1
|
Yin W, Mai W, Hu W, Li Y, Cui D, Sun J, Li J, Zhan Y, Chang Y. Molecular response to CO 2-driven ocean acidification in the larvae of the sea urchin Hemicentrotus pulcherrimus: Evidence from comparative transcriptome analyses. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106951. [PMID: 39826434 DOI: 10.1016/j.marenvres.2025.106951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
In order to explore the impact of CO2-driven ocean acidification (OA) on gene expression of sea urchins, gametes of Hemicentrotus pulcherrimus were fertilized and developed to the four-armed larvae in either seawater at current pH levels (pHNBS = 7.98) or in three laboratory-controlled OA conditions (ΔpHNBS = -0.3, -0.4, -0.5 units) based on the projections of the Intergovernmental Panel on Climate Change (IPCC) for 2100. Four-armed larval specimens were collected, and comparative transcriptome analysis was then performed. The results showed that 58 differentially expressed genes (DEGs) were identified in OA-treated groups as compared to the control. Moreover, more transition and transversion SNPs were observed in OA-treated groups than those in the control indicating a potential occurrence of adaption to OA in H. pulcherrimus larvae. Six candidate DEGs shared among OA-treated groups were identified as potential biomarkers correlated with low pH tolerance, mainly enriched in nine pathways associated with Notch signaling, dorso-ventral axis formation, oxidative phosphorylation, lysine degradation, valine, leucine and isoleucine degradation, lysosome, cell adhesion molecules, glutathione metabolism and PPAR signaling pathway. These results will not only enrich our knowledge of the impacts of OA on sea urchin larvae from the aspect of gene expression, provide a better understanding on larval forms coping with OA, but also offer more clues and biomarkers for developing protection or management strategies for sea urchins under near-future OA conditions.
Collapse
Affiliation(s)
- Wenlu Yin
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Wenhong Mai
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Wanbin Hu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yingying Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Dongyao Cui
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Jingxian Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Jiaxiang Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China.
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
2
|
Byrne M, Lamare MD. Climate change and polar marine invertebrates: life-history responses in a warmer, high CO2 world. J Exp Biol 2024; 227:jeb245765. [PMID: 39660373 DOI: 10.1242/jeb.245765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Polar marine invertebrates serve as bellwethers for species vulnerabilities in the face of changing climate at high latitudes of the Earth. Ocean acidification, warming/heatwaves, freshening, sea ice retreat and productivity change are challenges for polar species. Adaptations to life in cold water with intensely seasonal productivity has shaped species traits at both poles. Polar species have life histories often characterised as K-strategist or K-selected (e.g. slow growth and development, larval hypometabolism) that make them sensitive to climate stress and altered seasonal productivity. Moderate warming results in faster development and can have positive effects on development, up to a limit. However, ocean acidification can retard development, impair skeletogenesis and result in smaller larvae. Given the fast pace of warming, data on the thermal tolerance of larvae from diverse species is urgently needed, as well as knowledge of adaptive responses to ocean acidification and changes to sea ice and productivity. Predicted productivity increase would benefit energy-limited reproduction and development, while sea ice loss negatively impacts species with reproduction that directly or indirectly depend on this habitat. It is critical to understand the interactive effects between warming, acidification and other stressors. Polar specialists cannot migrate, making them susceptible to competition and extinction from range-extending subpolar species. The borealisation and australisation of Arctic and Antarctic ecosystems, respectively, is underway as these regions become more hospitable for the larval and adult life-history stages of lower-latitude species. Differences in biogeography and pace of change point to different prospects for Arctic and Antarctic communities. In this Commentary, we hypothesise outcomes for polar species based on life history traits and sensitivity to climate change and suggest research avenues to test our predictions.
Collapse
Affiliation(s)
- Maria Byrne
- School of Life and Environmental Sciences, University of Sydney, Sydney NSW 2006, Australia
| | - Miles D Lamare
- Department of Marine Science, University of Otago, Dunedin, 9016, New Zealand
| |
Collapse
|
3
|
Warner JF, Range RC, Fenner J, Ka C, Waits DS, Boddy K, David KT, Mahon AR, Halanych KM. Chromosomal-Level Genome Assembly of the Antarctic Sea Urchin Sterechinus neumayeri: A Model for Antarctic Invertebrate Biology. Genome Biol Evol 2024; 16:evae237. [PMID: 39475447 PMCID: PMC11586663 DOI: 10.1093/gbe/evae237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 11/26/2024] Open
Abstract
The Antarctic sea urchin Sterechinus neumayeri (Echinoida; Echinidae) is routinely used as a model organism for Antarctic biology. Here, we present a high-quality genome of S. neumayeri. This chromosomal-level assembly was generated using PacBio long-read sequencing and Hi-C chromatin conformation capture sequencing. This 885.3-Mb assembly exhibits high contiguity with a scaffold length N50 of 36.7 Mb assembled into 20 chromosomal length scaffolds. These putative chromosomes exhibit a high degree of synteny compared to other sea urchin models. We used transcript evidence gene modeling combined with sequence homology to identify 21,638 gene models that capture 97.4% of BUSCO orthologs. Among these, we were able to identify and annotate conserved developmental gene regulatory network orthologs, positioning S. neumayeri as a tractable model for comparative studies on evolution and development.
Collapse
Affiliation(s)
- Jacob F Warner
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
- Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Ryan C Range
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Jennifer Fenner
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Cheikouna Ka
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Damien S Waits
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Kristen Boddy
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Kyle T David
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Andrew R Mahon
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Kenneth M Halanych
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
- Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, USA
| |
Collapse
|
4
|
Cui D, Zou W, Wu B, Jiao R, Zhang S, Zhao T, Zhan Y, Chang Y. Interactive effects of chronic ocean acidification and warming on the growth, survival, and physiological responses of adults of the temperate sea urchin Strongylocentrotusintermedius. CHEMOSPHERE 2024; 356:141907. [PMID: 38588896 DOI: 10.1016/j.chemosphere.2024.141907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
To investigate the interactive effects of chronic ocean acidification and warming (OAW) on the growth, survival, and physiological responses of sea urchins, adults of the temperate sea urchin Strongylocentrotus intermedius were incubated separately/jointly in acidic (ΔpHNBS = -0.5 units) and thermal (ΔT = +3.0 °C) seawater for 120 days under lab-controlled conditions based on the projected ocean pH and temperature for 2100 put forward by the Intergovernmental Panel on Climate Change (IPCC). Survival rate (SR), average food consumption rate (FCR), gut index (GuI), specific growth rate (SGR), digestive capability, energy production, and antioxidant capability were subsequently determined. The results showed that 1) the SR, FCR, GuI and SGR decreased sharply under OAW conditions. Significant interactive effects of OAW on SR and SGR were observed at 120 days post-incubation (dpi), and on FCR this occurred at 90 dpi. 2) OAW altered the activities of both digestive and antioxidant enzymes. There were significant interaction effects of OAW on the activities of amylase, trehalase, and superoxide dismutase. 3) The relative gene expression levels and activities of key enzymes involved in glycometabolism pathways (i.e., glycolysis and the tricarboxylic acid cycle) were significantly affected by OAW, resulting in an alteration of the total ATP content in the sea urchins. Interaction effects of OAW were observed in both relative gene expression and the activity of enzymes involved in glycolysis (hexokinase), the transformation of glycolysis end-products (lactate dehydrogenase), the tricarboxylic acid cycle (citrate synthetase), and ATP production (Na+/K+-ATPase). The data from this study will enrich our knowledge concerning the combined effects of global climate change on the survival, growth, and physiological responses of echinoderms.
Collapse
Affiliation(s)
- Dongyao Cui
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China; College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Wenjing Zou
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Boqiong Wu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Renhe Jiao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Shuxin Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Tanjun Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China; College of Life Science, Liaoning Normal University, Dalian, Liaoning, 116029, PR China
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China.
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
5
|
Seo H, Cho B, Joo S, Ahn IY, Kim T. Archival records of the Antarctic clam shells from Marian Cove, King George Island suggest a protective mechanism against ocean acidification. MARINE POLLUTION BULLETIN 2024; 200:116052. [PMID: 38290361 DOI: 10.1016/j.marpolbul.2024.116052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 02/01/2024]
Abstract
Continuous emissions of anthropogenic CO2 are changing the atmospheric and oceanic environment. Although some species may have compensatory mechanisms to acclimatize or adapt to the changing environment, most marine organisms are negatively influenced by climate change. In this study, we aimed to understand the compensatory mechanisms of the Antarctic clam, Laternula elliptica, to climate-related stressors by using archived shells from 1995 to 2018. Principal component analysis revealed that seawater pCO2 and salinity in the Antarctic Ocean, which have increased since the 2000's, are the most influential factors on the characteristics of the shell. The periostracum thickness ratio and nitrogen on the outermost surface have increased, and the dissolution area (%) has decreased. Furthermore, the calcium content and mechanical properties of the shells have not changed. The results suggest that L. elliptica retains the mechanism of protecting the shell from high pCO2 by thickening the periostracum as a phenotype plasticity.
Collapse
Affiliation(s)
- Hyein Seo
- Program in Biomedical Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Boongho Cho
- Program in Biomedical Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Soobin Joo
- Program in Biomedical Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - In-Young Ahn
- Korea Polar Research Institute, 26 songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Taewon Kim
- Program in Biomedical Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| |
Collapse
|
6
|
Azcárate-García T, Avila C, Figuerola B. Skeletal Mg content in common echinoderm species from Deception and Livingston Islands (South Shetland Islands, Antarctica) in the context of global change. MARINE POLLUTION BULLETIN 2024; 199:115956. [PMID: 38154175 DOI: 10.1016/j.marpolbul.2023.115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
Echinoderms with high levels of magnesium (Mg) in their skeletons may be especially sensitive to ocean acidification, as the solubility of calcite increases with its Mg content. However, other structural characteristics and environmental/biological factors may affect skeletal solubility. To better understand which factors can influence skeletal mineralogy, we analyzed the Mg content of Antarctic echinoderms from Deception Island, an active volcano with reduced pH and relatively warm water temperatures, and Livingston Island. We found significant interclass and inter- and intraspecific differences in the Mg content, with asteroids exhibiting the highest levels, followed by ophiuroids and echinoids. Specimens exposed to hydrothermal fluids showed lower Mg levels, which may indicate local environmental effects. These patterns suggest that environmental factors such as seawater Mg2+/Ca2+ ratio and temperature may influence the Mg content of some echinoderms and affect their susceptibility to future environmental changes.
Collapse
Affiliation(s)
- Tomás Azcárate-García
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Passeig Maritim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain; Department of Evolutionary Biology, Ecology and Environmental Sciences & Biodiversity Research Institute (IRBio), University of Barcelona, Av. Diagonal 643, Barcelona 08028, Catalonia, Spain.
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology and Environmental Sciences & Biodiversity Research Institute (IRBio), University of Barcelona, Av. Diagonal 643, Barcelona 08028, Catalonia, Spain
| | - Blanca Figuerola
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Passeig Maritim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain.
| |
Collapse
|
7
|
Leach TS, Hofmann GE. Marine heatwave temperatures enhance larval performance but are meditated by paternal thermal history and inter-individual differences in the purple sea urchin, Strongylocentrotus purpuratus. Front Physiol 2023; 14:1230590. [PMID: 37601631 PMCID: PMC10436589 DOI: 10.3389/fphys.2023.1230590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
Marine heatwave (MHW) events, characterized by periods of anomalous temperatures, are an increasingly prevalent threat to coastal marine ecosystems. Given the seasonal phenology of MHWs, the full extent of their biological consequences may depend on how these thermal stress events align with an organism's reproductive cycle. In organisms with more complex life cycles (e.g., many marine invertebrate species) the alignment of adult and larval environments may be an important factor determining offspring success, setting the stage for MHW events to influence reproduction and development in situ. Here, the influence of MHW-like temperatures on the early development of the California purple sea urchin, Strongylocentrotus purpuratus, were explored within the context of paternal thermal history. Based on temperature data collected during MHW events seen in Southern California from 2014-2020, adult urchins were acclimated to either MHW or non-MHW temperatures for 28 days before their sperm was used to produce embryos that were subsequently raised under varying thermal conditions. Once offspring reached an early larval stage, the impact of paternal and offspring environments were assessed on two aspects of offspring performance: larval size and thermal tolerance. Exposure to elevated temperatures during early development resulted in larger, more thermally tolerant larvae, with further influences of paternal identity and thermal history, respectively. The alignment of paternal and offspring exposure to MHW temperatures had additional positive benefits on larval thermal tolerance, but this tolerance significantly decreased when their thermal experience mismatched. As the highest recorded temperatures within past MHW events have occurred during the gametogenesis of many kelp forest benthic marine invertebrate species, such as the purple sea urchin, such parental mediated impacts may represent important drivers of future recruitment and population composition for these species.
Collapse
|
8
|
Lang BJ, Donelson JM, Bairos‐Novak KR, Wheeler CR, Caballes CF, Uthicke S, Pratchett MS. Impacts of ocean warming on echinoderms: A meta-analysis. Ecol Evol 2023; 13:e10307. [PMID: 37565029 PMCID: PMC10409743 DOI: 10.1002/ece3.10307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/02/2023] [Indexed: 08/12/2023] Open
Abstract
Rising ocean temperatures are threatening marine species and populations worldwide, and ectothermic taxa are particularly vulnerable. Echinoderms are an ecologically important phylum of marine ectotherms and shifts in their population dynamics can have profound impacts on the marine environment. The effects of warming on echinoderms are highly variable across controlled laboratory-based studies. Accordingly, synthesis of these studies will facilitate the better understanding of broad patterns in responses of echinoderms to ocean warming. Herein, a meta-analysis incorporating the results of 85 studies (710 individual responses) is presented, exploring the effects of warming on various performance predictors. The mean responses of echinoderms to all magnitudes of warming were compared across multiple biological responses, ontogenetic life stages, taxonomic classes, and regions, facilitated by multivariate linear mixed effects models. Further models were conducted, which only incorporated responses to warming greater than the projected end-of-century mean annual temperatures at the collection sites. This meta-analysis provides evidence that ocean warming will generally accelerate metabolic rate (+32%) and reduce survival (-35%) in echinoderms, and echinoderms from subtropical (-9%) and tropical (-8%) regions will be the most vulnerable. The relatively high vulnerability of echinoderm larvae to warming (-20%) indicates that this life stage may be a significant developmental bottleneck in the near-future, likely reducing successful recruitment into populations. Furthermore, asteroids appear to be the class of echinoderms that are most negatively affected by elevated temperature (-30%). When considering only responses to magnitudes of warming representative of end-of-century climate change projections, the negative impacts on asteroids, tropical species and juveniles were exacerbated (-51%, -34% and -40% respectively). The results of these analyses enable better predictions of how keystone and invasive echinoderm species may perform in a warmer ocean, and the possible consequences for populations, communities and ecosystems.
Collapse
Affiliation(s)
- Bethan J. Lang
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- AIMS@JCUJames Cook UniversityTownsvilleQueenslandAustralia
| | - Jennifer M. Donelson
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Kevin R. Bairos‐Novak
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- AIMS@JCUJames Cook UniversityTownsvilleQueenslandAustralia
| | - Carolyn R. Wheeler
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- School for the EnvironmentThe University of Massachusetts BostonBostonMassachusettsUSA
| | - Ciemon F. Caballes
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- National Science Foundation EPSCoR—Guam Ecosystems Collaboratorium for Corals and OceansUniversity of Guam Marine LaboratoryMangilaoGuamUSA
| | - Sven Uthicke
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Morgan S. Pratchett
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| |
Collapse
|
9
|
Ribeiro B, Lima C, Pereira SE, Peixoto R, Klautau M. Calcareous sponges can synthesize their skeleton under short-term ocean acidification. Sci Rep 2023; 13:6776. [PMID: 37185292 PMCID: PMC10130156 DOI: 10.1038/s41598-023-33611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Calcifying organisms are considered as threatened by ocean acidification, because of their calcium carbonate skeleton. This study investigated if a calcareous sponge could synthesize its skeleton (i.e. spicules) under ocean-acidification conditions. Sponge cell aggregates that have the potential to develop into a functional sponge, called primmorphs, were submitted to a 5-day experiment, with two treatments: control (pH 8.1) and acidified conditions (pH 7.6). Primmorphs of the calcareous sponge Paraleucilla magna were able to synthesize a skeleton, even under low pH, and to develop into functional sponges. The spicules had the same shape in both conditions, although the spicules synthesized in low pH were slightly thinner than those in the control. These results suggest that P. magna may be able to survive near-future ocean-acidification conditions.
Collapse
Affiliation(s)
- Bárbara Ribeiro
- TaxoN Laboratory, Zoology Department, Biology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-599, Brazil
| | - Carolina Lima
- TaxoN Laboratory, Zoology Department, Biology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-599, Brazil
| | - Sara Emilly Pereira
- TaxoN Laboratory, Zoology Department, Biology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-599, Brazil
| | - Raquel Peixoto
- Biological and Environmental Science and Engineering Division, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Michelle Klautau
- TaxoN Laboratory, Zoology Department, Biology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-599, Brazil.
| |
Collapse
|
10
|
Nardi A, Mezzelani M, Costa S, d'Errico G, Benedetti M, Gorbi S, Freitas R, Regoli F. Marine heatwaves hamper neuro-immune and oxidative tolerance toward carbamazepine in Mytilus galloprovincialis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118970. [PMID: 35143899 DOI: 10.1016/j.envpol.2022.118970] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
The increased frequency and intensity of short-term extreme warming phenomena have been associated to harsh biological and ecosystem outcomes (i.e., mass mortalities in marine organisms). Marine heatwaves (MHWs), occurring when seasonal temperature threshold is exceeded for at least 5 consecutive days, may reduce the tolerance of coastal species toward additional pressures, but interactions between such multiple stressors are virtually unexplored. The present study aimed to characterize in Mytilus galloprovincialis the influence of a simulated MHW scenario on the toxicological effects of the pharmaceutical carbamazepine (CBZ), ubiquitously detected in the marine environment and chosen as model compound for this relevant class of emerging contaminants. The bioaccumulation of CBZ and responsiveness of various biological parameters, including immune system, antioxidant status, lipid metabolism and cellular integrity, were analyzed in exposed mussels both during and after the end of the heatwave. MHW appeared to strongly modulate accumulation of CBZ, paralleled by weakened immunocompetence and onset of oxidative disturbance that finally evolved to cellular damages and lipid metabolism disorders. Elaboration of the overall results through a quantitative Weight of Evidence model, revealed the highest hazard in organisms exposed to both the stressors 10 days after the end of the heatwave, suggesting that MHWs could leave a footprint on the capability of mussels to counteract CBZ toxicity, thus affecting their vulnerability and predisposition to adverse effects toward multiple stressors.
Collapse
Affiliation(s)
- Alessandro Nardi
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, Ancona, Italy
| | - Marica Mezzelani
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, Ancona, Italy
| | - Silvana Costa
- Departamento de Biologia & CESAM, Universidade de Aveiro, Aveiro, 3810-193, Portugal
| | - Giuseppe d'Errico
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, Ancona, Italy
| | - Maura Benedetti
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, Ancona, Italy
| | - Stefania Gorbi
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, Ancona, Italy
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, Aveiro, 3810-193, Portugal
| | - Francesco Regoli
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, Ancona, Italy.
| |
Collapse
|
11
|
Yusof NA, Masnoddin M, Charles J, Thien YQ, Nasib FN, Wong CMVL, Abdul Murad AM, Mahadi NM, Bharudin I. Can heat shock protein 70 (HSP70) serve as biomarkers in Antarctica for future ocean acidification, warming and salinity stress? Polar Biol 2022. [DOI: 10.1007/s00300-022-03006-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractThe Antarctic Peninsula is one of the fastest-warming places on Earth. Elevated sea water temperatures cause glacier and sea ice melting. When icebergs melt into the ocean, it “freshens” the saltwater around them, reducing its salinity. The oceans absorb excess anthropogenic carbon dioxide (CO2) causing decline in ocean pH, a process known as ocean acidification. Many marine organisms are specifically affected by ocean warming, freshening and acidification. Due to the sensitivity of Antarctica to global warming, using biomarkers is the best way for scientists to predict more accurately future climate change and provide useful information or ecological risk assessments. The 70-kilodalton (kDa) heat shock protein (HSP70) chaperones have been used as biomarkers of stress in temperate and tropical environments. The induction of the HSP70 genes (Hsp70) that alter intracellular proteins in living organisms is a signal triggered by environmental temperature changes. Induction of Hsp70 has been observed both in eukaryotes and in prokaryotes as response to environmental stressors including increased and decreased temperature, salinity, pH and the combined effects of changes in temperature, acidification and salinity stress. Generally, HSP70s play critical roles in numerous complex processes of metabolism; their synthesis can usually be increased or decreased during stressful conditions. However, there is a question as to whether HSP70s may serve as excellent biomarkers in the Antarctic considering the long residence time of Antarctic organisms in a cold polar environment which appears to have greatly modified the response of heat responding transcriptional systems. This review provides insight into the vital roles of HSP70 that make them ideal candidates as biomarkers for identifying resistance and resilience in response to abiotic stressors associated with climate change, which are the effects of ocean warming, freshening and acidification in Antarctic organisms.
Collapse
|
12
|
Manno C, Peck LV, Corsi I, Bergami E. Under pressure: Nanoplastics as a further stressor for sub-Antarctic pteropods already tackling ocean acidification. MARINE POLLUTION BULLETIN 2022; 174:113176. [PMID: 34890891 DOI: 10.1016/j.marpolbul.2021.113176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
In the Southern Ocean (SO), plastic debris has already been found in waters and sediments. Nanoplastics (<1 μm) are expected to be as pervasive as their larger counterparts, but more harmful to biological systems, being able to enter cells and provoke toxicity. In the SO, (nano)plastic pollution occurs concomitantly with other environmental threats such as ocean acidification (OA), but the potential cumulative impact of these two challenges on SO marine ecosystems is still overlooked. Here the single and combined effects of nanoplastics and OA on the sub-Antarctic pteropod Limacina retroversa are investigated under laboratory conditions, using two surface charged polystyrene nanoparticles (PS NPs) as a proxy for nanoplastics. Sub-Antarctic pteropods are threatened by OA due to the sensitivity of their shells to changes in seawater carbonate chemistry. Short-term exposure (48 h) to PS NPs compromised the ability of pteropods to counteract OA stress, resulting in a negative effect on their survival. Our results highlights the importance of addressing plastic pollution in the context of climate change to identify realistic critical thresholds of SO pteropods.
Collapse
Affiliation(s)
- C Manno
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK.
| | - L V Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - I Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena 53100, Italy
| | - E Bergami
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK; Department of Physical, Earth and Environmental Sciences, University of Siena, Siena 53100, Italy
| |
Collapse
|
13
|
Richardson CR, Burritt DJ, Allan BJM, Lamare MD. Microplastic ingestion induces asymmetry and oxidative stress in larvae of the sea urchin Pseudechinus huttoni. MARINE POLLUTION BULLETIN 2021; 168:112369. [PMID: 33932840 DOI: 10.1016/j.marpolbul.2021.112369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Determining the effects of microplastic (MP) ingestion by marine organisms, especially during the sensitive larval stages, is an important step in understanding wider ecosystem responses. We investigated the ingestion, retention (1-5 μm), and short-term exposure effects (1-4 μm) of spherical MPs by larvae of the sea urchin Pseudechinus huttoni. Larvae ingested MPs in a dose-dependent manner and successfully egested particles after a short retention period. Survival was not significantly affected by exposure to MPs over the 10-day experimental period, however, a teratogenic response in terms of delayed development resulted in an increase of larval arm asymmetry. Additionally, MP exposure resulted in oxidative damage to lipids and proteins in larval body tissue despite a significant upregulation of antioxidant defences. The findings indicate MP exposure may impair cellular function, leading to negative consequences for an organism's fitness and survival.
Collapse
Affiliation(s)
| | | | | | - Miles D Lamare
- Department of Marine Science, University of Otago, New Zealand
| |
Collapse
|
14
|
Di Giglio S, Agüera A, Pernet P, M'Zoudi S, Angulo-Preckler C, Avila C, Dubois P. Effects of ocean acidification on acid-base physiology, skeleton properties, and metal contamination in two echinoderms from vent sites in Deception Island, Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142669. [PMID: 33268256 DOI: 10.1016/j.scitotenv.2020.142669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 06/12/2023]
Abstract
Antarctic surface waters are expected to be the first to experience severe ocean acidification (OA) with carbonate undersaturation and large decreases in pH forecasted before the end of this century. Due to the long stability in environmental conditions and the relatively low daily and seasonal variations to which they are exposed, Antarctic marine organisms, especially those with a supposedly poor machinery to eliminate CO2 and protons and with a heavily calcified skeleton like echinoderms, are hypothesized as highly vulnerable to these environmental shifts. The opportunities offered by the natural pH gradient generated by vent activities in Deception Island caldera, Western Antarctic Peninsula, were used to investigate for the first time the acid-base physiologies, the impact of OA on the skeleton and the impact of pH on metal accumulation in the Antarctic sea star Odontaster validus and sea urchin Sterechinus neumayeri. The two species were sampled in four stations within the caldera, two at pH (total scale) 8.0-8.1 and two at reduced pH 7.8. Measured variables were pH, alkalinity, and dissolved inorganic carbon of the coelomic fluid; characteristic fracture force, stress and Young's modulus using Weibull statistics and Cd, Cu, Fe, Pb and Zn concentrations in the integument, gonads and digestive system. Recorded acid-base characteristics of both studied species fit in the general picture deduced from temperate and tropical sea stars and sea urchins but conditions and possibly confounding factors, principally food availability and quality, in the studied stations prevented definitive conclusions. Reduced seawater pH 7.8 and metals had almost no impact on the skeleton mechanical properties of the two investigated species despite very high Cd concentrations in O. validus integument. Reduced pH was correlated to increased contamination by most metals but this relation was weak. Translocation and caging experiments taking into account food parameters are proposed to better understand future processes linked to ocean acidification and metal contamination in Antarctic echinoderms.
Collapse
Affiliation(s)
- S Di Giglio
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, CP 160/15, Avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium.
| | - A Agüera
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, CP 160/15, Avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium; Institute of Marine Research in Norway, Austevoll Research Station, Sauganeset 16, 5392, Norway
| | - Ph Pernet
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, CP 160/15, Avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium
| | - S M'Zoudi
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, CP 160/15, Avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium
| | - C Angulo-Preckler
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - C Avila
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology and Biodiversity Research Institute (IRBio), Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain
| | - Ph Dubois
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, CP 160/15, Avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium
| |
Collapse
|
15
|
Transcriptional and Catalytic Responsiveness of the Antarctic Fish Trematomus bernacchii Antioxidant System toward Multiple Stressors. Antioxidants (Basel) 2021; 10:antiox10030410. [PMID: 33803125 PMCID: PMC8000868 DOI: 10.3390/antiox10030410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023] Open
Abstract
Ocean-warming and acidification jeopardize Antarctic marine species, adapted to cold and constant conditions and naturally exposed to high pro-oxidant pressures and cadmium (Cd) bioavailability. The aim of this study was to investigate if projected temperature increase and pH reduction may affect the accumulation and the effects of Cd in the rockcod Trematomus bernacchii. Organisms were exposed for 14 days to six scenarios, combining environmental or increased temperature (−1 °C, +1 °C) and control or reduced pH (8.05, 7.60), either with or without Cd (40 µg/L). Responses in liver and gills were analyzed at different levels, including mRNA and functional measurements of metallothioneins and of a wide battery of antioxidants, integrated with the evaluation of the total antioxidant capacity and onset of oxidative damages. In the gills, metallothioneins and mRNA of antioxidant genes (nrf2, keap1, cat, gpx1) increased after Cd exposure, but such effects were softened by warming and acidification. Antioxidants showed slighter variations at the enzymatic level, while Cd caused glutathione increase under warming and acidified scenarios. In the liver, due to higher basal antioxidant protection, limited effects were observed. Genotoxic damage increased under the combined stressors scenario. Overall results highlighted the modulation of the oxidative stress response to Cd by multiple stressors, suggesting the vulnerability of T. bernacchii under predicted ocean change scenarios.
Collapse
|
16
|
Impacts of hypoxic events surpass those of future ocean warming and acidification. Nat Ecol Evol 2021; 5:311-321. [PMID: 33432134 DOI: 10.1038/s41559-020-01370-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 12/01/2020] [Indexed: 01/28/2023]
Abstract
Over the past decades, three major challenges to marine life have emerged as a consequence of anthropogenic emissions: ocean warming, acidification and oxygen loss. While most experimental research has targeted the first two stressors, the last remains comparatively neglected. Here, we implemented sequential hierarchical mixed-model meta-analyses (721 control-treatment comparisons) to compare the impacts of oxygen conditions associated with the current and continuously intensifying hypoxic events (1-3.5 O2 mg l-1) with those experimentally yielded by ocean warming (+4 °C) and acidification (-0.4 units) conditions on the basis of IPCC projections (RCP 8.5) for 2100. In contrast to warming and acidification, hypoxic events elicited consistent negative effects relative to control biological performance-survival (-33%), abundance (-65%), development (-51%), metabolism (-33%), growth (-24%) and reproduction (-39%)-across the taxonomic groups (mollusks, crustaceans and fish), ontogenetic stages and climate regions studied. Our findings call for a refocus of global change experimental studies, integrating oxygen concentration drivers as a key factor of ocean change. Given potential combined effects, multistressor designs including gradual and extreme changes are further warranted to fully disclose the future impacts of ocean oxygen loss, warming and acidification.
Collapse
|
17
|
Rowlands E, Galloway T, Manno C. A Polar outlook: Potential interactions of micro- and nano-plastic with other anthropogenic stressors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142379. [PMID: 33254857 DOI: 10.1016/j.scitotenv.2020.142379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
Polar marine ecosystems may have higher sensitivity than other ecosystems to plastic pollution due to recurrent physical and biological features; presence of ice and high UV radiation, slow growth rates and weak genetic differentiation of resident biota, accumulation of persistent organic pollutants and heavy metals, and fast rates of warming and global ocean acidification. Here, we discuss potential sources of and exposure to micro- and nano-plastic in polar marine ecosystems and potential mixture effects of micro- and nano-plastic coupled with chemical and climate related stressors. We address the anthropogenic contaminants likely to be 'high risk' for interactions in Arctic and Antarctic waters for reasons such as accumulation under sea-ice, a known sink for plastic particulates. Consequently, we address the potential for localised plastic-chemical interactions and possible seasonal fluctuations in interactions associated with freeze-thaw events. The risks for keystone polar species are also considered, incorporating the behavioural and physiological traits of biota and addressing potential 'hotspot' areas. Finally, we discuss a possible direction for future research.
Collapse
Affiliation(s)
- Emily Rowlands
- British Antarctic Survey, High Cross, Madingley Rd, Cambridge CB3 0ET, United Kingdom of Great Britain and Northern Ireland; University of Exeter, College of Life and Environmental Science, Streatham Campus, Stocker Rd, Exeter EX4 4PY, United Kingdom of Great Britain and Northern Ireland.
| | - Tamara Galloway
- University of Exeter, College of Life and Environmental Science, Streatham Campus, Stocker Rd, Exeter EX4 4PY, United Kingdom of Great Britain and Northern Ireland
| | - Clara Manno
- British Antarctic Survey, High Cross, Madingley Rd, Cambridge CB3 0ET, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
18
|
Delorme NJ, Frost EJ, Sewell MA. Effect of acclimation on thermal limits and hsp70 gene expression of the New Zealand sea urchin Evechinus chloroticus. Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110806. [DOI: 10.1016/j.cbpa.2020.110806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
|
19
|
Limatola N, Chun JT, Santella L. Effects of Salinity and pH of Seawater on the Reproduction of the Sea Urchin Paracentrotus lividus. THE BIOLOGICAL BULLETIN 2020; 239:13-23. [PMID: 32812816 DOI: 10.1086/710126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
AbstractFertilization and early development are usually the most vulnerable stages in the life of marine animals, and the biological processes during this period are highly sensitive to the environment. In nature, sea urchin gametes are shed in seawater, where they undergo external fertilization and embryonic development. In a laboratory, it is possible to follow the exact morphological and biochemical changes taking place in the fertilized eggs and the developing embryos. Thus, observation of successful fertilization and the subsequent embryonic development of sea urchin eggs can be used as a convenient biosensor to assess the quality of the marine environment. In this paper, we have examined how salinity and pH changes affect the normal fertilization process and the following development of Paracentrotus lividus. The results of our studies using confocal microscopy, scanning and transmission electron microscopy, and time-lapse Ca2+ image recording indicated that both dilution and acidification of seawater have subtle but detrimental effects on many aspects of the fertilization process. They include Ca2+ signaling and coordinated actin cytoskeletal changes, leading to a significantly reduced rate of successful fertilization and, eventually, to abnormal or delayed embryonic development.
Collapse
|
20
|
Hancock AM, King CK, Stark JS, McMinn A, Davidson AT. Effects of ocean acidification on Antarctic marine organisms: A meta-analysis. Ecol Evol 2020; 10:4495-4514. [PMID: 32489613 PMCID: PMC7246202 DOI: 10.1002/ece3.6205] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/27/2019] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Southern Ocean waters are among the most vulnerable to ocean acidification. The projected increase in the CO2 level will cause changes in carbonate chemistry that are likely to be damaging to organisms inhabiting these waters. A meta-analysis was undertaken to examine the vulnerability of Antarctic marine biota occupying waters south of 60°S to ocean acidification. This meta-analysis showed that ocean acidification negatively affects autotrophic organisms, mainly phytoplankton, at CO2 levels above 1,000 μatm and invertebrates above 1,500 μatm, but positively affects bacterial abundance. The sensitivity of phytoplankton to ocean acidification was influenced by the experimental procedure used. Natural, mixed communities were more sensitive than single species in culture and showed a decline in chlorophyll a concentration, productivity, and photosynthetic health, as well as a shift in community composition at CO2 levels above 1,000 μatm. Invertebrates showed reduced fertilization rates and increased occurrence of larval abnormalities, as well as decreased calcification rates and increased shell dissolution with any increase in CO2 level above 1,500 μatm. Assessment of the vulnerability of fish and macroalgae to ocean acidification was limited by the number of studies available. Overall, this analysis indicates that many marine organisms in the Southern Ocean are likely to be susceptible to ocean acidification and thereby likely to change their contribution to ecosystem services in the future. Further studies are required to address the poor spatial coverage, lack of community or ecosystem-level studies, and the largely unknown potential for organisms to acclimate and/or adapt to the changing conditions.
Collapse
Affiliation(s)
- Alyce M. Hancock
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaBattery PointTASAustralia
- Antarctic Gateway PartnershipBattery PointTASAustralia
- Antarctic Climate & Ecosystems Cooperative Research CentreBattery PointTASAustralia
| | | | | | - Andrew McMinn
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaBattery PointTASAustralia
- Antarctic Gateway PartnershipBattery PointTASAustralia
- Antarctic Climate & Ecosystems Cooperative Research CentreBattery PointTASAustralia
| | - Andrew T. Davidson
- Antarctic Climate & Ecosystems Cooperative Research CentreBattery PointTASAustralia
- Australian Antarctic DivisionKingstonTASAustralia
| |
Collapse
|
21
|
Byrne M, Foo SA, Ross PM, Putnam HM. Limitations of cross- and multigenerational plasticity for marine invertebrates faced with global climate change. GLOBAL CHANGE BIOLOGY 2020; 26:80-102. [PMID: 31670444 DOI: 10.1111/gcb.14882] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/12/2019] [Indexed: 05/18/2023]
Abstract
Although cross generation (CGP) and multigenerational (MGP) plasticity have been identified as mechanisms of acclimation to global change, the weight of evidence indicates that parental conditioning over generations is not a panacea to rescue stress sensitivity in offspring. For many species, there were no benefits of parental conditioning. Even when improved performance was observed, this waned over time within a generation or across generations and fitness declined. CGP and MGP studies identified resilient species with stress tolerant genotypes in wild populations and selected family lines. Several bivalves possess favourable stress tolerance and phenotypically plastic traits potentially associated with genetic adaptation to life in habitats where they routinely experience temperature and/or acidification stress. These traits will be important to help 'climate proof' shellfish ventures. Species that are naturally stress tolerant and those that naturally experience a broad range of environmental conditions are good candidates to provide insights into the physiological and molecular mechanisms involved in CGP and MGP. It is challenging to conduct ecologically relevant global change experiments over the long times commensurate with the pace of changing climate. As a result, many studies present stressors in a shock-type exposure at rates much faster than projected scenarios. With more gradual stressor introduction over longer experimental durations and in context with conditions species are currently acclimatized and/or adapted to, the outcomes for sensitive species might differ. We highlight the importance to understand primordial germ cell development and the timing of gametogenesis with respect to stressor exposure. Although multigenerational exposure to global change stressors currently appears limited as a universal tool to rescue species in the face of changing climate, natural proxies of future conditions (upwelling zones, CO2 vents, naturally warm habitats) show that phenotypic adjustment and/or beneficial genetic selection is possible for some species, indicating complex plasticity-adaptation interactions.
Collapse
Affiliation(s)
- Maria Byrne
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Shawna A Foo
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, USA
| | - Pauline M Ross
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
22
|
Manríquez PH, González CP, Brokordt K, Pereira L, Torres R, Lattuca ME, Fernández DA, Peck MA, Cucco A, Antognarelli F, Marras S, Domenici P. Ocean warming and acidification pose synergistic limits to the thermal niche of an economically important echinoderm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133469. [PMID: 31635008 DOI: 10.1016/j.scitotenv.2019.07.275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/30/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
To make robust projectios of the impacts of climate change, it is critical to understand how abiotic factors may interact to constrain the distribution and productivity of marine flora and fauna. We evaluated the effects of projected end of the century ocean acidification (OA) and warming (OW) on the thermal tolerance of an important living marine resource, the sea urchin Loxechinus albus, a benthic shallow water coastal herbivore inhabiting part of the Pacific coast of South America. After exposing young juveniles for a 1-month period to contrasting pCO2 (~500 and 1400 μatm) and temperature (~15 °C and 20 °C) levels, critical thermal maximum (CTmax) and minimum (CTmin) as well as thermal tolerance polygons were assessed based on self-righting success as an end point. Transcription of heat shock protein 70 (HSP70), a chaperone protecting cellular proteins from environmental stress, was also measured. Exposure to elevated pCO2 significantly reduced thermal tolerance by increasing CTmin at both experimental temperatures and decreasing CTmax at 20 °C. There was also a strong synergistic effect of OA × OW on HSP70 transcription levels which were 75 times higher than in control conditions. If this species is unable to adapt to elevated pCO2 in the future, the reduction in thermal tolerance and HSP response suggests that near-future warming and OA will disrupt their performance and reduce their distribution with ecological and economic consequences. Given the wider latitudinal range (6 to 56°S) and environmental tolerance of L. albus compared to other members of this region's benthic invertebrate community, OW and OA may cause substantial changes to the coastal fauna along this geographical range.
Collapse
Affiliation(s)
- Patricio H Manríquez
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile.
| | - Claudio P González
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Katherina Brokordt
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Universidad Católica del Norte, Coquimbo, Chile; Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
| | - Luis Pereira
- Departamento de Acuicultura, Facultad de Ciencias de Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Rodrigo Torres
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile; Centro de Investigación: Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Punta Arenas, Chile
| | - María E Lattuca
- Laboratorio de Ecología, Fisiología y Evolución de Organismos Acuáticos (LEFyE), Centro Austral de Investigaciones Científicas (CADIC-CONICET), Ushuaia, Argentina
| | - Daniel A Fernández
- Laboratorio de Ecología, Fisiología y Evolución de Organismos Acuáticos (LEFyE), Centro Austral de Investigaciones Científicas (CADIC-CONICET), Ushuaia, Argentina; Universidad Nacional de Tierra del Fuego, Instituto de Ciencias Polares, Ambiente y Recursos Naturales, Fuegia Basket 251, 9410 Ushuaia, Tierra del Fuego, Argentina
| | - Myron A Peck
- Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability, University of Hamburg, GroßeElbstrasse 133, D-22767 Hamburg, Germany
| | - Andrea Cucco
- CNR-IAMC-Istituto per l'Ambiente Marino Costiero, Localita Sa Mardini, Torregrande, Oristano 09170, Italy
| | - Fabio Antognarelli
- CNR-IAMC-Istituto per l'Ambiente Marino Costiero, Localita Sa Mardini, Torregrande, Oristano 09170, Italy
| | - Stefano Marras
- CNR-IAMC-Istituto per l'Ambiente Marino Costiero, Localita Sa Mardini, Torregrande, Oristano 09170, Italy
| | - Paolo Domenici
- CNR-IAMC-Istituto per l'Ambiente Marino Costiero, Localita Sa Mardini, Torregrande, Oristano 09170, Italy
| |
Collapse
|
23
|
Holan JR, King CK, Proctor AH, Davis AR. Increased sensitivity of subantarctic marine invertebrates to copper under a changing climate - Effects of salinity and temperature. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:54-62. [PMID: 30878862 DOI: 10.1016/j.envpol.2019.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Stressors associated with climate change and contaminants, resulting from the activities of humans, are affecting organisms and ecosystems globally. Previous studies suggest that the unique characteristics of polar biota, such as slower metabolisms and growth, and the generally stable conditions in their natural environment, cause higher susceptibility to contamination and climate change than those in temperate and tropical areas. We investigated the effects of increased temperature and decreased salinity on copper toxicity in four subantarctic marine invertebrates using realistic projected conditions under a future climatic change scenario for this region. We hypothesised that these relatively subtle shifts in environmental stressors would impact the sensitivity of cold-adapted species to copper. The four test species were: a copepod Harpacticus sp.; isopod Limnoria stephenseni; flatworm Obrimoposthia ohlini; and bivalve Gaimardia trapesina. These species occupy a range of ecological niches, spanning intertidal and subtidal nearshore zones. We predicted that species would differ in their tolerance to stressors, depending on where they occurred within this ecological gradient. Organisms were exposed to the multiple stressors in a factorial design in laboratory based toxicity tests. Sensitivity estimates for copper (LC50) were calculated using a novel statistical approach which directly assessed the impacts of the multiple stressors. In three of the four species tested, sensitivity to copper was amplified by small increases in temperature (2-4 °C). The effects of salinity were more variable but a decrease of as little as 2 ppt caused a significant effect in one species. This study provides some of the first evidence that high latitude species may be at increased risk from contaminants under projected future climate conditions. This interaction, between contaminants and the abiotic environment, highlights a potential pathway to biodiversity loss under a changing climate.
Collapse
Affiliation(s)
- Jessica R Holan
- Centre for Sustainable Ecosystem Solutions and School of Biological Sciences, University of Wollongong, Australia.
| | | | - Abigael H Proctor
- Institute of Marine and Antarctic Studies, University of Tasmania, Australia
| | - Andrew R Davis
- Institute of Marine and Antarctic Studies, University of Tasmania, Australia
| |
Collapse
|
24
|
Lenz B, Fogarty ND, Figueiredo J. Effects of ocean warming and acidification on fertilization success and early larval development in the green sea urchin Lytechinus variegatus. MARINE POLLUTION BULLETIN 2019; 141:70-78. [PMID: 30955782 DOI: 10.1016/j.marpolbul.2019.02.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/03/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Ocean acidification and warming are predicted to affect the early life of many marine organisms, but their effects can be synergistic or antagonistic. This study assessed the combined effects of near-future (2100) ocean acidification (pH 7.8) and warming (+3 °C) on the fertilization, larval development and growth of the green sea urchin, Lytechinus variegatus, common in tropical reefs of Florida and the Caribbean. Acidification had no effect on fertilization, but delayed larval development, stunted growth, and increased asymmetry. Warming decreased fertilization success when the sperm:egg ratio was higher (1847:1), accelerated larval development, but had no effect on growth. When exposed to both acidification and warming, fertilization rates decreased, larval development accelerated (due to increased respiration/metabolism), but larvae were smaller and more asymmetric, meaning acidification and warming had additive effects. Thus, climate change is expected to decrease the abundance of this important herbivore, exacerbating macroalgal growth and dominance on coral reefs.
Collapse
Affiliation(s)
- Brittney Lenz
- Department of Marine and Environmental Science, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, USA
| | - Nicole D Fogarty
- Department of Marine and Environmental Science, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, USA; Department of Biology and Marine Biology, University of North Carolina Wilmington, Center for Marine Science, USA
| | - Joana Figueiredo
- Department of Marine and Environmental Science, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, USA.
| |
Collapse
|
25
|
Bergami E, Krupinski Emerenciano A, González-Aravena M, Cárdenas CA, Hernández P, Silva JRMC, Corsi I. Polystyrene nanoparticles affect the innate immune system of the Antarctic sea urchin Sterechinus neumayeri. Polar Biol 2019. [DOI: 10.1007/s00300-019-02468-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
26
|
Munari M, Matozzo V, Gagné F, Chemello G, Riedl V, Finos L, Pastore P, Badocco D, Marin MG. Does exposure to reduced pH and diclofenac induce oxidative stress in marine bivalves? A comparative study with the mussel Mytilus galloprovincialis and the clam Ruditapes philippinarum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:925-937. [PMID: 29949844 DOI: 10.1016/j.envpol.2018.05.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
CO2-driven acidification and emerging contaminants, such as pharmaceuticals, pose new threats for the maintenance of natural populations of marine organisms by interfering with their normal biochemical pathways and defences. The combined effects of seawater acidification, as predicted in climate change scenarios, and an emerging contaminant (the non-steroidal anti-inflammatory drug, NSAID, diclofenac) on oxidative stress-related parameters were investigated in the Mediterranean mussel Mytilus galloprovincialis and the Manila clam Ruditapes philippinarum. A flow-through system was used to carry out a three-week exposure experiment with the bivalves. First, the animals were exposed to only three pH values for 7 days. The pH was manipulated by dissolving CO2 in the seawater to obtain two reduced pH treatments (pH -0.4 units and pH -0.7 units), which were compared with seawater at the natural pH level (8.1). Thereafter, the bivalves were concomitantly exposed to the three experimental pH values and environmentally relevant concentrations of diclofenac (0.00, 0.05 and 0.50 μg/L) for an additional 14 days. The activities of superoxide dismutase, catalase and cyclooxygenase, and lipid peroxidation and DNA strand-break formation were measured in both the gills and digestive gland after 7, 14 and 21 days of exposure to each experimental condition. The results show that the biochemical parameters measured in both the mussels and clams were more influenced by the reduced pH than by the contaminant or the pH*contaminant interaction, although the biomarker variation patterns differed depending on the species and tissues analysed. Generally, due to increases in its antioxidant defence, M. galloprovincialis was more resistant than R. philippinarum to both diclofenac exposure and reduced pH. Conversely, reduced pH induced a significant decrease in COX activity in both the gills and digestive gland of clams, possibly resulting in the increased DNA damage observed in the digestive gland tissue.
Collapse
Affiliation(s)
- Marco Munari
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy
| | - François Gagné
- Environment and Climate Change Canada, Water Science and Technology, Aquatic Contaminants Research Division, 105 McGill Street, 7th Floor, Montreal, Quebec H2Y 2E7, Canada
| | - Giulia Chemello
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy
| | - Verena Riedl
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy
| | - Livio Finos
- Department of Developmental Psychology and Socialisation, University of Padova, Via Venezia 8, 35131 Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Denis Badocco
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Maria Gabriella Marin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy
| |
Collapse
|
27
|
González-Aravena M, Calfio C, Mercado L, Morales-Lange B, Bethke J, De Lorgeril J, Cárdenas CA. HSP70 from the Antarctic sea urchin Sterechinus neumayeri: molecular characterization and expression in response to heat stress. Biol Res 2018; 51:8. [PMID: 29587857 PMCID: PMC5872545 DOI: 10.1186/s40659-018-0156-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/19/2018] [Indexed: 02/01/2023] Open
Abstract
Background Heat stress proteins are implicated in stabilizing and refolding denatured proteins in vertebrates and invertebrates. Members of the Hsp70 gene family comprise the cognate heat shock protein (Hsc70) and inducible heat shock protein (Hsp70). However, the cDNA sequence and the expression of Hsp70 in the Antarctic sea urchin are unknown. Methods We amplified and cloned a transcript sequence of 1991 bp from the Antarctic sea urchin Sterechinus neumayeri, experimentally exposed to heat stress (5 and 10 °C for 1, 24 and 48 h). RACE-PCR and qPCR were employed to determine Hsp70 gene expression, while western blot and ELISA methods were used to determine protein expression. Results The sequence obtained from S. neumayeri showed high identity with Hsp70 members. Several Hsp70 family features were identified in the deduced amino acid sequence and they indicate that the isolated Hsp70 is related to the cognate heat shock protein type. The corresponding 70 kDa protein, called Sn-Hsp70, was immune detected in the coelomocytes and the digestive tract of S. neumayeri using a monospecific polyclonal antibody. We showed that S. neumayeri do not respond to acute heat stress by up-regulation of Sn-Hsp70 at transcript and protein level. Furthermore, the Sn-Hsp70 protein expression was not induced in the digestive tract. Conclusions Our results provide the first molecular evidence that Sn-Hsp70 is expressed constitutively and is non-induced by heat stress in S. neumayeri.
Collapse
Affiliation(s)
- Marcelo González-Aravena
- Laboratorio de Biorrecursos Antárticos, Departamento Científico, Instituto Antártico Chileno, Plaza Muñoz Gamero 1055, Punta Arenas, Chile.
| | - Camila Calfio
- Laboratorio de Biorrecursos Antárticos, Departamento Científico, Instituto Antártico Chileno, Plaza Muñoz Gamero 1055, Punta Arenas, Chile
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaiso, Chile
| | - Byron Morales-Lange
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaiso, Chile
| | - Jorn Bethke
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaiso, Chile
| | - Julien De Lorgeril
- IFREMER, CNRS, UMR 5244 IHPE « Interactions Hôtes-Pathogènes-Environnements», Université de Montpellier II, Université de Perpignan Via Domitia, Place Eugène Bataillon CC80, 34095, Montpellier Cedex 5, France
| | - César A Cárdenas
- Laboratorio de Biorrecursos Antárticos, Departamento Científico, Instituto Antártico Chileno, Plaza Muñoz Gamero 1055, Punta Arenas, Chile
| |
Collapse
|
28
|
Wong JM, Johnson KM, Kelly MW, Hofmann G. Transcriptomics reveal transgenerational effects in purple sea urchin embryos: Adult acclimation to upwelling conditions alters the response of their progeny to differential
p
CO
2
levels. Mol Ecol 2018; 27:1120-1137. [DOI: 10.1111/mec.14503] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Juliet M. Wong
- Department of Ecology, Evolution and Marine Biology University of California, Santa Barbara Santa Barbara CA USA
| | - Kevin M. Johnson
- Department of Ecology, Evolution and Marine Biology University of California, Santa Barbara Santa Barbara CA USA
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Morgan W. Kelly
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Gretchen E. Hofmann
- Department of Ecology, Evolution and Marine Biology University of California, Santa Barbara Santa Barbara CA USA
| |
Collapse
|
29
|
Carbonate chemistry of an in-situ free-ocean CO 2 enrichment experiment (antFOCE) in comparison to short term variation in Antarctic coastal waters. Sci Rep 2018; 8:2816. [PMID: 29434330 PMCID: PMC5809532 DOI: 10.1038/s41598-018-21029-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 01/29/2018] [Indexed: 11/08/2022] Open
Abstract
Free-ocean CO2 enrichment (FOCE) experiments have been deployed in marine ecosystems to manipulate carbonate system conditions to those predicted in future oceans. We investigated whether the pH/carbonate chemistry of extremely cold polar waters can be manipulated in an ecologically relevant way, to represent conditions under future atmospheric CO2 levels, in an in-situ FOCE experiment in Antarctica. We examined spatial and temporal variation in local ambient carbonate chemistry at hourly intervals at two sites between December and February and compared these with experimental conditions. We successfully maintained a mean pH offset in acidified benthic chambers of -0.38 (±0.07) from ambient for approximately 8 weeks. Local diel and seasonal fluctuations in ambient pH were duplicated in the FOCE system. Large temporal variability in acidified chambers resulted from system stoppages. The mean pH, Ωarag and fCO2 values in the acidified chambers were 7.688 ± 0.079, 0.62 ± 0.13 and 912 ± 150 µatm, respectively. Variation in ambient pH appeared to be mainly driven by salinity and biological production and ranged from 8.019 to 8.192 with significant spatio-temporal variation. This experiment demonstrates the utility of FOCE systems to create conditions expected in future oceans that represent ecologically relevant variation, even under polar conditions.
Collapse
|
30
|
Lamare MD, Liddy M, Uthicke S. In situ developmental responses of tropical sea urchin larvae to ocean acidification conditions at naturally elevated pCO2 vent sites. Proc Biol Sci 2017; 283:rspb.2016.1506. [PMID: 27903867 DOI: 10.1098/rspb.2016.1506] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/03/2016] [Indexed: 01/05/2023] Open
Abstract
Laboratory experiments suggest that calcifying developmental stages of marine invertebrates may be the most ocean acidification (OA)-sensitive life-history stage and represent a life-history bottleneck. To better extrapolate laboratory findings to future OA conditions, developmental responses in sea urchin embryos/larvae were compared under ecologically relevant in situ exposures on vent-elevated pCO2 and ambient pCO2 coral reefs in Papua New Guinea. Echinometra embryos/larvae were reared in meshed chambers moored in arrays on either venting reefs or adjacent non-vent reefs. After 24 and 48 h, larval development and morphology were quantified. Compared with controls (mean pH(T) = 7.89-7.92), larvae developing in elevated pCO2 vent conditions (pH(T) = 7.50-7.72) displayed a significant reduction in size and increased abnormality, with a significant correlation of seawater pH with both larval size and larval asymmetry across all experiments. Reciprocal transplants (embryos from vent adults transplanted to control conditions, and vice versa) were also undertaken to identify if adult acclimatization can translate resilience to offspring (i.e. transgenerational processes). Embryos originating from vent adults were, however, no more tolerant to reduced pH. Sea temperature and chlorophyll-a concentrations (i.e. larval nutrition) did not contribute to difference in larval size, but abnormality was correlated with chlorophyll levels. This study is the first to examine the response of marine larvae to OA scenarios in the natural environment where, importantly, we found that stunted and abnormal development observed in situ are consistent with laboratory observations reported in sea urchins, in both the direction and magnitude of the response.
Collapse
Affiliation(s)
- Miles D Lamare
- Department of Marine Science, University of Otago, Dunedin 9016, New Zealand
| | - Michelle Liddy
- Department of Marine Science, University of Otago, Dunedin 9016, New Zealand.,Australia Institute of Marine Sciences, Townsville, 4810, Queensland, Australia
| | - Sven Uthicke
- Australia Institute of Marine Sciences, Townsville, 4810, Queensland, Australia
| |
Collapse
|
31
|
Hoshijima U, Wong JM, Hofmann GE. Additive effects of pCO 2 and temperature on respiration rates of the Antarctic pteropod Limacina helicina antarctica. CONSERVATION PHYSIOLOGY 2017; 5:cox064. [PMID: 29218223 PMCID: PMC5710650 DOI: 10.1093/conphys/cox064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/09/2017] [Accepted: 11/04/2017] [Indexed: 06/07/2023]
Abstract
The Antarctic pteropod, Limacina helicina antarctica, is a dominant member of the zooplankton in the Ross Sea and supports the vast diversity of marine megafauna that designates this region as an internationally protected area. Here, we observed the response of respiration rate to abiotic stressors associated with global change-environmentally relevant temperature treatments (-0.8°C, 4°C) and pH treatments reflecting current-day and future modeled extremes (8.2, 7.95 and 7.7 pH at -0.8°C; 8.11, 7.95 and 7.7 pH at 4°C). Sampling repeatedly over a 14-day period in laboratory experiments and using microplate respirometry techniques, we found that the metabolic rate of juvenile pteropods increased in response to low-pH exposure (pH 7.7) at -0.8°C, a near-ambient temperature. Similarly, metabolic rate increased when pteropods were exposed simultaneously to multiple stressors: lowered pH conditions (pH 7.7) and a high temperature (4°C). Overall, the results showed that pCO2 and temperature interact additively to affect metabolic rates in pteropods. Furthermore, we found that L. h. antarctica can tolerate acute exposure to temperatures far beyond its maximal habitat temperature. Overall, L. h. antarctica appears to be susceptible to pH and temperature stress, two abiotic stressors which are expected to be especially deleterious for ectothermic marine metazoans in polar seas.
Collapse
Affiliation(s)
- Umihiko Hoshijima
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9620,USA
| | - Juliet M Wong
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9620,USA
| | - Gretchen E Hofmann
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9620,USA
| |
Collapse
|
32
|
Karelitz SE, Uthicke S, Foo SA, Barker MF, Byrne M, Pecorino D, Lamare MD. Ocean acidification has little effect on developmental thermal windows of echinoderms from Antarctica to the tropics. GLOBAL CHANGE BIOLOGY 2017; 23:657-672. [PMID: 27497050 DOI: 10.1111/gcb.13452] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/19/2016] [Accepted: 07/24/2016] [Indexed: 06/06/2023]
Abstract
As the ocean warms, thermal tolerance of developmental stages may be a key driver of changes in the geographical distributions and abundance of marine invertebrates. Additional stressors such as ocean acidification may influence developmental thermal windows and are therefore important considerations for predicting distributions of species under climate change scenarios. The effects of reduced seawater pH on the thermal windows of fertilization, embryology and larval morphology were examined using five echinoderm species: two polar (Sterechinus neumayeri and Odontaster validus), two temperate (Fellaster zelandiae and Patiriella regularis) and one tropical (Arachnoides placenta). Responses were examined across 12-13 temperatures ranging from -1.1 °C to 5.7 °C (S. neumayeri), -0.5 °C to 10.7 °C (O. validus), 5.8 °C to 27 °C (F. zelandiae), 6.0 °C to 27.1 °C (P. regularis) and 13.9 °C to 34.8 °C (A. placenta) under present-day and near-future (2100+) ocean acidification conditions (-0.3 pH units) and for three important early developmental stages 1) fertilization, 2) embryo (prehatching) and 3) larval development. Thermal windows for fertilization were broad and were not influenced by a pH decrease. Embryological development was less thermotolerant. For O. validus, P. regularis and A. placenta, low pH reduced normal development, albeit with no effect on thermal windows. Larval development in all five species was affected by both temperature and pH; however, thermal tolerance was not reduced by pH. Results of this study suggest that in terms of fertilization and development, temperature will remain as the most important factor influencing species' latitudinal distributions as the ocean continues to warm and decrease in pH, and that there is little evidence of a synergistic effect of temperature and ocean acidification on the thermal control of species ranges.
Collapse
Affiliation(s)
- Sam E Karelitz
- Department of Marine Science, University of Otago, 310 Castle Street, 9016, Dunedin, New Zealand
| | - Sven Uthicke
- Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Shawna A Foo
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Mike F Barker
- Department of Marine Science, University of Otago, 310 Castle Street, 9016, Dunedin, New Zealand
| | - Maria Byrne
- Schools of Medical and Biological Sciences, University of Sydney, Sydney, NSW, Australia
| | - Danilo Pecorino
- Department for Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Miles D Lamare
- Department of Marine Science, University of Otago, 310 Castle Street, 9016, Dunedin, New Zealand
| |
Collapse
|
33
|
Schleicherová D, Dulias K, Osigus HJ, Paknia O, Hadrys H, Schierwater B. The most primitive metazoan animals, the placozoans, show high sensitivity to increasing ocean temperatures and acidities. Ecol Evol 2017; 7:895-904. [PMID: 28168026 PMCID: PMC5288258 DOI: 10.1002/ece3.2678] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 11/09/2016] [Accepted: 11/13/2016] [Indexed: 01/14/2023] Open
Abstract
The increase in atmospheric carbon dioxide (CO2) leads to rising temperatures and acidification in the oceans, which directly or indirectly affects all marine organisms, from bacteria to animals. We here ask whether the simplest-and possibly also the oldest-metazoan animals, the placozoans, are particularly sensitive to ocean warming and acidification. Placozoans are found in all warm and temperate oceans and are soft-bodied, microscopic invertebrates lacking any calcified structures, organs, or symmetry. We here show that placozoans respond highly sensitive to temperature and acidity stress. The data reveal differential responses in different placozoan lineages and encourage efforts to develop placozoans as a potential biomarker system.
Collapse
Affiliation(s)
| | - Katharina Dulias
- ITZ, Ecology and EvolutionTiHo Hannover Hannover Germany; Present address: Department of Biological Sciences School of Applied Sciences University of Huddersfield Huddersfield UK
| | | | - Omid Paknia
- ITZ, Ecology and Evolution TiHo Hannover Hannover Germany
| | - Heike Hadrys
- ITZ, Ecology and Evolution TiHo Hannover Hannover Germany
| | | |
Collapse
|
34
|
Munari M, Chemello G, Finos L, Ingrosso G, Giani M, Marin MG. Coping with seawater acidification and the emerging contaminant diclofenac at the larval stage: A tale from the clam Ruditapes philippinarum. CHEMOSPHERE 2016; 160:293-302. [PMID: 27391052 DOI: 10.1016/j.chemosphere.2016.06.095] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/10/2016] [Accepted: 06/25/2016] [Indexed: 06/06/2023]
Abstract
Seawater acidification could alter the susceptibility of marine organisms to emerging contaminants, such as pharmaceuticals. In this study, the combined effects of seawater acidification and the non-steroidal anti-inflammatory drug diclofenac on survival, growth and oxidative stress-related parameters (catalase activity and lipid peroxidation) in the larvae of the Manila clam Ruditapes philippinarum were investigated for the first time. An experimental flow-through system was set up to carry out a 96-h exposure of clam larvae. Two pH levels (pH 8.0, the control, and pH 7.8, the predicted pH by the end of this century) were tested with and without diclofenac (0.5 μg/L). After 4 days, mortality was dramatically higher under reduced pH, particularly in the presence of diclofenac (62% of the larvae dead). Shell morphology was negatively affected by both acidification and diclofenac from the first day of exposure. The percentage of abnormal larvae was always higher at pH 7.8 than in controls, peaking at 98% in the presence of diclofenac after 96 h. Instead, shell length, shell height or the ratio of these values were only negatively influenced by reduced pH throughout the whole experiment. After 96 h, catalase activity was significantly increased in all larvae kept at pH 7.8, whereas no significant difference in lipid peroxidation was found among the treatments. This study demonstrates a high susceptibility of R. philippinarum larvae to a slight reduction in seawater pH. Furthermore, the results obtained highlight that acidification enhances the sensitivity of clam larvae to environmentally relevant concentrations of diclofenac.
Collapse
Affiliation(s)
- Marco Munari
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| | - Giulia Chemello
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Livio Finos
- Department of Developmental Psychology and Socialisation, University of Padova, Via Venezia, 8, 35131 Padova, Italy
| | - Gianmarco Ingrosso
- Istituto Nazionale di Oceanografia e Geofisica Sperimentale, Sezione di Oceanografia, Via A. Piccard 54, 34151 S. Croce (TS), Italy
| | - Michele Giani
- Istituto Nazionale di Oceanografia e Geofisica Sperimentale, Sezione di Oceanografia, Via A. Piccard 54, 34151 S. Croce (TS), Italy
| | - Maria G Marin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
35
|
Life under Climate Change Scenarios: Sea Urchins’ Cellular Mechanisms for Reproductive Success. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2016. [DOI: 10.3390/jmse4010028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
González K, Gaitán-Espitia J, Font A, Cárdenas CA, González-Aravena M. Expression pattern of heat shock proteins during acute thermal stress in the Antarctic sea urchin, Sterechinus neumayeri. REVISTA CHILENA DE HISTORIA NATURAL 2016. [DOI: 10.1186/s40693-016-0052-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Davis BE, Miller NA, Flynn EE, Todgham AE. Juvenile Antarctic rockcod (Trematomus bernacchii) are physiologically robust to CO2-acidified seawater. ACTA ACUST UNITED AC 2016; 219:1203-13. [PMID: 26944503 DOI: 10.1242/jeb.133173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/15/2016] [Indexed: 01/04/2023]
Abstract
To date, numerous studies have shown negative impacts of CO2-acidified seawater (i.e. ocean acidification, OA) on marine organisms, including calcifying invertebrates and fishes; however, limited research has been conducted on the physiological effects of OA on polar fishes and even less on the impact of OA on early developmental stages of polar fishes. We evaluated aspects of aerobic metabolism and cardiorespiratory physiology of juvenile emerald rockcod, ITALIC! Trematomus bernacchii, an abundant fish in the Ross Sea, Antarctica, to elevated partial pressure of carbon dioxide ( ITALIC! PCO2 ) [420 (ambient), 650 (moderate) and 1050 (high) μatm ITALIC! PCO2 ] over a 1 month period. We examined cardiorespiratory physiology, including heart rate, stroke volume, cardiac output and ventilation rate, whole organism metabolism via oxygen consumption rate and sub-organismal aerobic capacity by citrate synthase enzyme activity. Juvenile fish showed an increase in ventilation rate under high ITALIC! PCO2 compared with ambient ITALIC! PCO2 , whereas cardiac performance, oxygen consumption and citrate synthase activity were not significantly affected by elevated ITALIC! PCO2 Acclimation time had a significant effect on ventilation rate, stroke volume, cardiac output and citrate synthase activity, such that all metrics increased over the 4 week exposure period. These results suggest that juvenile emerald rockcod are robust to near-future increases in OA and may have the capacity to adjust for future increases in ITALIC! PCO2 by increasing acid-base compensation through increased ventilation.
Collapse
Affiliation(s)
- Brittany E Davis
- Department of Animal Sciences, University of California Davis, Davis, CA 95616, USA Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA 95616, USA
| | - Nathan A Miller
- Department of Animal Sciences, University of California Davis, Davis, CA 95616, USA Romberg Tiburon Center for Environmental Studies, San Francisco State University, Tiburon, CA 94920, USA
| | - Erin E Flynn
- Department of Animal Sciences, University of California Davis, Davis, CA 95616, USA
| | - Anne E Todgham
- Department of Animal Sciences, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
38
|
Flynn EE, Bjelde BE, Miller NA, Todgham AE. Ocean acidification exerts negative effects during warming conditions in a developing Antarctic fish. CONSERVATION PHYSIOLOGY 2015; 3:cov033. [PMID: 27293718 PMCID: PMC4778439 DOI: 10.1093/conphys/cov033] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 05/30/2023]
Abstract
Anthropogenic CO2 is rapidly causing oceans to become warmer and more acidic, challenging marine ectotherms to respond to simultaneous changes in their environment. While recent work has highlighted that marine fishes, particularly during early development, can be vulnerable to ocean acidification, we lack an understanding of how life-history strategies, ecosystems and concurrent ocean warming interplay with interspecific susceptibility. To address the effects of multiple ocean changes on cold-adapted, slowly developing fishes, we investigated the interactive effects of elevated partial pressure of carbon dioxide (pCO2) and temperature on the embryonic physiology of an Antarctic dragonfish (Gymnodraco acuticeps), with protracted embryogenesis (∼10 months). Using an integrative, experimental approach, our research examined the impacts of near-future warming [-1 (ambient) and 2°C (+3°C)] and ocean acidification [420 (ambient), 650 (moderate) and 1000 μatm pCO2 (high)] on survival, development and metabolic processes over the course of 3 weeks in early development. In the presence of increased pCO2 alone, embryonic mortality did not increase, with greatest overall survival at the highest pCO2. Furthermore, embryos were significantly more likely to be at a later developmental stage at high pCO2 by 3 weeks relative to ambient pCO2. However, in combined warming and ocean acidification scenarios, dragonfish embryos experienced a dose-dependent, synergistic decrease in survival and developed more slowly. We also found significant interactions between temperature, pCO2 and time in aerobic enzyme activity (citrate synthase). Increased temperature alone increased whole-organism metabolic rate (O2 consumption) and developmental rate and slightly decreased osmolality at the cost of increased mortality. Our findings suggest that developing dragonfish are more sensitive to ocean warming and may experience negative physiological effects of ocean acidification only in the presence of an increased temperature. In addition to reduced hatching success, alterations in development and metabolism due to ocean warming and acidification could have negative ecological consequences owing to changes in phenology (i.e. early hatching) in the highly seasonal Antarctic ecosystem.
Collapse
Affiliation(s)
- Erin E Flynn
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
- Department of Animal Sciences, University of California, Davis, CA 95616, USA
| | - Brittany E Bjelde
- Department of Animal Sciences, University of California, Davis, CA 95616, USA
| | - Nathan A Miller
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
- Department of Animal Sciences, University of California, Davis, CA 95616, USA
| | - Anne E Todgham
- Department of Animal Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
39
|
Przeslawski R, Byrne M, Mellin C. A review and meta-analysis of the effects of multiple abiotic stressors on marine embryos and larvae. GLOBAL CHANGE BIOLOGY 2015; 21:2122-2140. [PMID: 25488061 DOI: 10.1111/gcb.12833] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/14/2014] [Indexed: 06/04/2023]
Abstract
Marine organisms are simultaneously exposed to anthropogenic stressors with likely interactive effects, including synergisms in which the combined effects of multiple stressors are greater than the sum of individual effects. Early life stages of marine organisms are potentially vulnerable to the stressors associated with global change, but identifying general patterns across studies, species and response variables is challenging. This review represents the first meta-analysis of multistressor studies to target early marine life stages (embryo to larvae), particularly between temperature, salinity and pH as these are the best studied. Knowledge gaps in research on multiple abiotic stressors and early life stages are also identified. The meta-analysis yielded several key results: (1) Synergistic interactions (65% of individual tests) are more common than additive (17%) or antagonistic (17%) interactions. (2) Larvae are generally more vulnerable than embryos to thermal and pH stress. (3) Survival is more likely than sublethal responses to be affected by thermal, salinity and pH stress. (4) Interaction types vary among stressors, ontogenetic stages and biological responses, but they are more consistent among phyla. (5) Ocean acidification is a greater stressor for calcifying than noncalcifying larvae. Despite being more ecologically realistic than single-factor studies, multifactorial studies may still oversimplify complex systems, and so meta-analyses of the data from them must be cautiously interpreted with regard to extrapolation to field conditions. Nonetheless, our results identify taxa with early life stages that may be particularly vulnerable (e.g. molluscs, echinoderms) or robust (e.g. arthropods, cnidarians) to abiotic stress. We provide a list of recommendations for future multiple stressor studies, particularly those focussed on early marine life stages.
Collapse
Affiliation(s)
- Rachel Przeslawski
- National Earth and Marine Observations Group, Geoscience Australia, GPO Box 378, Canberra, ACT, 2601, Australia; School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | | | | |
Collapse
|
40
|
Collard M, De Ridder C, David B, Dehairs F, Dubois P. Could the acid-base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification? GLOBAL CHANGE BIOLOGY 2015; 21:605-617. [PMID: 25270127 DOI: 10.1111/gcb.12735] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 06/03/2023]
Abstract
Increasing atmospheric carbon dioxide concentration alters the chemistry of the oceans towards more acidic conditions. Polar oceans are particularly affected due to their low temperature, low carbonate content and mixing patterns, for instance upwellings. Calcifying organisms are expected to be highly impacted by the decrease in the oceans' pH and carbonate ions concentration. In particular, sea urchins, members of the phylum Echinodermata, are hypothesized to be at risk due to their high-magnesium calcite skeleton. However, tolerance to ocean acidification in metazoans is first linked to acid-base regulation capacities of the extracellular fluids. No information on this is available to date for Antarctic echinoderms and inference from temperate and tropical studies needs support. In this study, we investigated the acid-base status of 9 species of sea urchins (3 cidaroids, 2 regular euechinoids and 4 irregular echinoids). It appears that Antarctic regular euechinoids seem equipped with similar acid-base regulation systems as tropical and temperate regular euechinoids but could rely on more passive ion transfer systems, minimizing energy requirements. Cidaroids have an acid-base status similar to that of tropical cidaroids. Therefore Antarctic cidaroids will most probably not be affected by decreasing seawater pH, the pH drop linked to ocean acidification being negligible in comparison of the naturally low pH of the coelomic fluid. Irregular echinoids might not suffer from reduced seawater pH if acidosis of the coelomic fluid pH does not occur but more data on their acid-base regulation are needed. Combining these results with the resilience of Antarctic sea urchin larvae strongly suggests that these organisms might not be the expected victims of ocean acidification. However, data on the impact of other global stressors such as temperature and of the combination of the different stressors needs to be acquired to assess the sensitivity of these organisms to global change.
Collapse
Affiliation(s)
- Marie Collard
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, 50 avenue F.D. Roosevelt, Brussels, 1050, Belgium; Analytical, Environmental and Geo-Chemistry, Earth Systems Science Research Group, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
| | | | | | | | | |
Collapse
|
41
|
Suckling CC, Clark MS, Richard J, Morley SA, Thorne MAS, Harper EM, Peck LS. Adult acclimation to combined temperature and pH stressors significantly enhances reproductive outcomes compared to short-term exposures. J Anim Ecol 2014; 84:773-784. [PMID: 25491898 DOI: 10.1111/1365-2656.12316] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 10/29/2014] [Indexed: 11/27/2022]
Abstract
This study examined the effects of long-term culture under altered conditions on the Antarctic sea urchin, Sterechinus neumayeri. Sterechinus neumayeri was cultured under the combined environmental stressors of lowered pH (-0.3 and -0.5 pH units) and increased temperature (+2 °C) for 2 years. This time-scale covered two full reproductive cycles in this species and analyses included studies on both adult metabolism and larval development. Adults took at least 6-8 months to acclimate to the altered conditions, but beyond this, there was no detectable effect of temperature or pH. Animals were spawned after 6 and 17 months exposure to altered conditions, with markedly different outcomes. At 6 months, the percentage hatching and larval survival rates were greatest in the animals kept at 0 °C under current pH conditions, whilst those under lowered pH and +2 °C performed significantly less well. After 17 months, performance was not significantly different across treatments, including controls. However, under the altered conditions urchins produced larger eggs compared with control animals. These data show that under long-term culture adult S. neumayeri appear to acclimate their metabolic and reproductive physiology to the combined stressors of altered pH and increased temperature, with relatively little measureable effect. They also emphasize the importance of long-term studies in evaluating effects of altered pH, particularly in slow developing marine species with long gonad maturation times, as the effects of altered conditions cannot be accurately evaluated unless gonads have fully matured under the new conditions.
Collapse
Affiliation(s)
- Coleen C Suckling
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.,Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK.,School of Biological Sciences, Bangor University, Deiniol Road, Gwynedd, Bangor, LL57 2UW, UK.,School of Ocean Sciences, Bangor University, Askew Street, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Joelle Richard
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.,Laboratoire de Sciences de l'Environnement Marin (UMR CNRS 6539), Université de Bretagne Occidentale, Institut Universitaire Européen de la Mer, Technopȏle Brest-Iroise, Place Copernic, Plouzané, F-29280, France
| | - Simon A Morley
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Michael A S Thorne
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Elizabeth M Harper
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| |
Collapse
|
42
|
Byrne M, Smith AM, West S, Collard M, Dubois P, Graba-landry A, Dworjanyn SA. Warming influences Mg2+ content, while warming and acidification influence calcification and test strength of a sea urchin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12620-12627. [PMID: 25252045 DOI: 10.1021/es5017526] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We examined the long-term effects of near-future changes in temperature and acidification on skeletal mineralogy, thickness, and strength in the sea urchin Tripneustes gratilla reared in all combinations of three pH (pH 8.1, 7.8, 7.6) and three temperatures (22 °C, 25 °C, 28 °C) from the early juvenile to adult, over 146 days. As the high-magnesium calcite of the echinoderm skeleton is a biomineral form highly sensitive to acidification, and influenced by temperature, we documented the MgCO3 content of the spines, test plates, and teeth. The percentage of MgCO3 varied systematically, with more Mg2+ in the test and spines. The percentage of MgCO3 in the test and teeth, but not the spines increased with temperature. Acidification did not change the percentage MgCO3. Test thickness increased with warming and decreased at pH 7.6, with no interaction between these factors. In crushing tests live urchins mostly ruptured at sutures between the plates. The force required to crush a live urchin was reduced in animals reared in low pH conditions but increased in those reared in warm conditions, a result driven by differences in urchin size. It appears that the interactive effects of warming and acidification on the Mg2+ content and protective function of the sea urchin skeleton will play out in a complex way as global climatic change unfolds.
Collapse
Affiliation(s)
- Maria Byrne
- Schools of Medical and Biological Science, University of Sydney , Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
43
|
Dilly GF, Gaitán-Espitia JD, Hofmann GE. Characterization of the Antarctic sea urchin (Sterechinus neumayeri) transcriptome and mitogenome: a molecular resource for phylogenetics, ecophysiology and global change biology. Mol Ecol Resour 2014; 15:425-36. [DOI: 10.1111/1755-0998.12316] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 06/24/2014] [Accepted: 07/21/2014] [Indexed: 11/30/2022]
Affiliation(s)
- G. F. Dilly
- Marine Science Institute; Department of Ecology, Evolution and Marine Biology; University of California; Santa Barbara CA USA
| | - J. D. Gaitán-Espitia
- Instituto de Ciencias Ambientales y Evolutivas; Universidad Austral de Chile; Valdivia Chile
| | - G. E. Hofmann
- Marine Science Institute; Department of Ecology, Evolution and Marine Biology; University of California; Santa Barbara CA USA
| |
Collapse
|
44
|
Matson PG, Washburn L, Martz TR, Hofmann GE. Abiotic versus biotic drivers of ocean pH variation under fast sea ice in McMurdo Sound, Antarctica. PLoS One 2014; 9:e107239. [PMID: 25221950 PMCID: PMC4164564 DOI: 10.1371/journal.pone.0107239] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/08/2014] [Indexed: 01/05/2023] Open
Abstract
Ocean acidification is expected to have a major effect on the marine carbonate system over the next century, particularly in high latitude seas. Less appreciated is natural environmental variation within these systems, particularly in terms of pH, and how this natural variation may inform laboratory experiments. In this study, we deployed sensor-equipped moorings at 20 m depths at three locations in McMurdo Sound, comprising deep (bottom depth>200 m: Hut Point Peninsula) and shallow environments (bottom depth ∼25 m: Cape Evans and New Harbor). Our sensors recorded high-frequency variation in pH (Hut Point and Cape Evans only), tide (Cape Evans and New Harbor), and water mass properties (temperature and salinity) during spring and early summer 2011. These collective observations showed that (1) pH differed spatially both in terms of mean pH (Cape Evans: 8.009±0.015; Hut Point: 8.020±0.007) and range of pH (Cape Evans: 0.090; Hut Point: 0.036), and (2) pH was not related to the mixing of two water masses, suggesting that the observed pH variation is likely not driven by this abiotic process. Given the large daily fluctuation in pH at Cape Evans, we developed a simple mechanistic model to explore the potential for biotic processes – in this case algal photosynthesis – to increase pH by fixing carbon from the water column. For this model, we incorporated published photosynthetic parameters for the three dominant algal functional groups found at Cape Evans (benthic fleshy red macroalgae, crustose coralline algae, and sea ice algal communities) to estimate oxygen produced/carbon fixed from the water column underneath fast sea ice and the resulting pH change. These results suggest that biotic processes may be a primary driver of pH variation observed under fast sea ice at Cape Evans and potentially at other shallow sites in McMurdo Sound.
Collapse
Affiliation(s)
- Paul G Matson
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Libe Washburn
- Department of Geography, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Todd R Martz
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Gretchen E Hofmann
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| |
Collapse
|
45
|
Pfister CA, Esbaugh AJ, Frieder CA, Baumann H, Bockmon EE, White MM, Carter BR, Benway HM, Blanchette CA, Carrington E, McClintock JB, McCorkle DC, McGillis WR, Mooney TA, Ziveri P. Detecting the unexpected: a research framework for ocean acidification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9982-9994. [PMID: 25084232 DOI: 10.1021/es501936p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The threat that ocean acidification (OA) poses to marine ecosystems is now recognized and U.S. funding agencies have designated specific funding for the study of OA. We present a research framework for studying OA that describes it as a biogeochemical event that impacts individual species and ecosystems in potentially unexpected ways. We draw upon specific lessons learned about ecosystem responses from research on acid rain, carbon dioxide enrichment in terrestrial plant communities, and nitrogen deposition. We further characterize the links between carbon chemistry changes and effects on individuals and ecosystems, and enumerate key hypotheses for testing. Finally, we quantify how U.S. research funding has been distributed among these linkages, concluding that there is an urgent need for research programs designed to anticipate how the effects of OA will reverberate throughout assemblages of species.
Collapse
Affiliation(s)
- Catherine A Pfister
- Department of Ecology and Evolution, University of Chicago , Chicago, Illinois 60637, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kapsenberg L, Hofmann GE. Signals of resilience to ocean change: high thermal tolerance of early stage Antarctic sea urchins (Sterechinus neumayeri) reared under present-day and future pCO2 and temperature. Polar Biol 2014. [DOI: 10.1007/s00300-014-1494-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Sewell MA, Millar RB, Yu PC, Kapsenberg L, Hofmann GE. Ocean acidification and fertilization in the antarctic sea urchin Sterechinus neumayeri: the importance of polyspermy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 48:713-722. [PMID: 24299658 DOI: 10.1021/es402815s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ocean acidification (OA), the reduction of the seawater pH as a result of increasing levels of atmospheric CO2, is an important climate change stressor in the Southern Ocean and Antarctic. We examined the impact of OA on fertilization success in the Antarctic sea urchin Sterechinus neumayeri using pH treatment conditions reflective of the current and near-future "pH seascape" for this species: current (control: pH 8.052, 384.1 μatm of pCO2), a high CO2 treatment approximating the 0.2-0.3 unit decrease in pH predicted for 2100 (high CO2: pH 7.830, 666.0 μatm of pCO2), and an intermediate medium CO2 (pH 7.967, 473.4 μatm of pCO2). Using a fertilization kinetics approach and mixed-effect models, we observed significant variation in the OA response between individual male/female pairs (N = 7) and a significant population-level increase (70-100%) in tb (time for a complete block to polyspermy) at medium and high CO2, a mechanism that potentially explains the higher levels of abnormal development seen in OA conditions. However, two pairs showed higher fertilization success with CO2 treatment and a nonsignificant effect. Future studies should focus on the mechanisms and levels of interindividual variability in OA response, so that we can consider the potential for selection and adaptation of organisms to a future ocean.
Collapse
Affiliation(s)
- Mary A Sewell
- School of Biological Sciences and ‡Department of Statistics, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | | | | | | | | |
Collapse
|
48
|
Ho MA, Price C, King CK, Virtue P, Byrne M. Effects of ocean warming and acidification on fertilization in the Antarctic echinoid Sterechinus neumayeri across a range of sperm concentrations. MARINE ENVIRONMENTAL RESEARCH 2013; 90:136-141. [PMID: 23948149 DOI: 10.1016/j.marenvres.2013.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 07/20/2013] [Accepted: 07/22/2013] [Indexed: 06/02/2023]
Abstract
The gametes of marine invertebrates are being spawned into an ocean that is simultaneously warming and decreasing in pH. Predicting the potential for interactive effects of these stressors on fertilization is difficult, especially for stenothermal polar invertebrates adapted to fertilization in cold, viscous water and, when decreased sperm availability may be an additional stressor. The impact of increased temperature (2-4 °C above ambient) and decreased pH (0.2-0.4 pH units below ambient) on fertilization in the Antarctic echinoid Sterechinus neumayeri across a range of sperm concentrations was investigated in cross-factorial experiments in context with near future ocean change projections. The high temperature treatment (+4 °C) was also used to assess thermal tolerance. Gametes from multiple males and females in replicate experiments were used to reflect the multiple spawner scenario in nature. For fertilization at low sperm density we tested three hypotheses, 1) increased temperature enhances fertilization success, 2) low pH reduces fertilization and, 3) due to the cold stenothermal physiology of S. neumayeri, temperature would be the more significant stressor. Temperature and sperm levels had a significant effect on fertilization, but decreased pH did not affect fertilization. Warming enhanced fertilization at the lowest sperm concentration tested likely through stimulation of sperm motility and reduced water viscosity. Our results indicate that fertilization in S. neumayeri, even at low sperm levels potentially found in nature, is resilient to near-future ocean warming and acidification.
Collapse
Affiliation(s)
- M A Ho
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
49
|
Byrne M, Lamare M, Winter D, Dworjanyn SA, Uthicke S. The stunting effect of a high CO2 ocean on calcification and development in sea urchin larvae, a synthesis from the tropics to the poles. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120439. [PMID: 23980242 DOI: 10.1098/rstb.2012.0439] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The stunting effect of ocean acidification on development of calcifying invertebrate larvae has emerged as a significant effect of global change. We assessed the arm growth response of sea urchin echinoplutei, here used as a proxy of larval calcification, to increased seawater acidity/pCO2 and decreased carbonate mineral saturation in a global synthesis of data from 15 species. Phylogenetic relatedness did not influence the observed patterns. Regardless of habitat or latitude, ocean acidification impedes larval growth with a negative relationship between arm length and increased acidity/pCO2 and decreased carbonate mineral saturation. In multiple linear regression models incorporating these highly correlated parameters, pCO2 exerted the greatest influence on decreased arm growth in the global dataset and also in the data subsets for polar and subtidal species. Thus, reduced growth appears largely driven by organism hypercapnia. For tropical species, decreased carbonate mineral saturation was most important. No single parameter played a dominant role in arm size reduction in the temperate species. For intertidal species, the models were equivocal. Levels of acidification causing a significant (approx. 10-20+%) reduction in arm growth varied between species. In 13 species, reduction in length of arms and supporting skeletal rods was evident in larvae reared in near-future (pCO2 800+ µatm) conditions, whereas greater acidification (pCO2 1000+ µatm) reduced growth in all species. Although multi-stressor studies are few, when temperature is added to the stressor mix, near-future warming can reduce the negative effect of acidification on larval growth. Broadly speaking, responses of larvae from across world regions showed similar trends despite disparate phylogeny, environments and ecology. Larval success may be the bottleneck for species success with flow-on effects for sea urchin populations and marine ecosystems.
Collapse
Affiliation(s)
- Maria Byrne
- Schools of Medical and Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia.
| | | | | | | | | |
Collapse
|