1
|
Niedrist GH. Substantial warming of Central European mountain rivers under climate change. REGIONAL ENVIRONMENTAL CHANGE 2023; 23:43. [PMID: 36814931 PMCID: PMC9938829 DOI: 10.1007/s10113-023-02037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
UNLABELLED Water bodies around the world are currently warming with unprecedented rates since observations started, but warming occurs highly variable among ecoregions. So far, mountain rivers were expected to experience attenuated warming due to cold water input from snow or ice. However, air temperatures in mountain areas are increasing faster than the global average, and therefore warming effects are expected for cold riverine ecosystems. In decomposing multi-decadal water temperature data of two Central European mountain rivers with different discharge and water source regime, this work identified so far unreported (a) long-term warming trends (with river-size dependent rates between +0.24 and +0.44 °C decade-1); but also (b) seasonal shifts with both rivers warming not only during summer, but also in winter months (i.e., up to +0.52 °C decade-1 in November); (c) significantly increasing minimum and maximum temperatures (e.g., temperatures in a larger river no longer reach freezing point since 1996 and maximum temperatures increased at rates between +0.4 and +0.7 °C decade-1); and (d) an expanding of warm-water periods during recent decades in these ecosystems. Our results show a substantial warming effect of mountain rivers with significant month-specific warming rates not only during summer but also in winter, suggesting that mountain river phenology continues to change with ongoing atmospheric warming. Furthermore, this work demonstrates that apart from a general warming, also seasonal shifts, changes in extreme temperatures, and expanding warm periods will play a role for ecological components of mountain rivers and should be considered in climate change assessments and mitigation management. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10113-023-02037-y.
Collapse
Affiliation(s)
- Georg H. Niedrist
- River and Conservation Research, Department of Ecology, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| |
Collapse
|
2
|
Dauwalter DC, Baker MA, Baker SM, Lee R, Walrath JD. Physical Habitat Complexity Partially Offsets the Negative Effect of Brook Trout on Yellowstone Cutthroat Trout in the Peripheral Goose Creek Subbasin. WEST N AM NATURALIST 2022. [DOI: 10.3398/064.082.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Michael A. Baker
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 E. Green St., Athens, GA 30602
| | - Sarah M. Baker
- Georgia Department of Natural Resources, 2150 Dawsonville Hwy., Gainesville, GA 30501
| | - Richard Lee
- Trout Unlimited, 910 Main Street, Suite 342, Boise, ID 83702
| | - John D. Walrath
- Wyoming Game and Fish Department, 351 West Astle Avenue, Green River, WY 82935
| |
Collapse
|
3
|
Maitland BM, Latzka AW. Shifting climate conditions affect recruitment in Midwestern stream trout, but depend on seasonal and spatial context. Ecosphere 2022. [DOI: 10.1002/ecs2.4308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Bryan M. Maitland
- Aquatic Science Center University of Wisconsin‐Madison Madison Wisconsin USA
- Wisconsin Department of Natural Resources Bureau of Fisheries Management Madison Wisconsin USA
| | - Alexander W. Latzka
- Wisconsin Department of Natural Resources Bureau of Fisheries Management Madison Wisconsin USA
| |
Collapse
|
4
|
Al-Chokhachy R, Peka R, Horgen E, Kaus DJ, Loux T, Heki L. Water availability drives instream conditions and life-history of an imperiled desert fish: A case study to inform water management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154614. [PMID: 35358530 DOI: 10.1016/j.scitotenv.2022.154614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
In arid ecosystems, available water is a critical, yet limited resource for human consumption, agricultural use, and ecosystem processes-highlighting the importance of developing management strategies to meet the needs of multiple users. Here, we evaluated how water availability influences stream thermal regimes and life-history expressions of Lahontan cutthroat trout (Oncorhynchus clarkii henshawi) in the arid Truckee River basin in the western United States. We integrated air temperature and stream discharge data to quantify how water availability drives stream temperature during annual spawning and rearing of Lahontan cutthroat trout. We then determined how in situ stream discharge and temperature affected adult spawning migrations, juvenile growth opportunities, and duration of suitable thermal conditions. Air temperatures had significant, large effects (+) on stream temperature across months; the effects of discharge varied across months, with significant effects (-) during May through August, suggesting increased discharge can help mitigate temperatures during seasonally warm months. Two models explained adult Lahontan cutthroat trout migration, and both models indicated that adult Lahontan cutthroat trout avoid migration when temperatures are warmer (~ > 12 °C) and discharge is higher (~ > 50 m3*s-1). Juvenile size was best explained by a quadratic relationship with cumulative degree days (CDD; days>4 °C) as size increased with increasing CDDs but decreased at higher CDDs. We also found an interaction between CDDs and discharge explaining juvenile size: when CDDs were low, higher discharge was associated with larger size, but when CDDs were high, higher discharge was associated with smaller size. Stream temperatures also determined the duration of juvenile rearing, as all juvenile emigration ceased at temperatures >24.4 °C. Together, our results illustrated how stream discharge and temperature shape the life-history of Lahontan cutthroat trout at multiple stages and can inform management actions to offset warming temperatures and facilitate life-history diversity and population resilience.
Collapse
Affiliation(s)
- Robert Al-Chokhachy
- U.S. Geological Survey, Northern Rocky Mountain Science Center, 2327 University Way, Suite 2, Bozeman, MT 59715, USA.
| | - Roger Peka
- U.S. Fish and Wildlife Service, Lahontan National Fish Hatchery Complex, 1340 Financial Blvd., Suite 161, Reno, NV 89502, USA
| | - Erik Horgen
- U.S. Fish and Wildlife Service, Lahontan National Fish Hatchery Complex, 1340 Financial Blvd., Suite 161, Reno, NV 89502, USA
| | - Daniel J Kaus
- U.S. Fish and Wildlife Service, Lahontan National Fish Hatchery Complex, 1340 Financial Blvd., Suite 161, Reno, NV 89502, USA
| | - Tim Loux
- U.S. Fish and Wildlife Service, Lahontan National Fish Hatchery Complex, 1340 Financial Blvd., Suite 161, Reno, NV 89502, USA
| | - Lisa Heki
- U.S. Fish and Wildlife Service, Lahontan National Fish Hatchery Complex, 1340 Financial Blvd., Suite 161, Reno, NV 89502, USA
| |
Collapse
|
5
|
Mandeville EG, Walters AW, Nordberg BJ, Higgins KH, Burckhardt JC, Wagner CE. Variable hybridization outcomes in trout are predicted by historical fish stocking and environmental context. Mol Ecol 2019; 28:3738-3755. [PMID: 31294488 DOI: 10.1111/mec.15175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
Abstract
Hybridization can profoundly affect the genomic composition and phenotypes of closely related species, and provides an opportunity to identify mechanisms that maintain reproductive isolation between species. Recent evidence suggests that hybridization outcomes within a species pair can vary across locations. However, we still do not know how variable outcomes of hybridization are across geographic replicates, and what mechanisms drive that variation. In this study, we described hybridization outcomes across 27 locations in the North Fork Shoshone River basin (Wyoming, USA) where native Yellowstone cutthroat trout and introduced rainbow trout co-occur. We used genomic data and hierarchical Bayesian models to precisely identify ancestry of hybrid individuals. Hybridization outcomes varied across locations. In some locations, only rainbow trout and advanced backcrossed hybrids towards rainbow trout were present, while trout in other locations had a broader range of ancestry, including both parental species and first-generation hybrids. Later-generation intermediate hybrids were rare relative to backcrossed hybrids and rainbow trout individuals. Using an individual-based simulation, we found that outcomes of hybridization in the North Fork Shoshone River basin deviate substantially from what we would expect under null expectations of random mating and no selection against hybrids. Since this deviation implies that some mechanisms of reproductive isolation function to maintain parental taxa and a diversity of hybrid types, we then modelled hybridization outcomes as a function of environmental variables and stocking history that are likely to affect prezygotic barriers to hybridization. Variables associated with history of fish stocking were the strongest predictors of hybridization outcomes, followed by environmental variables that might affect overlap in spawning time and location.
Collapse
Affiliation(s)
- Elizabeth G Mandeville
- Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA.,Department of Botany, University of Wyoming, Laramie, WY, USA.,Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Annika W Walters
- U.S. Geological Survey, Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, Laramie, WY, USA.,Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Brittany J Nordberg
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Karly H Higgins
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA.,Department of Quantitative and Systems Biology, University of California Merced, Merced, CA, USA
| | | | - Catherine E Wagner
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Biodiversity Institute, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
6
|
Hansen AJ, Phillips L. Trends in vital signs for Greater Yellowstone: application of a Wildland Health Index. Ecosphere 2018. [DOI: 10.1002/ecs2.2380] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Andrew J. Hansen
- Ecology Department Montana State University Bozeman Montana 59717 USA
| | - Linda Phillips
- Ecology Department Montana State University Bozeman Montana 59717 USA
| |
Collapse
|
7
|
Hodge BW, Battige KD, Rogers KB. Seasonal and temperature-related movement of Colorado River cutthroat trout in a low-elevation, Rocky Mountain stream. Ecol Evol 2017; 7:2346-2356. [PMID: 28405298 PMCID: PMC5383503 DOI: 10.1002/ece3.2847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/13/2017] [Accepted: 02/06/2017] [Indexed: 11/12/2022] Open
Abstract
Mobile species will migrate considerable distances to find habitats suitable for meeting life history requirements, and stream‐dwelling salmonids are no exception. In April–October 2014, we used radio‐telemetry to examine habitat use and movement of 36 Colorado River cutthroat trout Oncorhynchus clarkii pleuriticus (CRCT) in a 14.9‐km fragment of Milk Creek, a relatively low‐elevation stream in the Rocky Mountains (Colorado). We also used a network of data loggers to track stream temperature across time and space. Our objectives were to (1) characterize distribution and movement of CRCT, (2) evaluate seasonal differences in distribution and movement of CRCT, and (3) explore the relationship between stream temperature and distribution and movement of CRCT. During the course of our study, median range of CRCT was 4.81 km (range = 0.14–10.94) and median total movement was 5.94 km (range = 0.14–26.02). Median location of CRCT was significantly further upstream in summer than in spring, whereas range and movement of CRCT were greater in spring than in summer. Twenty‐six of the 27 CRCT tracked through mid‐June displayed a potamodromous (freshwater migratory) life history, migrating 1.8–8.0 km upstream during the spring spawning season. Four of the seven CRCT tracked through July migrated >1.4 km in summer. CRCT selected relatively cool reaches during summer months, and early‐summer movement was positively correlated with mean stream temperature. Study fish occupied stream segments in spring and fall that were thermally unsuitable, if not lethal, to the species in summer. Although transmitter loss limited the scope of inference, our findings suggest that preferred habitat is a moving target in Milk Creek, and that CRCT move to occupy that target. Because mobile organisms move among complementary habitats and exploit seasonally‐unsuitable reaches, we recommend that spatial and temporal variability be accounted for in delineations of distributional boundaries.
Collapse
Affiliation(s)
| | | | - Kevin B Rogers
- Colorado Parks and Wildlife Aquatic Research Section Steamboat Springs CO USA
| |
Collapse
|
8
|
Tercek M, Rodman A. Forecasts of 21st Century Snowpack and Implications for Snowmobile and Snowcoach Use in Yellowstone National Park. PLoS One 2016; 11:e0159218. [PMID: 27467778 PMCID: PMC4965024 DOI: 10.1371/journal.pone.0159218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/31/2016] [Indexed: 11/19/2022] Open
Abstract
Climate models project a general decline in western US snowpack throughout the 21st century, but long-term, spatially fine-grained, management-relevant projections of snowpack are not available for Yellowstone National Park. We focus on the implications that future snow declines may have for oversnow vehicle (snowmobile and snowcoach) use because oversnow tourism is critical to the local economy and has been a contentious issue in the park for more than 30 years. Using temperature-indexed snow melt and accumulation equations with temperature and precipitation data from downscaled global climate models, we forecast the number of days that will be suitable for oversnow travel on each Yellowstone road segment during the mid- and late-21st century. The west entrance road was forecast to be the least suitable for oversnow use in the future while the south entrance road was forecast to remain at near historical levels of driveability. The greatest snow losses were forecast for the west entrance road where as little as 29% of the December-March oversnow season was forecast to be driveable by late century. The climatic conditions that allow oversnow vehicle use in Yellowstone are forecast by our methods to deteriorate significantly in the future. At some point it may be prudent to consider plowing the roads that experience the greatest snow losses.
Collapse
Affiliation(s)
- Michael Tercek
- Yellowstone Center for Resources, National Park Service, PO Box 168, Yellowstone National Park, Wyoming 82190, United States of America
- Walking Shadow Ecology, PO Box 1085, Gardiner, Montana 59030, United States of America
- * E-mail:
| | - Ann Rodman
- Yellowstone Center for Resources, National Park Service, PO Box 168, Yellowstone National Park, Wyoming 82190, United States of America
| |
Collapse
|
9
|
Slow climate velocities of mountain streams portend their role as refugia for cold-water biodiversity. Proc Natl Acad Sci U S A 2016; 113:4374-9. [PMID: 27044091 DOI: 10.1073/pnas.1522429113] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The imminent demise of montane species is a recurrent theme in the climate change literature, particularly for aquatic species that are constrained to networks and elevational rather than latitudinal retreat as temperatures increase. Predictions of widespread species losses, however, have yet to be fulfilled despite decades of climate change, suggesting that trends are much weaker than anticipated and may be too subtle for detection given the widespread use of sparse water temperature datasets or imprecise surrogates like elevation and air temperature. Through application of large water-temperature databases evaluated for sensitivity to historical air-temperature variability and computationally interpolated to provide high-resolution thermal habitat information for a 222,000-km network, we estimate a less dire thermal plight for cold-water species within mountains of the northwestern United States. Stream warming rates and climate velocities were both relatively low for 1968-2011 (average warming rate = 0.101 °C/decade; median velocity = 1.07 km/decade) when air temperatures warmed at 0.21 °C/decade. Many cold-water vertebrate species occurred in a subset of the network characterized by low climate velocities, and three native species of conservation concern occurred in extremely cold, slow velocity environments (0.33-0.48 km/decade). Examination of aggressive warming scenarios indicated that although network climate velocities could increase, they remain low in headwaters because of strong local temperature gradients associated with topographic controls. Better information about changing hydrology and disturbance regimes is needed to complement these results, but rather than being climatic cul-de-sacs, many mountain streams appear poised to be redoubts for cold-water biodiversity this century.
Collapse
|
10
|
The Shifting Climate Portfolio of the Greater Yellowstone Area. PLoS One 2015; 10:e0145060. [PMID: 26674185 PMCID: PMC4681470 DOI: 10.1371/journal.pone.0145060] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/27/2015] [Indexed: 11/19/2022] Open
Abstract
Knowledge of climatic variability at small spatial extents (< 50 km) is needed to assess vulnerabilities of biological reserves to climate change. We used empirical and modeled weather station data to test if climate change has increased the synchrony of surface air temperatures among 50 sites within the Greater Yellowstone Area (GYA) of the interior western United States. This important biological reserve is the largest protected area in the Lower 48 states and provides critical habitat for some of the world's most iconic wildlife. We focused our analyses on temporal shifts and shape changes in the annual distributions of seasonal minimum and maximum air temperatures among valley-bottom and higher elevation sites from 1948-2012. We documented consistent patterns of warming since 1948 at all 50 sites, with the most pronounced changes occurring during the Winter and Summer when minimum and maximum temperature distributions increased. These shifts indicate more hot temperatures and less cold temperatures would be expected across the GYA. Though the shifting statistical distributions indicate warming, little change in the shape of the temperature distributions across sites since 1948 suggest the GYA has maintained a diverse portfolio of temperatures within a year. Spatial heterogeneity in temperatures is likely maintained by the GYA's physiographic complexity and its large size, which encompasses multiple climate zones that respond differently to synoptic drivers. Having a diverse portfolio of temperatures may help biological reserves spread the extinction risk posed by climate change.
Collapse
|
11
|
Isaak DJ, Young MK, Nagel DE, Horan DL, Groce MC. The cold-water climate shield: delineating refugia for preserving salmonid fishes through the 21st century. GLOBAL CHANGE BIOLOGY 2015; 21:2540-2553. [PMID: 25728937 DOI: 10.1111/gcb.12879] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 05/13/2023]
Abstract
The distribution and future fate of ectothermic organisms in a warming world will be dictated by thermalscapes across landscapes. That is particularly true for stream fishes and cold-water species like trout, salmon, and char that are already constrained to high elevations and latitudes. The extreme climates in those environments also preclude invasions by most non-native species, so identifying especially cold habitats capable of absorbing future climate change while still supporting native populations would highlight important refugia. By coupling crowd-sourced biological datasets with high-resolution stream temperature scenarios, we delineate network refugia across >250 000 stream km in the Northern Rocky Mountains for two native salmonids-bull trout (BT) and cutthroat trout (CT). Under both moderate and extreme climate change scenarios, refugia with high probabilities of trout population occupancy (>0.9) were predicted to exist (33-68 BT refugia; 917-1425 CT refugia). Most refugia are on public lands (>90%) where few currently have protected status in National Parks or Wilderness Areas (<15%). Forecasts of refuge locations could enable protection of key watersheds and provide a foundation for climate smart planning of conservation networks. Using cold water as a 'climate shield' is generalizable to other species and geographic areas because it has a strong physiological basis, relies on nationally available geospatial data, and mines existing biological datasets. Importantly, the approach creates a framework to integrate data contributed by many individuals and resource agencies, and a process that strengthens the collaborative and social networks needed to preserve many cold-water fish populations through the 21st century.
Collapse
Affiliation(s)
- Daniel J Isaak
- Rocky Mountain Research Station, U.S. Forest Service, 322 E. Front St. Suite 401, Boise, ID, 83702, USA
| | - Michael K Young
- Rocky Mountain Research Station, U.S. Forest Service, 800 East Beckwith Avenue, Missoula, MT, 59801, USA
| | - David E Nagel
- Rocky Mountain Research Station, U.S. Forest Service, 322 E. Front St. Suite 401, Boise, ID, 83702, USA
| | - Dona L Horan
- Rocky Mountain Research Station, U.S. Forest Service, 322 E. Front St. Suite 401, Boise, ID, 83702, USA
| | - Matthew C Groce
- Rocky Mountain Research Station, U.S. Forest Service, 322 E. Front St. Suite 401, Boise, ID, 83702, USA
| |
Collapse
|
12
|
Westhoff JT, Paukert CP. Climate change simulations predict altered biotic response in a thermally heterogeneous stream system. PLoS One 2014; 9:e111438. [PMID: 25356982 PMCID: PMC4214750 DOI: 10.1371/journal.pone.0111438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/02/2014] [Indexed: 11/18/2022] Open
Abstract
Climate change is predicted to increase water temperatures in many lotic systems, but little is known about how changes in air temperature affect lotic systems heavily influenced by groundwater. Our objectives were to document spatial variation in temperature for spring-fed Ozark streams in Southern Missouri USA, create a spatially explicit model of mean daily water temperature, and use downscaled climate models to predict the number of days meeting suitable stream temperature for three aquatic species of concern to conservation and management. Longitudinal temperature transects and stationary temperature loggers were used in the Current and Jacks Fork Rivers during 2012 to determine spatial and temporal variability of water temperature. Groundwater spring influence affected river water temperatures in both winter and summer, but springs that contributed less than 5% of the main stem discharge did not affect river temperatures beyond a few hundred meters downstream. A multiple regression model using variables related to season, mean daily air temperature, and a spatial influence factor (metric to account for groundwater influence) was a strong predictor of mean daily water temperature (r2 = 0.98; RMSE = 0.82). Data from two downscaled climate simulations under the A2 emissions scenario were used to predict daily water temperatures for time steps of 1995, 2040, 2060, and 2080. By 2080, peak numbers of optimal growth temperature days for smallmouth bass are expected to shift to areas with more spring influence, largemouth bass are expected to experience more optimal growth days (21-317% increase) regardless of spring influence, and Ozark hellbenders may experience a reduction in the number of optimal growth days in areas with the highest spring influence. Our results provide a framework for assessing fine-scale (10 s m) thermal heterogeneity and predict shifts in thermal conditions at the watershed and reach scale.
Collapse
Affiliation(s)
- Jacob T. Westhoff
- Missouri Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Craig P. Paukert
- U.S. Geological Survey, Missouri Cooperative Fish and Wildlife Research Unit, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
13
|
Crozier LG, Hutchings JA. Plastic and evolutionary responses to climate change in fish. Evol Appl 2014; 7:68-87. [PMID: 24454549 PMCID: PMC3894899 DOI: 10.1111/eva.12135] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/31/2013] [Indexed: 12/14/2022] Open
Abstract
The physical and ecological 'fingerprints' of anthropogenic climate change over the past century are now well documented in many environments and taxa. We reviewed the evidence for phenotypic responses to recent climate change in fish. Changes in the timing of migration and reproduction, age at maturity, age at juvenile migration, growth, survival and fecundity were associated primarily with changes in temperature. Although these traits can evolve rapidly, only two studies attributed phenotypic changes formally to evolutionary mechanisms. The correlation-based methods most frequently employed point largely to 'fine-grained' population responses to environmental variability (i.e. rapid phenotypic changes relative to generation time), consistent with plastic mechanisms. Ultimately, many species will likely adapt to long-term warming trends overlaid on natural climate oscillations. Considering the strong plasticity in all traits studied, we recommend development and expanded use of methods capable of detecting evolutionary change, such as the long term study of selection coefficients and temporal shifts in reaction norms, and increased attention to forecasting adaptive change in response to the synergistic interactions of the multiple selection pressures likely to be associated with climate change.
Collapse
Affiliation(s)
| | - Jeffrey A Hutchings
- Department of Biology, Dalhousie University Halifax, NS, Canada ; Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo Oslo, Norway
| |
Collapse
|