Department of Earth Sciences, Montana State University, Bozeman, MT 59717, United States
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, United States
| |
Collapse
|
8
|
Ma L, Wu G, Yang J, Huang L, Phurbu D, Li WJ, Jiang H. Distribution of Hydrogen-Producing Bacteria in Tibetan Hot Springs, China. Front Microbiol 2021; 12:569020. [PMID: 34367076 PMCID: PMC8334365 DOI: 10.3389/fmicb.2021.569020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Investigating the distribution of hydrogen-producing bacteria (HPB) is of great significance to understanding the source of biological hydrogen production in geothermal environments. Here, we explored the compositions of HPB populations in the sediments of hot springs from the Daggyai, Quzhuomu, Quseyongba, and Moluojiang geothermal zones on the Tibetan Plateau, with the use of Illumina MiSeq high-throughput sequencing of 16S rRNA genes and hydA genes. In the present study, the hydA genes were successfully amplified from the hot springs with a temperature of 46–87°C. The hydA gene phylogenetic analysis showed that the top three phyla of the HPB populations were Bacteroidetes (14.48%), Spirochaetes (14.12%), and Thermotogae (10.45%), while Proteobacteria were absent in the top 10 of the HPB populations, although Proteobacteria were dominant in the 16S rRNA gene sequences. Canonical correspondence analysis results indicate that the HPB community structure in the studied Tibetan hot springs was correlated with various environmental factors, such as temperature, pH, and elevation. The HPB community structure also showed a spatial distribution pattern; samples from the same area showed similar community structures. Furthermore, one HPB isolate affiliated with Firmicutes was obtained and demonstrated the capacity of hydrogen production. These results are important for us to understand the distribution and function of HPB in hot springs.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Geng Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Liuqin Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Dorji Phurbu
- Tibet Plateau Institute of Biology, Lhasa, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
9
|
Colman DR, Lindsay MR, Harnish A, Bilbrey EM, Amenabar MJ, Selensky MJ, Fecteau KM, Debes RV, Stott MB, Shock EL, Boyd ES. Seasonal hydrologic and geologic forcing drive hot spring geochemistry and microbial biodiversity. Environ Microbiol 2021; 23:4034-4053. [PMID: 34111905 DOI: 10.1111/1462-2920.15617] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/10/2021] [Accepted: 05/29/2021] [Indexed: 01/31/2023]
Abstract
Hot springs integrate hydrologic and geologic processes that vary over short- and long-term time scales. However, the influence of temporal hydrologic and geologic change on hot spring biodiversity is unknown. Here, we coordinated near-weekly, cross-seasonal (~140 days) geochemical and microbial community analyses of three widely studied hot springs with local precipitation data in Yellowstone National Park. One spring ('HFS') exhibited statistically significant, coupled microbial and geochemical variation across seasons that was associated with recent precipitation patterns. Two other spring communities, 'CP' and 'DS', exhibited minimal to no variation across seasons. Variability in the seasonal response of springs is attributed to differences in the timing and extent of aquifer recharge with oxidized near-surface water from precipitation. This influx of oxidized water is associated with changes in community composition, and in particular, the abundances of aerobic sulfide-/sulfur-oxidizers that can acidify waters. During sampling, a new spring formed after a period of heavy precipitation and its successional dynamics were also influenced by surface water recharge. Collectively, these results indicate that changes in short-term hydrology associated with precipitation can impact hot spring geochemistry and microbial biodiversity. These results point to potential susceptibility of certain hot springs and their biodiversity to sustained, longer-term hydrologic changes.
Collapse
Affiliation(s)
- Daniel R Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Melody R Lindsay
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Annette Harnish
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Evan M Bilbrey
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Maximiliano J Amenabar
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Matthew J Selensky
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | | | - Randall V Debes
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Matthew B Stott
- School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Everett L Shock
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.,School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, USA
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|
10
|
Lithogenic hydrogen supports microbial primary production in subglacial and proglacial environments. Proc Natl Acad Sci U S A 2020; 118:2007051117. [PMID: 33419920 PMCID: PMC7812807 DOI: 10.1073/pnas.2007051117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Life in environments devoid of photosynthesis, such as on early Earth or in contemporary dark subsurface ecosystems, is supported by chemical energy. How, when, and where chemical nutrients released from the geosphere fuel chemosynthetic biospheres is fundamental to understanding the distribution and diversity of life, both today and in the geologic past. Hydrogen (H2) is a potent reductant that can be generated when water interacts with reactive components of mineral surfaces such as silicate radicals and ferrous iron. Such reactive mineral surfaces are continually generated by physical comminution of bedrock by glaciers. Here, we show that dissolved H2 concentrations in meltwaters from an iron and silicate mineral-rich basaltic glacial catchment were an order of magnitude higher than those from a carbonate-dominated catchment. Consistent with higher H2 abundance, sediment microbial communities from the basaltic catchment exhibited significantly shorter lag times and faster rates of net H2 oxidation and dark carbon dioxide (CO2) fixation than those from the carbonate catchment, indicating adaptation to use H2 as a reductant in basaltic catchments. An enrichment culture of basaltic sediments provided with H2, CO2, and ferric iron produced a chemolithoautotrophic population related to Rhodoferax ferrireducens with a metabolism previously thought to be restricted to (hyper)thermophiles and acidophiles. These findings point to the importance of physical and chemical weathering processes in generating nutrients that support chemosynthetic primary production. Furthermore, they show that differences in bedrock mineral composition can influence the supplies of nutrients like H2 and, in turn, the diversity, abundance, and activity of microbial inhabitants.
Collapse
|
11
|
Podar PT, Yang Z, Björnsdóttir SH, Podar M. Comparative Analysis of Microbial Diversity Across Temperature Gradients in Hot Springs From Yellowstone and Iceland. Front Microbiol 2020; 11:1625. [PMID: 32760379 PMCID: PMC7372906 DOI: 10.3389/fmicb.2020.01625] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/22/2020] [Indexed: 11/21/2022] Open
Abstract
Geothermal hot springs are a natural setting to study microbial adaptation to a wide range of temperatures reaching up to boiling. Temperature gradients lead to distinct microbial communities that inhabit their optimum niches. We sampled three alkaline, high temperature (80-100°C) hot springs in Yellowstone and Iceland that had cooling outflows and whose microbial communities had not been studied previously. The microbial composition in sediments and mats was determined by DNA sequencing of rRNA gene amplicons. Over three dozen phyla of Archaea and Bacteria were identified, representing over 1700 distinct organisms. We observed a significant non-linear reduction in the number of microbial taxa as the temperature increased from warm (38°C) to boiling. At high taxonomic levels, the community structure was similar between the Yellowstone and Iceland hot springs. We identified potential endemism at the genus level, especially in thermophilic phototrophs, which may have been potentially driven by distinct environmental conditions and dispersal limitations.
Collapse
Affiliation(s)
- Peter T. Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Zamin Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | | | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
12
|
Unexpected Abundance and Diversity of Phototrophs in Mats from Morphologically Variable Microbialites in Great Salt Lake, Utah. Appl Environ Microbiol 2020; 86:AEM.00165-20. [PMID: 32198176 DOI: 10.1128/aem.00165-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/15/2020] [Indexed: 11/20/2022] Open
Abstract
Microbial mat communities are associated with extensive (∼700 km2) and morphologically variable carbonate structures, termed microbialites, in the hypersaline Great Salt Lake (GSL), Utah. However, whether the composition of GSL mat communities covaries with microbialite morphology and lake environment is unknown. Moreover, the potential adaptations that allow the establishment of these extensive mat communities at high salinity (14% to 17% total salts) are poorly understood. To address these questions, microbial mats were sampled from seven locations in the south arm of GSL representing different lake environments and microbialite morphologies. Despite the morphological differences, microbialite-associated mats were taxonomically similar and were dominated by the cyanobacterium Euhalothece and several heterotrophic bacteria. Metagenomic sequencing of a representative mat revealed Euhalothece and subdominant Thiohalocapsa populations that harbor the Calvin cycle and nitrogenase, suggesting they supply fixed carbon and nitrogen to heterotrophic bacteria. Fifteen of the next sixteen most abundant taxa are inferred to be aerobic heterotrophs and, surprisingly, harbor reaction center, rhodopsin, and/or bacteriochlorophyll biosynthesis proteins, suggesting aerobic photoheterotrophic (APH) capabilities. Importantly, proteins involved in APH are enriched in the GSL community relative to that in microbialite mat communities from lower salinity environments. These findings indicate that the ability to integrate light into energy metabolism is a key adaptation allowing for robust mat development in the hypersaline GSL.IMPORTANCE The earliest evidence of life on Earth is from organosedimentary structures, termed microbialites, preserved in 3.481-billion-year-old (Ga) rocks. Phototrophic microbial mats form in association with an ∼700-km2 expanse of morphologically diverse microbialites in the hypersaline Great Salt Lake (GSL), Utah. Here, we show taxonomically similar microbial mat communities are associated with morphologically diverse microbialites across the lake. Metagenomic sequencing reveals an abundance and diversity of autotrophic and heterotrophic taxa capable of harvesting light energy to drive metabolism. The unexpected abundance of and diversity in the mechanisms of harvesting light energy observed in GSL mat populations likely function to minimize niche overlap among coinhabiting taxa, provide a mechanism(s) to increase energy yield and osmotic balance during salt stress, and enhance fitness. Together, these physiological benefits promote the formation of robust mats that, in turn, influence the formation of morphologically diverse microbialite structures that can be imprinted in the rock record.
Collapse
|
13
|
Colman DR, Lindsay MR, Amenabar MJ, Boyd ES. The Intersection of Geology, Geochemistry, and Microbiology in Continental Hydrothermal Systems. ASTROBIOLOGY 2019; 19:1505-1522. [PMID: 31592688 DOI: 10.1089/ast.2018.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Decompressional boiling of ascending hydrothermal waters and separation into a vapor (gas) and a liquid phase drive extensive variation in the geochemical composition of hot spring waters. Yet little is known of how the process of phase separation influences the distribution of microbial metabolisms in springs. Here, we determined the variation in protein coding genes in 51 metagenomes from chemosynthetic hot spring communities that span geochemical gradients in Yellowstone National Park. The 51 metagenomes could be divided into 5 distinct groups that correspond to low and high temperatures and acidic and circumneutral/alkaline springs. A fifth group primarily comprised metagenomes from springs with moderate acidity and that are influenced by elevated volcanic gas input. Protein homologs putatively involved in the oxidation of sulfur compounds, a process that leads to acidification of spring waters, in addition to those involved in the reduction of sulfur compounds were enriched in metagenomes from acidic springs sourced by vapor phase gases. Metagenomes from springs with evidence for elevated volcanic gas input were enriched in protein homologs putatively involved in oxidation of those gases, including hydrogen and methane. Finally, metagenomes from circumneutral/alkaline springs sourced by liquid phase waters were enriched in protein homologs putatively involved in heterotrophy and respiration of oxidized nitrogen compounds and oxygen. These results indicate that the geological process of phase separation shapes the ecology of thermophilic communities through its influence on the availability of nutrients in the form of gases, solutes, and minerals. Microbial acidification of hot spring waters further influences the kinetic and thermodynamic stabilities of nutrients and their bioavailability. These data therefore provide an important framework to understand how geological processes have shaped the evolutionary history of chemosynthetic thermophiles and how these organisms, in turn, have shaped their geochemical environments.
Collapse
Affiliation(s)
- Daniel R Colman
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana
| | - Melody R Lindsay
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana
| | | | - Eric S Boyd
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana
| |
Collapse
|
14
|
Lindsay MR, Colman DR, Amenabar MJ, Fristad KE, Fecteau KM, Debes RV, Spear JR, Shock EL, Hoehler TM, Boyd ES. Probing the geological source and biological fate of hydrogen in Yellowstone hot springs. Environ Microbiol 2019; 21:3816-3830. [PMID: 31276280 DOI: 10.1111/1462-2920.14730] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/01/2019] [Indexed: 12/01/2022]
Abstract
Hydrogen (H2 ) is enriched in hot springs and can support microbial primary production. Using a series of geochemical proxies, a model to describe variable H2 concentrations in Yellowstone National Park (YNP) hot springs is presented. Interaction between water and crustal iron minerals yields H2 that partition into the vapour phase during decompressional boiling of ascending hydrothermal fluids. Variable vapour input leads to differences in H2 concentration among springs. Analysis of 50 metagenomes from a variety of YNP springs reveals that genes encoding oxidative hydrogenases are enriched in communities inhabiting springs sourced with vapour-phase gas. Three springs in the Smokejumper (SJ) area of YNP that are sourced with vapour-phase gas and with the most H2 in YNP were examined to determine the fate of H2 . SJ3 had the most H2 , the most 16S rRNA gene templates and the greatest abundance of culturable hydrogenotrophic and autotrophic cells of the three springs. Metagenomics and transcriptomics of SJ3 reveal a diverse community comprised of abundant populations expressing genes involved in H2 oxidation and carbon dioxide fixation. These observations suggest a link between geologic processes that generate and source H2 to hot springs and the distribution of organisms that use H2 to generate energy.
Collapse
Affiliation(s)
- Melody R Lindsay
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Daniel R Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | | | | | | | - Randall V Debes
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
| | - John R Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CZ, USA
| | - Everett L Shock
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
| | | | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
15
|
Lindsay MR, Johnston RE, Baxter BK, Boyd ES. Effects of salinity on microbialite-associated production in Great Salt Lake, Utah. Ecology 2019; 100:e02611. [PMID: 30636291 DOI: 10.1002/ecy.2611] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/19/2018] [Accepted: 12/20/2018] [Indexed: 12/15/2022]
Abstract
Microbialites, organosedimentary carbonate structures, cover approximately 20% of the basin floor in the south arm of Great Salt Lake, which ranges from ~12 to 15% salinity. Photosynthetic microbial mats associated with these benthic mounds contribute biomass that supports secondary production in the ecosystem, including that of the brine shrimp, Artemia franciscana. However, the effects of predicted increases in the salinity of the lake on the productivity and composition of these mats and on A. franciscana fecundity is not well documented. In the present study, we applied molecular and microcosm-based approaches to investigate the effects of changing salinity on (1) the primary productivity, abundance, and composition of microbialite-associated mats of GSL, and (2) the fecundity and survivability of the secondary consumer, A. franciscana. When compared to microcosms incubated closest to the in situ measured salinity of 15.6%, the abundance of 16S rRNA gene templates increased in microcosms with lower salinities and decreased in those with higher salinities following a 7-week incubation period. The abundance of 16S rRNA gene sequences affiliated with dominant primary producers, including the cyanobacterium Euhalothece and the diatom Navicula, increased in microcosms incubated at decreased salinity, but decreased in microcosms incubated at increased salinity. Increased salinity also decreased the rate of primary production in microcosm assays containing mats incubated for 7 weeks and decreased the number of A. franciscana cysts that hatched and survived. These results indicate that an increase in the salinity of GSL is likely to have a negative impact on the productivity of microbialite communities and the fecundity and survivability of A. franciscana. These observations suggest that a sustained increase in the salinity of GSL and the effects this has on primary and secondary production could have an upward and negative cascading effect on higher-trophic-level ecological compartments that depend on A. franciscana as a food source, including a number of species of migratory birds.
Collapse
Affiliation(s)
- Melody R Lindsay
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, USA
| | - Rachel E Johnston
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, USA
| | - Bonnie K Baxter
- Great Salt Lake Institute and Department of Biology, Westminster College, Salt Lake City, Utah 84105, USA
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, USA
| |
Collapse
|
16
|
A review of the mechanisms of mineral-based metabolism in early Earth analog rock-hosted hydrothermal ecosystems. World J Microbiol Biotechnol 2019; 35:29. [PMID: 30689069 DOI: 10.1007/s11274-019-2604-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/20/2019] [Indexed: 10/27/2022]
Abstract
Prior to the advent of oxygenic photosynthesis ~ 2.8-3.2 Ga, life was dependent on chemical energy captured from oxidation-reduction reactions involving minerals or substrates generated through interaction of water with minerals. Terrestrial hydrothermal environments host abundant and diverse non-photosynthetic communities and a variety of minerals that can sustain microbial metabolism. Minerals and substrates generated through interaction of minerals with water are differentially distributed in hot spring environments which, in turn, shapes the distribution of microbial life and the metabolic processes that support it. Emerging evidence suggests that terrestrial hydrothermal environments may have played a role in supporting the metabolism of the earliest forms of microbial life. It follows that these environments and their microbial inhabitants are increasingly being studied as analogs of early Earth ecosystems. Here we review current understanding of the processes that lead to variation in the availability of minerals or mineral-sourced substrates in terrestrial hydrothermal environments. In addition, we summarize proposed mechanisms of mineral substrate acquisition and metabolism in microbial cells inhabiting terrestrial hydrothermal environments, highlighting the importance of the dynamic interplay between biotic and abiotic reactions in influencing mineral substrate bioavailability. An emphasis is placed on mechanisms involved in the solubilization, acquisition, and metabolism of sulfur- and iron-bearing minerals, since these elements were likely integrated into the metabolism of the earliest anaerobic cells.
Collapse
|