2
|
Wei H, Liu Y, Huang L, Wang L, Fang J, Liu R. Determining the abundance, composition and spatial distribution of organohalogens in marine sediments using combustion-ion chromatography. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106626. [PMID: 38950495 DOI: 10.1016/j.marenvres.2024.106626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Understanding the distribution of halogenated organic compounds (HOCs) in marine sediments is essential for understanding the marine carbon and halogen cycling, and also important for assessing the ecosystem health. In this study, a method based on combustion-ion chromatography was developed for determination of the composition and abundance of HOCs in marine sediments. The method showed high accuracy, precision and reproducibility in determining the content of adsorbable organic halogens (AOX), including fluorine, chlorine and bromine (AOF, AOCl, AOBr) and the corresponding insoluble organic halogens (IOF, IOCl, IOBr, IOX), as well as total organic halogen contents (TOX). Application of the method in coastal and deep-sea sediments revealed high ratios of organic halogens in the organic carbon pool of marine sediments, suggesting that organic halogen compounds represent an important yet previously overlooked stock of carbon and energy in marine sediments. Both the TOX and the proportion of organohalogens in organic carbon (X:C ratio) showed an increasing trend from the coast to the deep-sea sediments, indicating an increased significance of HOCs in deep-sea environments. The developed method and the findings of this study lay the foundation for further studies on biogeochemical cycling of HOCs in the ocean.
Collapse
Affiliation(s)
- Hui Wei
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Yuheng Liu
- Jiangsu Product Quality Testing & Inspection Institute, Nanjing, China
| | - Liting Huang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Li Wang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China.
| | - Jiasong Fang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Department of Natural Sciences, Hawaii Pacific University, Honolulu, HI, USA
| | - Rulong Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
3
|
Leri AC, Hettithanthri O, Bolan S, Zhang T, Unrine J, Myneni S, Nachman DR, Tran HT, Phillips AJ, Hou D, Wang Y, Vithanage M, Padhye LP, Jasemi Zad T, Heitz A, Siddique KHM, Wang H, Rinklebe J, Kirkham MB, Bolan N. Bromine contamination and risk management in terrestrial and aquatic ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133881. [PMID: 38422740 PMCID: PMC11380803 DOI: 10.1016/j.jhazmat.2024.133881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Bromine (Br) is widely distributed through the lithosphere and hydrosphere, and its chemistry in the environment is affected by natural processes and anthropogenic activities. While the chemistry of Br in the atmosphere has been comprehensively explored, there has never been an overview of the chemistry of Br in soil and aquatic systems. This review synthesizes current knowledge on the sources, geochemistry, health and environmental threats, remediation approaches, and regulatory guidelines pertaining to Br pollution in terrestrial and aquatic environments. Volcanic eruptions, geothermal streams, and seawater are the major natural sources of Br. In soils and sediments, Br undergoes natural cycling between organic and inorganic forms, with bromination reactions occurring both abiotically and through microbial activity. For organisms, Br is a non-essential element; it is passively taken up by plant roots in the form of the Br- anion. Elevated Br- levels can limit plant growth on coastal soils of arid and semi-arid environments. Br is used in the chemical industry to manufacture pesticides, flame retardants, pharmaceuticals, and other products. Anthropogenic sources of organobromine contaminants in the environment are primarily wastewater treatment, fumigants, and flame retardants. When aqueous Br- reacts with oxidants in water treatment plants, it can generate brominated disinfection by-products (DBPs), and exposure to DBPs is linked to adverse human health effects including increased cancer risk. Br- can be removed from aquatic systems using adsorbents, and amelioration of soils containing excess Br- can be achieved by leaching, adding various amendments, or phytoremediation. Developing cost-effective methods for Br- removal from wastewater would help address the problem of toxic brominated DBPs. Other anthropogenic organobromines, such as polybrominated diphenyl ether (PBDE) flame retardants, are persistent, toxic, and bioaccumulative, posing a challenge in environmental remediation. Future research directives for managing Br pollution sustainably in various environmental settings are suggested here.
Collapse
Affiliation(s)
- Alessandra C Leri
- Department of Natural Sciences, Marymount Manhattan College, 221 E 71st St., New York, NY 10021, United States.
| | - Oshadi Hettithanthri
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Canberra, Australia
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jason Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, United States; Kentucky Water Research Institute, University of Kentucky, Lexington, KY 40506, United States
| | - Satish Myneni
- Department of Geosciences, Princeton Univ., Princeton, NJ 08544, United States
| | - Danielle R Nachman
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Huu Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Ankur J Phillips
- Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145, India
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yidong Wang
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; Sustainability Cluster, University of Petroleum and Energy Studies, Dehradun, India
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Tahereh Jasemi Zad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Anna Heitz
- Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506, United States
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Canberra, Australia
| |
Collapse
|
4
|
Sourabie DG, Hebert D, Benedetti L, Vitorge E, Lourino-Cabana B, Guillou V, Maro D. First quantitative constraints on chlorine 36 dry deposition velocities on grassland: Comparing measurements and modelling results. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 268-269:107264. [PMID: 37572511 DOI: 10.1016/j.jenvrad.2023.107264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Once released into the atmosphere, radionuclide dry deposition represents a major transfer process. It can be accurately characterized by its deposition velocity. However, this parameter is poorly constrained for most radionuclides, including chlorine 36. Chlorine 36 is a radionuclide of cosmogenic and anthropogenic origin. It may be discharged into the environment as gases and/or particles during the decommissioning of nuclear plants and the recycling of nuclear fuels. In this study, chlorine 36 deposition velocities are, for the first time, experimentally determined on grass downwind from the Orano La-Hague plant. The atmospheric chlorine 36 measurements were on average 50 nBq.m-3 for the gaseous fraction and 19 nBq.m3 for the particulate fraction. To measure the chlorine 36 transferred from the atmosphere to the grass, a method was devised for extracting the chlorides contained in solid matrices. With this method, chlorides were extracted with a mean efficiency of 83%. Chlorine 36 concentrations in the grass were on average 4 μBq.g-1, suggesting fast uptake of atmospheric chlorine 36. The yielded 36Cl dry deposition velocities varied with the season and were between 1 × 10-3 and 6 × 10-3 m s-1. The chlorine 36 depositions were modelled by adapting the existing deposition models and based on meteorological and micro-meteorological data. The dry deposition velocities calculated by the model showed less than one order of magnitude of difference with those determined experimentally. The deposition fluxes calculated by the model showed that the atmospheric depositions were predominantly gaseous chlorine 36 (>97%). However, on remote sites, the particulate fraction could be larger and have a greater influence on dry deposition. As chlorine 36 is a highly soluble and bioavailable element, these results will enable a better study of its behaviour in the environment and a more accurate evaluation of its dosimetric impact.
Collapse
Affiliation(s)
- Deo-Gratias Sourabie
- Institute for Radioprotection and Nuclear Safety (IRSN), PSE-ENV/SRTE/LRC, Cherbourg-Octeville, 50130, France; Univ. Aix-Marseille, CNRS, IRD, INRAE, Coll. France, UM 34 CEREGE, Aix-en-Provence, 13545, France.
| | - Didier Hebert
- Institute for Radioprotection and Nuclear Safety (IRSN), PSE-ENV/SRTE/LRC, Cherbourg-Octeville, 50130, France.
| | - Lucilla Benedetti
- Univ. Aix-Marseille, CNRS, IRD, INRAE, Coll. France, UM 34 CEREGE, Aix-en-Provence, 13545, France.
| | - Elsa Vitorge
- EDF - DPNT - DIPDE - DEE - Environment Department, Villeurbanne, 69100, France.
| | - Beatriz Lourino-Cabana
- EDF R&D LNHE - National Laboratory of Hydraulics and Environment, Chatou, 78401, France.
| | - Valery Guillou
- Univ. Aix-Marseille, CNRS, IRD, INRAE, Coll. France, UM 34 CEREGE, Aix-en-Provence, 13545, France.
| | - Denis Maro
- Institute for Radioprotection and Nuclear Safety (IRSN), PSE-ENV/SRTE/LRC, Cherbourg-Octeville, 50130, France.
| |
Collapse
|
5
|
Svensson T, Löfgren A, Saetre P, Kautsky U, Bastviken D. Chlorine Distribution in Soil and Vegetation in Boreal Habitats along a Moisture Gradient from Upland Forest to Lake Margin Wetlands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37469326 PMCID: PMC10399286 DOI: 10.1021/acs.est.2c09571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The assumed dominance of chloride (Cl-) in terrestrial ecosystems is challenged by observations of extensive formation of organically bound Cl (Clorg), resulting in large soil Cl storage and internal cycling. Yet, little is known about the spatial distribution of Cl in ecosystems. We quantified patterns of Cl distribution in different habitats along a boreal hillslope moisture gradient ranging from relatively dry upland coniferous forests to wet discharge areas dominated by alder. We confirmed that dry habitats are important for Cl storage but found that Cl pools tended to be larger in moist and wet habitats. The storage of Clorg was less important in wet habitats, suggesting a shift in the balance between soil chlorination and dechlorination rates. Cl concentrations in the herb layer vegetation were high in wet and moist sites attributed to a shift in plant species composition, indicating plant community-dependent ecosystem Cl cycling. Mass-balance calculations showed that internal Cl cycling increased overall ecosystem Cl residence times at all sites and that plant uptake rates of Cl- were particularly high at wet sites. Our results indicate that habitat characteristics including plant communities and hydrology are key for understanding Cl cycling in the environment.
Collapse
Affiliation(s)
- Teresia Svensson
- Department of Thematic Studies - Environmental Change, Linköping University, 581 83 Linköping, Sweden
| | | | - Peter Saetre
- Swedish Nuclear Fuel and Waste Management Co. (SKB), P.O. Box 3091, 169 03 Solna, Sweden
| | - Ulrik Kautsky
- Swedish Nuclear Fuel and Waste Management Co. (SKB), P.O. Box 3091, 169 03 Solna, Sweden
| | - David Bastviken
- Department of Thematic Studies - Environmental Change, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
6
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|