1
|
Forrester R, Honkanen HM, Lilly J, Green A, Rodger JR, Shields BA, Ramsden P, Koene JP, Fletcher M, Bean CW, Adams CE. The effect of downstream translocation on Atlantic salmon Salmo salar smolt outmigration success. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39394924 DOI: 10.1111/jfb.15928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 10/14/2024]
Abstract
Trap and transport, the capture and subsequent translocation of fish during the freshwater phase of their migration, is becoming more common as a management intervention. Although the technique can be successful, it is costly and can have unintended effects on the fish being transported. This study investigates whether trap and transport can be used to increase the migration success of Atlantic salmon, Salmo salar, smolts in naturally flowing rivers. Seaward-migrating S. salar (n = 294) from two UK rivers were tracked using acoustic telemetric techniques. Outmigration success and timing were compared between non-transported (released at the original in-river capture site) and transported (released ca. 23 km downstream of the capture site) individuals. Downstream translocation increased the proportion of fish that successfully migrated to marine waters, and there was no indication that transport reduced post-release survival. The post-release migration speed of transported fish was slower than expected but this was likely a function of their advanced migration timing rather than an inhibition of their capacity to migrate. These results suggest that trap and transport can increase the outmigration success of S. salar smolts, but the earlier river exit dates of transported fish could negatively affect their survival at sea.
Collapse
Affiliation(s)
- Ruaidhri Forrester
- Scottish Centre for Ecology and the Natural Environment, School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Hannele M Honkanen
- Scottish Centre for Ecology and the Natural Environment, School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Jessie Lilly
- Scottish Centre for Ecology and the Natural Environment, School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Amy Green
- Scottish Centre for Ecology and the Natural Environment, School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Jessica R Rodger
- Scottish Centre for Ecology and the Natural Environment, School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- Atlantic Salmon Trust, Perth, UK
| | | | | | - J Peter Koene
- Scottish Centre for Ecology and the Natural Environment, School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | | | - Colin W Bean
- Scottish Centre for Ecology and the Natural Environment, School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- NatureScot, Clydebank, UK
| | - Colin E Adams
- Scottish Centre for Ecology and the Natural Environment, School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
2
|
Van Cise AM, Hanson MB, Emmons C, Olsen D, Matkin CO, Wells AH, Parsons KM. Spatial and seasonal foraging patterns drive diet differences among north Pacific resident killer whale populations. ROYAL SOCIETY OPEN SCIENCE 2024; 11:rsos240445. [PMID: 39295918 PMCID: PMC11409894 DOI: 10.1098/rsos.240445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024]
Abstract
Highly social top marine predators, including many cetaceans, exhibit culturally learned ecological behaviours such as diet preference and foraging strategy that can affect their resilience to competition or anthropogenic impacts. When these species are also endangered, conservation efforts require management strategies based on a comprehensive understanding of the variability in these behaviours. In the northeast Pacific Ocean, three partially sympatric populations of resident killer whales occupy coastal ecosystems from California to Alaska. One population (southern resident killer whales) is endangered, while another (southern Alaska resident killer whales) has exhibited positive abundance trends for the last several decades. Using 185 faecal samples collected from both populations between 2011 and 2021, we compare variability in diet preference to provide insight into differences in foraging patterns that may be linked with the relative success and decline of these populations. We find broad similarities in the diet of the two populations, with differences arising from spatiotemporal and social variability in resource use patterns, especially in the timing of shifts between target prey species. The results described here highlight the importance of comprehensive longitudinal monitoring of foraging ecology to inform management strategies for endangered, highly social top marine predators.
Collapse
Affiliation(s)
- Amy M Van Cise
- North Gulf Oceanic Society, Visiting Scientist at Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - M Bradley Hanson
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Candice Emmons
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Dan Olsen
- North Gulf Oceanic Society, Homer, AK, USA
| | | | - Abigail H Wells
- Lynker Technologies, Leesburg, VA, under contract to Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Kim M Parsons
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| |
Collapse
|
3
|
Dauphin GJR, Gillis CA, Chaput GJ. Estimating multiple years, tributary-specific, and overall Atlantic salmon smolt abundance in a large Canadian catchment using capture-mark-recapture experiments. JOURNAL OF FISH BIOLOGY 2024; 104:681-697. [PMID: 37837280 DOI: 10.1111/jfb.15586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/15/2023]
Abstract
Population monitoring of Atlantic salmon (Salmo salar L.) abundance is an essential element to understand annual stock variability and inform fisheries management processes. Smolts are the life stage marking the transition from the freshwater to the marine phase of anadromous Atlantic salmon. Estimating smolt abundance allows for subsequent inferences on freshwater and marine survival rates. Annual abundances of out-migrating Atlantic salmon smolts were estimated using Bayesian models and an 18-year capture-mark-recapture time series from two to five trapping locations within the Restigouche River (Canada) catchment. Some of the trapping locations were at the outlet of large upstream tributaries, and these sampled a portion of the total out-migrating population of smolts for the watershed, whereas others were located just above the head of tide of the Restigouche River and sampled the entire run of salmon smolts. Due to logistic and environmental conditions, not all trapping locations were operational each year. Additionally, recapture rates were relatively low (<5%), and the absolute number of recaptures was relatively few (most often a few dozen), leading to incoherent and highly uncertain estimates of tributary-specific and whole catchment abundance estimates when the data were modeled independently among trapping locations and years. Several models of increasing complexity were tested using simulated data, and the best-performing model in terms of bias and precision incorporated a hierarchical structure among years on the catchability parameters and included an explicit spatial structure to account for the annual variations in the number of sampled locations within the watershed. When the best model was applied to the Restigouche River catchment dataset, the annual smolt abundance estimates varied from 250,000 to 1 million smolts, and the subbasin estimates of abundance were consistent with the spatial structure of the monitoring programme. Ultimately, increasing the probabilities of capture and the absolute number of recaptures at the different traps will be required to improve the precision and reduce the bias of the estimates of smolt abundance for the entire basin and within subbasins of the watershed. The model and approach provide a significant improvement in the models used to date based on independent estimates of abundance by trapping location and year. Total abundance and relative production in discrete spawning, nesting, or rearing areas provide critical information to appropriately understand and manage the threats to species that can occur at subpopulation spatial scales.
Collapse
Affiliation(s)
| | - Carole-Anne Gillis
- Gespe'gewa'gi Institute of Natural Understanding, Listuguj, Québec, Canada
| | | |
Collapse
|
4
|
Swift DG, O'Leary SJ, Grubbs RD, Frazier BS, Fields AT, Gardiner JM, Drymon JM, Bethea DM, Wiley TR, Portnoy DS. Philopatry influences the genetic population structure of the blacktip shark (Carcharhinus limbatus) at multiple spatial scales. Mol Ecol 2023; 32:4953-4970. [PMID: 37566208 DOI: 10.1111/mec.17096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
Understanding how interactions among microevolutionary forces generate genetic population structure of exploited species is vital to the implementation of management policies that facilitate persistence. Philopatry displayed by many coastal shark species can impact gene flow and facilitate selection, and has direct implications for the spatial scales of management. Here, genetic structure of the blacktip shark (Carcharhinus limbatus) was examined using a mixed-marker approach employing mitochondrial control region sequences and 4339 SNP-containing loci generated using ddRAD-Seq. Genetic variation was assessed among young-of-the-year sampled in 11 sites in waters of the United States in the western North Atlantic Ocean, including the Gulf of Mexico. Spatial and environmental analyses detected 68 nuclear loci putatively under selection, enabling separate assessments of neutral and adaptive genetic structure. Both mitochondrial and neutral SNP data indicated three genetically distinct units-the Atlantic, eastern Gulf, and western Gulf-that align with regional stocks and suggest regional philopatry by males and females. Heterogeneity at loci putatively under selection, associated with temperature and salinity, was observed among sites within Gulf units, suggesting local adaptation. Furthermore, five pairs of siblings were identified in the same site across timescales corresponding with female reproductive cycles. This indicates that females re-used a site for parturition, which has the potential to facilitate the sorting of adaptive variation among neighbouring sites. The results demonstrate differential impacts of microevolutionary forces at varying spatial scales and highlight the importance of conserving essential habitats to maintain sources of adaptive variation that may buffer species against environmental change.
Collapse
Affiliation(s)
- Dominic G Swift
- Marine Genomics Laboratory, Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| | - Shannon J O'Leary
- Marine Genomics Laboratory, Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
- Department of Biology, Saint Anselm College, Manchester, New Hampshire, USA
| | - R Dean Grubbs
- Florida State University Coastal and Marine Laboratory, St. Teresa, Florida, USA
| | - Bryan S Frazier
- South Carolina Department of Natural Resources, Marine Resources Research Institute, Charleston, South Carolina, USA
| | - Andrew T Fields
- Marine Genomics Laboratory, Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| | - Jayne M Gardiner
- Division of Natural Sciences, New College of Florida, Sarasota, Florida, USA
| | - J Marcus Drymon
- Coastal Research and Extension Center, Mississippi State University, Biloxi, Mississippi, USA
- Mississippi-Alabama Sea Grant Consortium, Ocean Springs, Mississippi, USA
| | - Dana M Bethea
- NOAA Fisheries, U.S. Department of Commerce, Southeast Regional Office, Interagency Cooperation Branch, Protected Resources Division, St. Petersburg, Florida, USA
| | - Tonya R Wiley
- Havenworth Coastal Conservation, Palmetto, Florida, USA
| | - David S Portnoy
- Marine Genomics Laboratory, Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| |
Collapse
|
5
|
Shuert CR, Hussey NE, Marcoux M, Heide-Jørgensen MP, Dietz R, Auger-Méthé M. Divergent migration routes reveal contrasting energy-minimization strategies to deal with differing resource predictability. MOVEMENT ECOLOGY 2023; 11:31. [PMID: 37280701 DOI: 10.1186/s40462-023-00397-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Seasonal long-distance movements are a common feature in many taxa allowing animals to deal with seasonal habitats and life-history demands. Many species use different strategies to prioritize time- or energy-minimization, sometimes employing stop-over behaviours to offset the physiological burden of the directed movement associated with migratory behaviour. Migratory strategies are often limited by life-history and environmental constraints, but can also be modulated by the predictability of resources en route. While theory on population-wide strategies (e.g. energy-minimization) are well studied, there are increasing evidence for individual-level variation in movement patterns indicative of finer scale differences in migration strategies. METHODS We aimed to explore sources of individual variation in migration strategies for long-distance migrators using satellite telemetry location data from 41 narwhal spanning a 21-year period. Specifically, we aimed to determine and define the long-distance movement strategies adopted and how environmental variables may modulate these movements. Fine-scale movement behaviours were characterized using move-persistence models, where changes in move-persistence, highlighting autocorrelation in a movement trajectory, were evaluated against potential modulating environmental covariates. Areas of low move-persistence, indicative of area-restricted search-type behaviours, were deemed to indicate evidence of stop-overs along the migratory route. RESULTS Here, we demonstrate two divergent migratory tactics to maintain a similar overall energy-minimization strategy within a single population of narwhal. Narwhal migrating offshore exhibited more tortuous movement trajectories overall with no evidence of spatially-consistent stop-over locations across individuals. Nearshore migrating narwhal undertook more directed routes, contrasted by spatially-explicit stop-over behaviour in highly-productive fjord and canyon systems along the coast of Baffin Island for periods of several days to several weeks. CONCLUSIONS Within a single population, divergent migratory tactics can achieve a similar overall energy-minimizing strategy within a species as a response to differing trade-offs between predictable and unpredictable resources. Our methodological approach, which revealed the modulators of fine-scale migratory movements and predicted regional stop-over sites, is widely applicable to a variety of other aquatic and terrestrial species. Quantifying marine migration strategies will be key for adaptive conservation in the face of climate change and ever increasing human pressures.
Collapse
Affiliation(s)
- Courtney R Shuert
- Department of Integrative Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada.
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, MB, R3T 2N6, Canada.
| | - Nigel E Hussey
- Department of Integrative Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Marianne Marcoux
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, MB, R3T 2N6, Canada
| | | | - Rune Dietz
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Marie Auger-Méthé
- Institute for the Oceans & Fisheries, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Statistics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
6
|
Wilson SM, Moore JW, Ward EJ, Kinsel CW, Anderson JH, Buehrens TW, Carr-Harris CN, Cochran PC, Davies TD, Downen MR, Godbout L, Lisi PJ, Litz MNC, Patterson DA, Selbie DT, Sloat MR, Suring EJ, Tattam IA, Wyatt GJ. Phenological shifts and mismatch with marine productivity vary among Pacific salmon species and populations. Nat Ecol Evol 2023:10.1038/s41559-023-02057-1. [PMID: 37127767 DOI: 10.1038/s41559-023-02057-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Global climate change is shifting the timing of life-cycle events, sometimes resulting in phenological mismatches between predators and prey. Phenological shifts and subsequent mismatches may be consistent across populations, or they could vary unpredictably across populations within the same species. For anadromous Pacific salmon (Oncorhynchus spp.), juveniles from thousands of locally adapted populations migrate from diverse freshwater habitats to the Pacific Ocean every year. Both the timing of freshwater migration and ocean arrival, relative to nearshore prey (phenological match/mismatch), can control marine survival and population dynamics. Here we examined phenological change of 66 populations across six anadromous Pacific salmon species throughout their range in western North America with the longest time series spanning 1951-2019. We show that different salmon species have different rates of phenological change but that there was substantial within-species variation that was not correlated with changing environmental conditions or geographic patterns. Moreover, outmigration phenologies have not tracked shifts in the timing of marine primary productivity, potentially increasing the frequency of future phenological mismatches. Understanding population responses to mismatches with prey are an important part of characterizing overall population-specific climate vulnerability.
Collapse
Affiliation(s)
- Samantha M Wilson
- Earth to Ocean Research Group, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Jonathan W Moore
- Earth to Ocean Research Group, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Eric J Ward
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | | | | | | | - Charmaine N Carr-Harris
- Fisheries and Oceans Canada, North Coast Stock Assessment Division, Prince Rupert, British Columbia, Canada
| | | | - Trevor D Davies
- British Columbia Ministry of Forests, Fish and Wildlife Branch, Victoria, British Columbia, Canada
| | - Mark R Downen
- Washington Department of Fish and Wildlife, Olympia, WA, USA
| | - Lyse Godbout
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Peter J Lisi
- Washington Department of Fish and Wildlife, Olympia, WA, USA
| | - Marisa N C Litz
- Washington Department of Fish and Wildlife, Olympia, WA, USA
| | - David A Patterson
- Fisheries and Oceans Canada, Cooperative Resource Management Institute, School of Resource and Environmental Management Simon Fraser University, Burnaby, British Columbia, Canada
| | - Daniel T Selbie
- Fisheries and Oceans Canada, Pacific Region, Science Branch, Cultus Lake Salmon Research Laboratory, Cultus Lake, British Columbia, Canada
| | | | - Erik J Suring
- Corvallis Research Laboratory, Oregon Department of Fish and Wildlife, Corvallis, OR, USA
| | - Ian A Tattam
- East Region Fish Research, Oregon Department of Fish and Wildlife, Eastern Oregon University, La Grande, OR, USA
| | | |
Collapse
|
7
|
Ratnarajah L, Abu-Alhaija R, Atkinson A, Batten S, Bax NJ, Bernard KS, Canonico G, Cornils A, Everett JD, Grigoratou M, Ishak NHA, Johns D, Lombard F, Muxagata E, Ostle C, Pitois S, Richardson AJ, Schmidt K, Stemmann L, Swadling KM, Yang G, Yebra L. Monitoring and modelling marine zooplankton in a changing climate. Nat Commun 2023; 14:564. [PMID: 36732509 PMCID: PMC9895051 DOI: 10.1038/s41467-023-36241-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Zooplankton are major consumers of phytoplankton primary production in marine ecosystems. As such, they represent a critical link for energy and matter transfer between phytoplankton and bacterioplankton to higher trophic levels and play an important role in global biogeochemical cycles. In this Review, we discuss key responses of zooplankton to ocean warming, including shifts in phenology, range, and body size, and assess the implications to the biological carbon pump and interactions with higher trophic levels. Our synthesis highlights key knowledge gaps and geographic gaps in monitoring coverage that need to be urgently addressed. We also discuss an integrated sampling approach that combines traditional and novel techniques to improve zooplankton observation for the benefit of monitoring zooplankton populations and modelling future scenarios under global changes.
Collapse
Affiliation(s)
- Lavenia Ratnarajah
- Integrated Marine Observing System, Hobart, Tasmania, Australia. .,Global Ocean Observing System, International Oceanographic Commission, UNESCO, Paris, France.
| | - Rana Abu-Alhaija
- Cyprus Subsea Consulting and Services C.S.C.S. ltd, Lefkosia, Cyprus
| | - Angus Atkinson
- Plymouth Marine Laboratory, Prospect Place, The Hoe, PL1 3DH, Plymouth, UK
| | - Sonia Batten
- North Pacific Marine Science Organization (PICES), 9860 West Saanich Road, V8L 4B2, Sidney, BC, Canada
| | | | - Kim S Bernard
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Admin Bldg., Corvallis, OR, 97330, USA
| | - Gabrielle Canonico
- US Integrated Ocean Observing System (US IOOS), NOAA, Silver Spring, MD, USA
| | - Astrid Cornils
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Section Polar Biological Oceanography, Am Handelshafen 12, Bremerhaven, Germany
| | - Jason D Everett
- School of Mathematics and Physics, University of Queensland, St. Lucia, QLD, Australia.,CSIRO Oceans and Atmosphere, Queensland Biosciences Precinct, St Lucia, 4067, Australia.,Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Maria Grigoratou
- Gulf of Maine Research Institute, 350 Commercial St, Portland, ME, 04101, USA.,Mercator Ocean International, 2 Av. de l'Aérodrome de Montaudran, 31400, Toulouse, France
| | - Nurul Huda Ahmad Ishak
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.,Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - David Johns
- The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Fabien Lombard
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire d'Océanographie de Villefranche (LOV), Villefranche-sur-Mer, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016, Paris, France.,Institut Universitaire de France, 75231, Paris, France
| | - Erik Muxagata
- Universidade Federal de Rio Grande - FURG - Laboratório de Zooplâncton - Instituto de Oceanografia, Av. Itália, Km 8 - Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Clare Ostle
- The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Sophie Pitois
- Centre for Environment, Fisheries and Aquaculture Centre (Cefas), Pakefield Road, Lowestoft, NR330HT, UK
| | - Anthony J Richardson
- School of Mathematics and Physics, University of Queensland, St. Lucia, QLD, Australia.,CSIRO Oceans and Atmosphere, Queensland Biosciences Precinct, St Lucia, 4067, Australia
| | - Katrin Schmidt
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Lars Stemmann
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire d'Océanographie de Villefranche (LOV), Villefranche-sur-Mer, France
| | - Kerrie M Swadling
- Institute for Marine and Antarctic Studies & Australian Antarctic Program Partnership, University of Tasmania, Hobart, Tasmania, Australia
| | - Guang Yang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China
| | - Lidia Yebra
- Centro Oceanográfico de Málaga (IEO, CSIC), Puerto Pesquero s/n, 29640, Fuengirola, Spain
| |
Collapse
|
8
|
Decadal migration phenology of a long-lived Arctic icon keeps pace with climate change. Proc Natl Acad Sci U S A 2022; 119:e2121092119. [PMID: 36279424 PMCID: PMC9659343 DOI: 10.1073/pnas.2121092119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animals migrate in response to seasonal environments, to reproduce, to benefit from resource pulses, or to avoid fluctuating hazards. Although climate change is predicted to modify migration, only a few studies to date have demonstrated phenological shifts in marine mammals. In the Arctic, marine mammals are considered among the most sensitive to ongoing climate change due to their narrow habitat preferences and long life spans. Longevity may prove an obstacle for species to evolutionarily respond. For species that exhibit high site fidelity and strong associations with migration routes, adjusting the timing of migration is one of the few recourses available to respond to a changing climate. Here, we demonstrate evidence of significant delays in the timing of narwhal autumn migrations with satellite tracking data spanning 21 y from the Canadian Arctic. Measures of migration phenology varied annually and were explained by sex and climate drivers associated with ice conditions, suggesting that narwhals are adopting strategic migration tactics. Male narwhals were found to lead the migration out of the summering areas, while females, potentially with dependent young, departed later. Narwhals are remaining longer in their summer areas at a rate of 10 d per decade, a similar rate to that observed for climate-driven sea ice loss across the region. The consequences of altered space use and timing have yet to be evaluated but will expose individuals to increasing natural changes and anthropogenic activities on the summering areas.
Collapse
|
9
|
Ganley LC, Byrnes J, Pendleton DE, Mayo CA, Friedland KD, Redfern JV, Turner JT, Brault S. Effects of changing temperature phenology on the abundance of a critically endangered baleen whale. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
10
|
Stenløkk K, Saitou M, Rud-Johansen L, Nome T, Moser M, Árnyasi M, Kent M, Barson NJ, Lien S. The emergence of supergenes from inversions in Atlantic salmon. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210195. [PMID: 35694753 PMCID: PMC9189505 DOI: 10.1098/rstb.2021.0195] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
Supergenes link allelic combinations into non-recombining units known to play an essential role in maintaining adaptive genetic variation. However, because supergenes can be maintained over millions of years by balancing selection and typically exhibit strong recombination suppression, both the underlying functional variants and how the supergenes are formed are largely unknown. Particularly, questions remain over the importance of inversion breakpoint sequences and whether supergenes capture pre-existing adaptive variation or accumulate this following recombination suppression. To investigate the process of supergene formation, we identified inversion polymorphisms in Atlantic salmon by assembling eleven genomes with nanopore long-read sequencing technology. A genome assembly from the sister species, brown trout, was used to determine the standard state of the inversions. We found evidence for adaptive variation through genotype-environment associations, but not for the accumulation of deleterious mutations. One young 3 Mb inversion segregating in North American populations has captured adaptive variation that is still segregating within the standard arrangement of the inversion, while some adaptive variation has accumulated after the inversion. This inversion and two others had breakpoints disrupting genes. Three multigene inversions with matched repeat structures at the breakpoints did not show any supergene signatures, suggesting that shared breakpoint repeats may obstruct supergene formation. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Kristina Stenløkk
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Marie Saitou
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Live Rud-Johansen
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Torfinn Nome
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Michel Moser
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Mariann Árnyasi
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Matthew Kent
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Nicola Jane Barson
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| |
Collapse
|
11
|
Pendleton DE, Tingley MW, Ganley LC, Friedland KD, Mayo C, Brown MW, McKenna BE, Jordaan A, Staudinger MD. Decadal-scale phenology and seasonal climate drivers of migratory baleen whales in a rapidly warming marine ecosystem. GLOBAL CHANGE BIOLOGY 2022; 28:4989-5005. [PMID: 35672922 PMCID: PMC9541444 DOI: 10.1111/gcb.16225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Species' response to rapid climate change can be measured through shifts in timing of recurring biological events, known as phenology. The Gulf of Maine is one of the most rapidly warming regions of the ocean, and thus an ideal system to study phenological and biological responses to climate change. A better understanding of climate-induced changes in phenology is needed to effectively and adaptively manage human-wildlife conflicts. Using data from a 20+ year marine mammal observation program, we tested the hypothesis that the phenology of large whale habitat use in Cape Cod Bay has changed and is related to regional-scale shifts in the thermal onset of spring. We used a multi-season occupancy model to measure phenological shifts and evaluate trends in the date of peak habitat use for North Atlantic right (Eubalaena glacialis), humpback (Megaptera novaeangliae), and fin (Balaenoptera physalus) whales. The date of peak habitat use shifted by +18.1 days (0.90 days/year) for right whales and +19.1 days (0.96 days/year) for humpback whales. We then evaluated interannual variability in peak habitat use relative to thermal spring transition dates (STD), and hypothesized that right whales, as planktivorous specialist feeders, would exhibit a stronger response to thermal phenology than fin and humpback whales, which are more generalist piscivorous feeders. There was a significant negative effect of western region STD on right whale habitat use, and a significant positive effect of eastern region STD on fin whale habitat use indicating differential responses to spatial seasonal conditions. Protections for threatened and endangered whales have been designed to align with expected phenology of habitat use. Our results show that whales are becoming mismatched with static seasonal management measures through shifts in their timing of habitat use, and they suggest that effective management strategies may need to alter protections as species adapt to climate change.
Collapse
Affiliation(s)
- Daniel E. Pendleton
- Anderson Cabot Center for Ocean LifeNew England AquariumBostonMassachusettsUSA
| | - Morgan W. Tingley
- Ecology and Evolutionary BiologyUniversity of California – Los AngelesLos AngelesCaliforniaUSA
| | - Laura C. Ganley
- Anderson Cabot Center for Ocean LifeNew England AquariumBostonMassachusettsUSA
| | | | - Charles Mayo
- Center for Coastal StudiesProvincetownMassachusettsUSA
| | | | | | - Adrian Jordaan
- Department of Environmental ConservationUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Michelle D. Staudinger
- Department of Environmental ConservationUniversity of Massachusetts AmherstAmherstMassachusettsUSA
- U.S. Geological SurveyDepartment of the Interior Northeast Climate Adaptation Science CenterAmherstMassachusettsUSA
| |
Collapse
|
12
|
Niemelä PT, Klemme I, Karvonen A, Hyvärinen P, Debes PV, Erkinaro J, Sinclair-Waters M, Pritchard VL, Härkönen LS, Primmer CR. Life-history genotype explains variation in migration activity in Atlantic salmon ( Salmo salar). Proc Biol Sci 2022; 289:20220851. [PMID: 35858058 PMCID: PMC9277231 DOI: 10.1098/rspb.2022.0851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One of the most well-known life-history continuums is the fast-slow axis, where 'fast' individuals mature earlier than 'slow' individuals. 'Fast' individuals are predicted to be more active than 'slow' individuals because high activity is required to maintain a fast life-history strategy. Recent meta-analyses revealed mixed evidence for such integration. Here, we test whether known life-history genotypes differ in activity expression by using Atlantic salmon (Salmo salar) as a model. In salmon, variation in Vgll3, a transcription cofactor, explains approximately 40% of variation in maturation timing. We predicted that the allele related to early maturation (vgll3*E) would be associated with higher activity. We used an automated surveillance system to follow approximately 1900 juveniles including both migrants and non-migrants (i.e. smolt and parr fish, respectively) in semi-natural conditions over 31 days (approx. 580 000 activity measurements). In migrants, but not in non-migrants, vgll3 explained variation in activity according to our prediction in a sex-dependent manner. Specifically, in females the vgll3*E allele was related to increasing activity, whereas in males the vgll3*L allele (later maturation allele) was related to increasing activity. These sex-dependent effects might be a mechanism maintaining within-population genetic life-history variation.
Collapse
Affiliation(s)
- Petri T. Niemelä
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ines Klemme
- Department of Biological and Environmental Science, University of Jyvaskyla, PO Box 35, 40014 Jyvaskyla, Finland
| | - Anssi Karvonen
- Department of Biological and Environmental Science, University of Jyvaskyla, PO Box 35, 40014 Jyvaskyla, Finland
| | - Pekka Hyvärinen
- Natural Resources Institute Finland (Luke), Migratory fish and regulated rivers, Manamansalontie 90, 88300 Paltamo, Finland
| | - Paul V. Debes
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland,Institue of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland,Department of Aquaculture and Fish Biology, Hólar University, Háeyri 1, 550 Sauðárkrókur, Hólar, Iceland
| | - Jaakko Erkinaro
- Natural Resources Institute Finland (Luke), Migratory fish and regulated rivers, Paavo Havaksen tie 3, 90570 Oulu, Finland
| | - Marion Sinclair-Waters
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Victoria L. Pritchard
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland,Rivers and Lochs Institute, Inverness College, University of the Highlands and Islands, Inverness, UK
| | - Laura S. Härkönen
- Natural Resources Institute Finland (Luke), Migratory fish and regulated rivers, Manamansalontie 90, 88300 Paltamo, Finland,Natural Resources Institute Finland (Luke), Migratory fish and regulated rivers, Paavo Havaksen tie 3, 90570 Oulu, Finland
| | - Craig R. Primmer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland,Institue of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
de Eyto E, Kelly S, Rogan G, French A, Cooney J, Murphy M, Nixon P, Hughes P, Sweeney D, McGinnity P, Dillane M, Poole R. Decadal Trends in the Migration Phenology of Diadromous Fishes Native to the Burrishoole Catchment, Ireland. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.915854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Migration is an important ecological trait that allows animals to exploit resources in different habitats, obtaining extra energy for growth and reproduction. The phenology (or timing) of migration is a highly heritable trait, but is also controlled by environmental factors. Numerous studies have reported the advancement of species life-events with climate change, but the rate and significance of such advancement is likely to be species specific, spatially variable and dependent on interactions with population and ecosystem changes. This is particularly true for diadromous fishes which are sentinels of change in both freshwater and marine domains, and are subject to considerable multiple stressors including overfishing and habitat degradation. Here, we describe trends in the migration phenology of three native Irish migratory fishes over half a century, Atlantic salmon (Salmo salar), brown trout (Salmo trutta) and European eel (Anguilla anguilla). The trends were derived from daily counts of 745,263 fish moving upstream and downstream through the fish traps of the Burrishoole catchment, an internationally important monitoring infrastructure allowing a full census of migrating fish. We found that the start of the seaward migration of eel has advanced by one month since 1970. The commencement of the salmon smolt migration has advanced by one week, although the rest of the migration, and the entirety of the trout smolt run has remained stable. The beginning of the upstream migration of trout to freshwater has advanced by 20 days, while the end of the run is more than one month later than in the 1970’s. The greatest phenological shift has been in the upstream migration of adult salmon, with at least half of migrating fish returning between one and two months earlier from the marine environment compared to the 1970’s. The earlier return of these salmon is coincident with reduced marine survival and decreasing body size, indicating considerable oceanic challenges for this species. Our results demonstrate that the impacts of climate change on the phenology of diadromous fish are context-dependent and may interact with other factors. The mobilization of long-term datasets are crucial to parse the ecological impacts of climate change from other anthropogenic stresses.
Collapse
|
14
|
Cotter D, Vaughan L, Bond N, Dillane M, Duncan R, Poole R, Rogan G, Ó Maoiléidigh N. Long-term changes and effects of significant fishery closures on marine survival and biological characteristics of wild and hatchery-reared Atlantic salmon Salmo salar. JOURNAL OF FISH BIOLOGY 2022; 101:128-143. [PMID: 35514226 DOI: 10.1111/jfb.15078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Long-term data, over four decades, were analysed to examine temporal trends in survival indices and phenotypic characteristics of Atlantic salmon Salmo salar returning to the Burrishoole national salmonid monitored river in Ireland. Before 2007, the marine drift net fishery was the major capture method for salmon in Irish home waters, accounting for over 70% of the commercial catch and targeting mixed stocks from multiple rivers. The authors examined size differences in fish captured in marine and freshwater environments and the impact of closure of this fishery on long-term survival indices and fish size. Return rates to Irish home waters for wild one sea-winter (1SW) and a ranching strain of hatchery-reared 1SW Atlantic salmon stocks showed a declining trend up to the time of closure of the fishery (1985-2006). In contrast, closure of the drift net fishery resulted in the anticipated increase in return rate to fresh water in the short term. Nonetheless, the short-term upward trend was not sustained in the following years: the trend for return rate to fresh water (1985-2017) was found to be neither increasing nor decreasing. Mean return rates to fresh water 10 years pre- and post-closure of the drift net fishery increased from 7.4% to 8.5% for wild 1SW and significantly from 2.4% to 3.7% for ranched 1SW suggesting some benefit had accrued as a consequence of drift net closure. For ranched 1SW salmon, entry into fresh water was found to be occurring earlier, which is likely a phenotypical response to changing climatic conditions. A declining trend in fish length was found in the pre-closure period, followed by a more stable trend post-closure. Similar patterns were observed for fish condition and weight parameters. Significantly, a step change in fish size occurred just before the closure of the Irish drift net fishery in both marine and freshwater habitats, when the average length decreased by 3.8 and 4.6 cm, respectively, between 2005 and 2006. This suggests an environmental effect on the population, rather than a fishery closure effect. Similar trends in fish length were observed in wild 1SW salmon kelts and ranched 2SW salmon in fresh water. The stable but not increasing trends post-closure suggest that conditions at sea may not be improving. These findings show that a clear decline occurred in wild and ranched salmon populations' return rates and lengths, while the drift net fishery was still active. Closure of the fishery did not result in a rebound to pre-exploitation levels of these indicators. Nonetheless, the trends went from declining to stable, suggesting the closure helped mitigate the impact of unfavourable environmental and rearing habitat conditions. These findings, based on four decades of data, highlight the urgency of strengthening monitoring of fisheries populations in face of climate change, so as to guide precautionary management measures that, as this study suggests, may be able to mitigate its impacts.
Collapse
Affiliation(s)
- Deirdre Cotter
- Marine Institute, Furnace, Newport, County Mayo, Ireland
| | - Louise Vaughan
- Marine Institute, Furnace, Newport, County Mayo, Ireland
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Galway, Ireland
| | - Nigel Bond
- Marine Institute, Furnace, Newport, County Mayo, Ireland
| | - Mary Dillane
- Marine Institute, Furnace, Newport, County Mayo, Ireland
| | - Roxanne Duncan
- Marine Institute, Furnace, Newport, County Mayo, Ireland
| | - Russell Poole
- Marine Institute, Furnace, Newport, County Mayo, Ireland
| | - Gerard Rogan
- Marine Institute, Furnace, Newport, County Mayo, Ireland
| | | |
Collapse
|
15
|
Klemme I, Debes PV, Primmer CR, Härkönen LS, Erkinaro J, Hyvärinen P, Karvonen A. Host developmental stage effects on parasite resistance and tolerance. Am Nat 2022; 200:646-661. [DOI: 10.1086/721159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Vollset KW, Urdal K, Utne K, Thorstad EB, Sægrov H, Raunsgard A, Skagseth Ø, Lennox RJ, Østborg GM, Ugedal O, Jensen AJ, Bolstad GH, Fiske P. Ecological regime shift in the Northeast Atlantic Ocean revealed from the unprecedented reduction in marine growth of Atlantic salmon. SCIENCE ADVANCES 2022; 8:eabk2542. [PMID: 35245115 PMCID: PMC8896796 DOI: 10.1126/sciadv.abk2542] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Ecological regime shifts are abrupt changes in the structure and function of ecosystems that persist over time, but evidence of contemporary regime shifts are rare. Historical scale data from 52,384 individual wild Atlantic salmon caught in 180 rivers from 1989 to 2017 reveal that growth of Atlantic salmon across the Northeast Atlantic Ocean abruptly decreased following the year 2004. At the same time, the proportion of early maturing Atlantic salmon decreased. These changes occurred after a marked decrease in the extent of Arctic water in the Norwegian Sea, a subsequent warming of spring water temperature before Atlantic salmon entering the sea, and an approximately 50% reduction of zooplankton across large geographic areas of the Northeast Atlantic Ocean. A sudden decrease in growth was also observed among Atlantic mackerel in the Norwegian Sea. Our results point toward an ecosystem-scale regime shift in the Northeast Atlantic Ocean.
Collapse
Affiliation(s)
- Knut Wiik Vollset
- Norwegian Research Centre (NORCE), Laboratory for Freshwater Ecology and Inland Fisheries, 5008 Bergen, Norway
| | - Kurt Urdal
- Rådgivende Biologer AS, 5059 Bergen, Norway
| | - Kjell Utne
- Institute of Marine Research, 5817 Bergen, Norway
| | - Eva B. Thorstad
- Norwegian Institute for Nature Research (NINA), 7485 Trondheim, Norway
| | | | - Astrid Raunsgard
- Norwegian Institute for Nature Research (NINA), 7485 Trondheim, Norway
| | | | - Robert J. Lennox
- Norwegian Research Centre (NORCE), Laboratory for Freshwater Ecology and Inland Fisheries, 5008 Bergen, Norway
- Norwegian Institute for Nature Research (NINA), 7485 Trondheim, Norway
| | - Gunnel M. Østborg
- Norwegian Institute for Nature Research (NINA), 7485 Trondheim, Norway
| | - Ola Ugedal
- Norwegian Institute for Nature Research (NINA), 7485 Trondheim, Norway
| | - Arne J. Jensen
- Norwegian Institute for Nature Research (NINA), 7485 Trondheim, Norway
| | - Geir H. Bolstad
- Norwegian Institute for Nature Research (NINA), 7485 Trondheim, Norway
| | - Peder Fiske
- Norwegian Institute for Nature Research (NINA), 7485 Trondheim, Norway
| |
Collapse
|
17
|
Waldman JR, Quinn TP. North American diadromous fishes: Drivers of decline and potential for recovery in the Anthropocene. SCIENCE ADVANCES 2022; 8:eabl5486. [PMID: 35089793 PMCID: PMC8797777 DOI: 10.1126/sciadv.abl5486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Diadromous fishes migrate between freshwater and marine habitats to complete their life cycle, a complexity that makes them vulnerable to the adverse effects of current and past human activities on land and in the oceans. Many North American species are critically endangered, and entire populations have been lost. Major factors driving declines include overfishing, pollution, water withdrawals, aquaculture, non-native species, habitat degradation, over-zealous application of hatcheries designed to mitigate effects of other factors, and effects of climate change. Perhaps, the most broadly tractable and effective factors affecting diadromous fishes are removals of the dams that prevent or hinder their migrations, alter their environment, and often favor non-native biotic communities. Future survival of many diadromous fish populations may depend on this.
Collapse
Affiliation(s)
- John R. Waldman
- Queens College and Graduate School, City University of New York, New York, NY, USA
- Corresponding author.
| | | |
Collapse
|
18
|
Arevalo E, Maire A, Tétard S, Prévost E, Lange F, Marchand F, Josset Q, Drouineau H. Does global change increase the risk of maladaptation of Atlantic salmon migration through joint modifications of river temperature and discharge? Proc Biol Sci 2021; 288:20211882. [PMID: 34875197 PMCID: PMC8651411 DOI: 10.1098/rspb.2021.1882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In freshwater ecosystems, water temperature and discharge are two intrinsically associated triggers of key events in the life cycle of aquatic organisms such as the migration of diadromous fishes. However, global changes have already profoundly altered the thermal and hydrological regimes of rivers, affecting the timing of fish migration as well as the environmental conditions under which it occurs. In this study, we focused on Atlantic salmon (Salmo salar), an iconic diadromous species whose individuals migrate between marine nursery areas and continental spawning grounds. An innovative multivariate method was developed to analyse long-term datasets of daily water temperature, discharge and both salmon juvenile downstream and adult upstream migrations in three French rivers (the Bresle, Oir and Nivelle rivers). While all three rivers have gradually warmed over the last 35 years, changes in discharge have been very heterogeneous. Juveniles more frequently used warmer temperatures to migrate. Adults migrating a few weeks before spawning more frequently used warm temperatures associated with high discharges. This has already led to modifications in preferential niches of both life stages and suggests a potential mismatch between these populations' ecological preference and changes in their local environment due to global change.
Collapse
Affiliation(s)
- Elorri Arevalo
- INRAE, Unité EABX-Écosystèmes Aquatiques et Changements Globaux, HYNES (Irstea-EDF R&D), 50 avenue de Verdun, 33612 Cestas Cedex, France
| | - Anthony Maire
- EDF Recherche et Développement, Laboratoire National d'Hydraulique et Environnement, HYNES (Irstea-EDF R&D), 6 quai Watier, 78401 Chatou Cedex, France
| | - Stéphane Tétard
- ICEO Environnement, 220 rue des Ailes, 85440 Talmont-Saint-Hilaire, France
| | - Etienne Prévost
- Université de Pau et des Pays de l'Adour, e2s UPPA, INRAE, ECOBIOP, Saint-Pée-sur-Nivelle, France
| | - Frédéric Lange
- Université de Pau et des Pays de l'Adour, e2s UPPA, INRAE, ECOBIOP, Saint-Pée-sur-Nivelle, France
| | - Frédéric Marchand
- INRAE, Unité Expérimentale d'Écologie et d'Écotoxicologie Aquatique, 65, rue de Saint-Brieuc, 35042 Rennes CEDEX, France
| | - Quentin Josset
- UMR BOREA 7208, Muséum National D'Histoire Naturelle, Service des Stations Marines, 35800 Dinard, France.,MIAME - Management of Diadromous Fish in their Environment, OFB, INRAE, Institut Agro, UNIV PAU & PAYS ADOUR/E2S UPPA, Rennes, France.,Office Français de la Biodiversité, Direction Recherche et Appui Scientifique, Rue des Fontaines, 76260 Eu, France
| | - Hilaire Drouineau
- INRAE, Unité EABX-Écosystèmes Aquatiques et Changements Globaux, HYNES (Irstea-EDF R&D), 50 avenue de Verdun, 33612 Cestas Cedex, France
| |
Collapse
|
19
|
Hierarchical genetic structure and implications for conservation of the world's largest salmonid, Hucho taimen. Sci Rep 2021; 11:20508. [PMID: 34654859 PMCID: PMC8520000 DOI: 10.1038/s41598-021-99530-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/20/2021] [Indexed: 11/09/2022] Open
Abstract
Population genetic analyses can evaluate how evolutionary processes shape diversity and inform conservation and management of imperiled species. Taimen (Hucho taimen), the world’s largest freshwater salmonid, is threatened, endangered, or extirpated across much of its range due to anthropogenic activity including overfishing and habitat degradation. We generated genetic data using high throughput sequencing of reduced representation libraries for taimen from multiple drainages in Mongolia and Russia. Nucleotide diversity estimates were within the range documented in other salmonids, suggesting moderate diversity despite widespread population declines. Similar to other recent studies, our analyses revealed pronounced differentiation among the Arctic (Selenge) and Pacific (Amur and Tugur) drainages, suggesting historical isolation among these systems. However, we found evidence for finer-scale structure within the Pacific drainages, including unexpected differentiation between tributaries and the mainstem of the Tugur River. Differentiation across the Amur and Tugur basins together with coalescent-based demographic modeling suggests the ancestors of Tugur tributary taimen likely diverged in the eastern Amur basin, prior to eventual colonization of the Tugur basin. Our results suggest the potential for differentiation of taimen at different geographic scales, and suggest more thorough geographic and genomic sampling may be needed to inform conservation and management of this iconic salmonid.
Collapse
|
20
|
Vollset KW, Lennox RJ, Lamberg A, Skaala Ø, Sandvik AD, Sægrov H, Kvingedal E, Kristensen T, Jensen AJ, Haraldstad T, Barlaup BT, Ugedal O. Predicting the nationwide outmigration timing of Atlantic salmon (
Salmo salar
) smolts along 12 degrees of latitude in Norway. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Knut Wiik Vollset
- Laboratory for Freshwater Ecology and Inland Fisheries at NORCE Norwegian Research Centre Bergen Norway
| | - Robert J. Lennox
- Laboratory for Freshwater Ecology and Inland Fisheries at NORCE Norwegian Research Centre Bergen Norway
| | | | | | | | | | - Eli Kvingedal
- Norwegian Institute for Nature Research (NINA) Trondheim Norway
| | | | | | | | - Bjørn Torgeir Barlaup
- Laboratory for Freshwater Ecology and Inland Fisheries at NORCE Norwegian Research Centre Bergen Norway
| | - Ola Ugedal
- Norwegian Institute for Nature Research (NINA) Trondheim Norway
| |
Collapse
|
21
|
Birnie-Gauvin K, Bordeleau X, Cooke SJ, Davidsen JG, Eldøy SH, Eliason EJ, Moore A, Aarestrup K. Life-history strategies in salmonids: the role of physiology and its consequences. Biol Rev Camb Philos Soc 2021; 96:2304-2320. [PMID: 34043292 DOI: 10.1111/brv.12753] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 01/02/2023]
Abstract
Salmonids are some of the most widely studied species of fish worldwide. They span freshwater rivers and lakes to fjords and oceans; they include short- and long-distance anadromous migrants, as well as partially migratory and non-migratory populations; and exhibit both semelparous and iteroparous reproduction. Salmonid life-history strategies represent some of the most diverse on the planet. For this reason, salmonids provide an especially interesting model to study the drivers of these different life-history pathways. Over the past few decades, numerous studies and reviews have been published, although most have focused on ultimate considerations where expected reproductive success of different developmental or life-history strategies are compared. Those that considered proximate causes generally focused on genetics or the environment, with less consideration of physiology. Our objective was therefore to review the existing literature on the role of physiology as a proximate driver for life-history strategies in salmonids. This link is necessary to explore since physiology is at the core of biological processes influencing energy acquisition and allocation. Energy acquisition and allocation processes, in turn, can affect life histories. We find that life-history strategies are driven by a range of physiological processes, ranging from metabolism and nutritional status to endocrinology. Our review revealed that the role of these physiological processes can vary across species and individuals depending on the life-history decision(s) to be made. In addition, while findings sometimes vary by species, results appear to be consistent in species with similar life cycles. We conclude that despite much work having been conducted on the topic, the study of physiology and its role in determining life-history strategies in salmonids remains somewhat unexplored, particularly for char and trout (excluding brown trout) species. Understanding these mechanistic links is necessary if we are to understand adequately how changing environments will impact salmonid populations.
Collapse
Affiliation(s)
- Kim Birnie-Gauvin
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, Silkeborg, 8600, Denmark
| | - Xavier Bordeleau
- Department of Fisheries and Oceans Canada, Maurice Lamontagne Institute, 850 route de la Mer, Mont-Joli, QC, G5H 3Z4, Canada
| | - Steven J Cooke
- Department of Biology & Institute of Environmental and Interdisciplinary Sciences, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6, Canada
| | - Jan G Davidsen
- NTNU University Museum, Norwegian University of Science and Technology, Høgskoleringen 1, Trondheim, 7491, Norway
| | - Sindre H Eldøy
- NTNU University Museum, Norwegian University of Science and Technology, Høgskoleringen 1, Trondheim, 7491, Norway
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, California, UCSB Marine Science Institute, Building 520, Santa Barbara, CA, 93106-6150, U.S.A
| | - Andy Moore
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk, NR33 0HT, U.K
| | - Kim Aarestrup
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, Silkeborg, 8600, Denmark
| |
Collapse
|
22
|
Synchrony and multimodality in the timing of Atlantic salmon smolt migration in two Norwegian fjords. Sci Rep 2021; 11:6504. [PMID: 33753812 PMCID: PMC7985142 DOI: 10.1038/s41598-021-85941-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/08/2021] [Indexed: 11/23/2022] Open
Abstract
The timing of the smolt migration of Atlantic salmon (Salmo salar) is a phenological trait increasingly important to the fitness of this species. Understanding when and how smolts migrate to the sea is crucial to understanding how salmon populations will be affected by both climate change and the elevated salmon lice concentrations produced by salmon farms. Here, acoustic telemetry was used to monitor the fjord migration of wild post-smolts from four rivers across two fjord systems in western Norway. Smolts began their migration throughout the month of May in all populations. Within-population, the timing of migration was multimodal with peaks in migration determined by the timing of spring floods. As a result, migrations were synchronized across populations with similar hydrology. There was little indication that the timing of migration had an impact on survival from the river mouth to the outer fjord. However, populations with longer fjord migrations experienced lower survival rates and had higher variance in fjord residency times. Explicit consideration of the multimodality inherent to the timing of smolt migration in these populations may help predict when smolts are in the fjord, as these modes seem predictable from available environmental data.
Collapse
|
23
|
Crozier LG, Burke BJ, Chasco BE, Widener DL, Zabel RW. Climate change threatens Chinook salmon throughout their life cycle. Commun Biol 2021; 4:222. [PMID: 33603119 PMCID: PMC7892847 DOI: 10.1038/s42003-021-01734-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/03/2020] [Indexed: 11/09/2022] Open
Abstract
Widespread declines in Atlantic and Pacific salmon (Salmo salar and Oncorhynchus spp.) have tracked recent climate changes, but managers still lack quantitative projections of the viability of any individual population in response to future climate change. To address this gap, we assembled a vast database of survival and other data for eight wild populations of threatened Chinook salmon (O. tshawytscha). For each population, we evaluated climate impacts at all life stages and modeled future trajectories forced by global climate model projections. Populations rapidly declined in response to increasing sea surface temperatures and other factors across diverse model assumptions and climate scenarios. Strong density dependence limited the number of salmon that survived early life stages, suggesting a potentially efficacious target for conservation effort. Other solutions require a better understanding of the factors that limit survival at sea. We conclude that dramatic increases in smolt survival are needed to overcome the negative impacts of climate change for this threatened species.
Collapse
Affiliation(s)
- Lisa G Crozier
- Fish Ecology Division, Northwest Fisheries Science Center National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA.
| | - Brian J Burke
- Fish Ecology Division, Northwest Fisheries Science Center National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Brandon E Chasco
- Fish Ecology Division, Northwest Fisheries Science Center National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Daniel L Widener
- Ocean Associates, Inc. Under contract to Northwest Fisheries Science Center National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Richard W Zabel
- Fish Ecology Division, Northwest Fisheries Science Center National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| |
Collapse
|
24
|
Arevalo E, Lassalle G, Tétard S, Maire A, Sauquet E, Lambert P, Paumier A, Villeneuve B, Drouineau H. An innovative bivariate approach to detect joint temporal trends in environmental conditions: Application to large French rivers and diadromous fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141260. [PMID: 32805565 DOI: 10.1016/j.scitotenv.2020.141260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Most key life-events of organisms are synchronized by complex interactions of several environmental cues to ensure optimal survival and growth of individuals and their offspring. However, global change is known to affect multiple components of ecosystems and cues at the same time. Therefore, detecting joint trends in covariate time series is a crucial challenge in global change ecology that has rarely been addressed so far. In this context, we designed an innovative combination of kernel density estimations and Mann-Kendall trend tests to detect joint temporal trends in a pair of environmental variables. This methodological framework was tested on >30 years (1976-2019) of water temperature and discharge data for 6 large French rivers (the Garonne, Dordogne, Rhône, Rhine, Loire and Vienne rivers). The implications of such trends in both temperature and discharge for diadromous species key life-cycle processes were then explored by checking if significant bivariate environmental changes occurred during seasons of upstream and downstream migration, and reproductive activities. Results were contrasted between rivers and seasons: many rivers displayed an increase in the number of days with high water temperature and low river discharge, but local discharge regulation measures could have mitigated the trend in discharge. Our findings showed that species migrating or spawning in spring were likely to be strongly impacted by the new environmental conditions in the Garonne, Loire and Rhône rivers, given the marked changes in water temperature and discharge associations detected by our new method. Conditions experienced by fall-running and spawning species have been strongly affected in all the rivers studied. This innovative methodology was implemented in a new R package, ChocR, for application to other environments and ecosystems.
Collapse
Affiliation(s)
- Elorri Arevalo
- INRAE, Unité EABX - Écosystèmes Aquatiques et Changements Globaux, HYNES (Irstea-EDF R&D), 50 avenue de Verdun, 33612 Cestas Cedex, France.
| | - Géraldine Lassalle
- INRAE, Unité EABX - Écosystèmes Aquatiques et Changements Globaux, HYNES (Irstea-EDF R&D), 50 avenue de Verdun, 33612 Cestas Cedex, France
| | - Stéphane Tétard
- EDF R&D LNHE - Laboratoire National d'Hydraulique et Environnement, HYNES (Irstea-EDF R&D), 6 quai Watier, 78401 Chatou Cedex, France
| | - Anthony Maire
- EDF R&D LNHE - Laboratoire National d'Hydraulique et Environnement, HYNES (Irstea-EDF R&D), 6 quai Watier, 78401 Chatou Cedex, France
| | - Eric Sauquet
- INRAE, Unité RiverLy, 5 Rue de la Doua CS20244, 69625 Villeurbanne Cedex, France
| | - Patrick Lambert
- INRAE, Unité EABX - Écosystèmes Aquatiques et Changements Globaux, HYNES (Irstea-EDF R&D), 50 avenue de Verdun, 33612 Cestas Cedex, France
| | - Alexis Paumier
- INRAE, Unité EABX - Écosystèmes Aquatiques et Changements Globaux, HYNES (Irstea-EDF R&D), 50 avenue de Verdun, 33612 Cestas Cedex, France
| | - Bertrand Villeneuve
- INRAE, Unité EABX - Écosystèmes Aquatiques et Changements Globaux, HYNES (Irstea-EDF R&D), 50 avenue de Verdun, 33612 Cestas Cedex, France
| | - Hilaire Drouineau
- INRAE, Unité EABX - Écosystèmes Aquatiques et Changements Globaux, HYNES (Irstea-EDF R&D), 50 avenue de Verdun, 33612 Cestas Cedex, France
| |
Collapse
|
25
|
A large wild salmon stock shows genetic and life history differentiation within, but not between, rivers. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01317-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractAnadromous salmonid fishes frequently exhibit strong geographic population structuring. However, population genetic differentiation of Atlantic salmon (Salmo salar) at fine geographic scales differs across equivalent spatial extents in different regions. So far, fine-scale genetic differentiation has not been assessed in rivers of the Baltic Sea, a region that contains an evolutionarily distinct Atlantic salmon lineage. Thus, Baltic salmon are currently managed on the river level, without focus on potential genetic structure and diversity within rivers. Here, we used microsatellites to characterize the genetic structure of wild juvenile salmon sampled throughout the interconnected, northern Baltic Tornio and Kalix Rivers. We found genetic differentiation within the two rivers, but not between them: salmon in the upper reaches differed from individuals in the lower reaches, regardless of river system. Further, examining smolts migrating from the river to the sea and adults returning from the sea to spawn, we found an association between the genetic structure and seasonal migration timing. Out-migrating smolts genetically assigned to upper river reaches were older and tended to reach the sea later in the season than smolts from the lower reaches. In contrast, mature adults originating from the upper reaches returned to the river early in the season. Our observation of genetic population structuring between downstream and upstream reaches of the large Tornio and Kalix rivers, and its association with migration timing, implies that careful temporal management of the northern Baltic fisheries would help to preserve the diversity and sustainability of the wild salmon stocks of these rivers.
Collapse
|
26
|
Increasing temperatures accentuate negative fitness consequences of a marine parasite. Sci Rep 2020; 10:18467. [PMID: 33116171 PMCID: PMC7595087 DOI: 10.1038/s41598-020-74948-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/07/2020] [Indexed: 12/31/2022] Open
Abstract
Infectious diseases are key drivers of wildlife populations and agriculture production, but whether and how climate change will influence disease impacts remains controversial. One of the critical knowledge gaps that prevents resolution of this controversy is a lack of high-quality experimental data, especially in marine systems of significant ecological and economic consequence. Here, we performed a manipulative experiment in which we tested the temperature-dependent effects on Atlantic salmon (Salmo salar) of sea lice (Lepeophtheirus salmonis)—a parasite that can depress the productivity of wild-salmon populations and the profits of the salmon-farming industry. We explored sea-louse impacts on their hosts across a range of temperatures (10, 13, 16, 19, and 22 °C) and infestation levels (zero, ‘low’ (mean abundance ± SE = 1.6 ± 0.1 lice per fish), and ‘high’ infestation (6.8 ± 0.4 lice per fish)). We found that the effects of sea lice on the growth rate, condition, and survival of juvenile Atlantic salmon all worsen with increasing temperature. Our results provide a rare empirical example of how climate change may influence the impacts of marine disease in a key social-ecological system. These findings underscore the importance of considering climate-driven changes to disease impacts in wildlife conservation and agriculture.
Collapse
|
27
|
LaMere K, Mäntyniemi S, Haapasaari P. The effects of climate change on Baltic salmon: Framing the problem in collaboration with expert stakeholders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:140068. [PMID: 32806345 DOI: 10.1016/j.scitotenv.2020.140068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/22/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
In the Baltic Sea region, salmon are valued for the ecological, economic, and cultural benefits they provide. However, these fish are threatened due to historical overfishing, disease, and reduced access to spawning rivers. Climate change may pose another challenge for salmon management. Therefore, we conducted a problem-framing study to explore the effects climate change may have on salmon and the socio-ecological system they are embedded within. Addressing this emerging issue will require the cooperation of diverse stakeholders and the integration of their knowledge and values in a contentious management context. Therefore, we conducted this problem framing as a participatory process with stakeholders, whose mental models and questionnaire responses form the basis of this study. By framing the climate change problem in this way, we aim to provide a holistic understanding of the problem and incorporate stakeholder perspectives into the management process from an early stage to better address their concerns and establish common ground. We conclude that considering climate change is relevant for Baltic salmon management, although it may not be the most pressing threat facing these fish. Stakeholders disagree about whether climate change will harm or benefit salmon, when it will become a relevant issue in the Baltic context, and whether or not management efforts can mitigate any negative impacts climate change may have on salmon and their fishery. Nevertheless, by synthesizing the stakeholders' influence diagrams, we found 15 themes exemplifying: (1) how climate change may affect salmon, (2) goals for salmon management considering climate change, and (3) strategies for achieving those goals. Further, the stakeholders tended to focus on the riverine environment and the salmon life stages occurring therein, potentially indicating the perceived vulnerability of these life stages to climate change. Interestingly, however, the stakeholders tended to focus on traditional fishery management measures, like catch quotas, to meet their goals for these fish considering climate change. Further, social variables, like "politics," "international cooperation," and "employment" comprised a large proportion of the stakeholders' diagrams, demonstrating the importance of these factors for salmon management.
Collapse
Affiliation(s)
- Kelsey LaMere
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Biocenter 3, Viikinkaari 3, P.O. Box 65 FI-00014, University of Helsinki, Finland.
| | - Samu Mäntyniemi
- Natural Resources Institute Finland, Latokartanonkaari 9, FI-00790 Helsinki, Finland.
| | - Päivi Haapasaari
- Marine Risk Governance Group, Ecosystems and Environment Research Program, Faculty of Biological and Environmental Sciences, Biocenter 3, Viikinkaari 3, P.O. Box 65 FI-00014, University of Helsinki, Finland.
| |
Collapse
|
28
|
Hawkins BL, Fullerton AH, Sanderson BL, Steel EA. Individual‐based simulations suggest mixed impacts of warmer temperatures and a nonnative predator on Chinook salmon. Ecosphere 2020. [DOI: 10.1002/ecs2.3218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- B. L. Hawkins
- Ecology, Behavior and Evolution Section Division of Biological Sciences University of California San Diego San Diego California USA
| | - A. H. Fullerton
- Fish Ecology Division Northwest Fisheries Science Center National Marine Fisheries ServiceNOAA Seattle Washington USA
| | - B. L. Sanderson
- Fish Ecology Division Northwest Fisheries Science Center National Marine Fisheries ServiceNOAA Seattle Washington USA
| | - E. A. Steel
- School of Aquatic and Fishery Sciences and Department of Statistics University of Washington Seattle Washington USA
| |
Collapse
|
29
|
Heino J, Culp JM, Erkinaro J, Goedkoop W, Lento J, Rühland KM, Smol JP. Abruptly and irreversibly changing Arctic freshwaters urgently require standardized monitoring. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13645] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jani Heino
- Finnish Environment Institute (SYKE) Freshwater Centre Oulu Finland
| | - Joseph M. Culp
- Environment and Climate Change Canada, and Cold Regions Research Centre Wilfrid Laurier University Waterloo ON Canada
| | | | - Willem Goedkoop
- Department of Aquatic Sciences and Assessment Swedish University of Agricultural Sciences Uppsala Sweden
| | - Jennifer Lento
- Canadian Rivers Institute and Department of Biology University of New Brunswick Fredericton NB Canada
| | - Kathleen M. Rühland
- Paleoecological Environmental Assessment and Research Lab (PEARL) Department of Biology Queen's University Kingston ON Canada
| | - John P. Smol
- Paleoecological Environmental Assessment and Research Lab (PEARL) Department of Biology Queen's University Kingston ON Canada
| |
Collapse
|
30
|
Dorian NN, Lloyd-Evans TL, Reed JM. Non-parallel changes in songbird migration timing are not explained by changes in stopover duration. PeerJ 2020; 8:e8975. [PMID: 32477833 PMCID: PMC7243817 DOI: 10.7717/peerj.8975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/24/2020] [Indexed: 11/20/2022] Open
Abstract
Shifts in the timing of animal migration are widespread and well-documented; however, the mechanism underlying these changes is largely unknown. In this study, we test the hypothesis that systematic changes in stopover duration—the time that individuals spend resting and refueling at a site—are driving shifts in songbird migration timing. Specifically, we predicted that increases in stopover duration at our study site could generate increases in passage duration—the number of days that a study site is occupied by a particular species—by changing the temporal breadth of observations and vise versa. We analyzed an uninterrupted 46-year bird banding dataset from Massachusetts, USA using quantile regression, which allowed us to detect changes in early-and late-arriving birds, as well as changes in passage duration. We found that median spring migration had advanced by 1.04 days per decade; that these advances had strengthened over the last 13 years; and that early-and late-arriving birds were advancing in parallel, leading to negligible changes in the duration of spring passage at our site (+0.07 days per decade). In contrast, changes in fall migration were less consistent. Across species, we found that median fall migration had delayed by 0.80 days per decade, and that changes were stronger in late-arriving birds, leading to an average increase in passage duration of 0.45 days per decade. Trends in stopover duration, however, were weak and negative and, as a result, could not explain any changes in passage duration. We discuss, and provide some evidence, that changes in population age-structure, cryptic geographic variation, or shifts in resource availability are consistent with increases in fall passage duration. Moreover, we demonstrate the importance of evaluating changes across the entire phenological distribution, rather than just the mean, and stress this as an important consideration for future studies.
Collapse
Affiliation(s)
| | | | - J Michael Reed
- Department of Biology, Tufts University, Medford, MA, USA
| |
Collapse
|
31
|
Harvey AC, Glover KA, Wennevik V, Skaala Ø. Atlantic salmon and sea trout display synchronised smolt migration relative to linked environmental cues. Sci Rep 2020; 10:3529. [PMID: 32103141 PMCID: PMC7044379 DOI: 10.1038/s41598-020-60588-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/14/2020] [Indexed: 11/09/2022] Open
Abstract
Anadromous salmon and sea trout smolts face challenging migrations from freshwater to the marine environment characterised by high mortality. Therefore, the timing of smolt migration is likely to be critical for survival. Time-series comparing migration of Atlantic salmon and sea trout smolts in the same river, and their response to the same environmental cues, are scarce. Here, we analysed migration timing of ~41 000 Atlantic salmon and sea trout smolts over a 19-year period from the river Guddalselva, western Norway. Trout displayed a longer migration window in earlier years, which decreased over time to become more similar to the salmon migration window. On average, salmon migrated out of the river earlier than trout. Migration of both species was significantly influenced by river water temperature and water discharge, but their relative influence varied across the years. On average, body-length of smolts of both species overlapped, however, size differences were observed within the migration period and among the years. We conclude that salmon and trout smolts in this river are highly synchronised and migrate in response to the same range of linked environmental cues.
Collapse
Affiliation(s)
| | - Kevin A Glover
- Institute of Marine Research (IMR), Bergen, Norway.,Institute of Biology, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|
32
|
Jacobson P, Gårdmark A, Huss M. Population and size-specific distribution of Atlantic salmon Salmo salar in the Baltic Sea over five decades. JOURNAL OF FISH BIOLOGY 2020; 96:408-417. [PMID: 31755101 PMCID: PMC7028083 DOI: 10.1111/jfb.14213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Population-specific assessment and management of anadromous fish at sea requires detailed information about the distribution at sea over ontogeny for each population. However, despite a long history of mixed-stock sea fisheries on Atlantic salmon, Salmo salar, migration studies showing that some salmon populations feed in different regions of the Baltic Sea and variation in dynamics occurs among populations feeding in the Baltic Sea, such information is often lacking. Also, current assessment of Baltic salmon assumes equal distribution at sea and therefore equal responses to changes in off-shore sea fisheries. Here, we test for differences in distribution at sea among and within ten Atlantic salmon Salmo salar populations originating from ten river-specific hatcheries along the Swedish Baltic Sea coast, using individual data from >125,000 tagged salmon, recaptured over five decades. We show strong population and size-specific differences in distribution at sea, varying between year classes and between individuals within year classes. This suggests that Atlantic salmon in the Baltic Sea experience great variation in environmental conditions and exploitation rates over ontogeny depending on origin and that current assessment assumptions about equal exploitation rates in the offshore fisheries and a shared environment at sea are not valid. Thus, our results provide additional arguments and necessary information for implementing population-specific management of salmon, also when targeting life stages at sea.
Collapse
Affiliation(s)
- Philip Jacobson
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| | - Anna Gårdmark
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| | - Magnus Huss
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| |
Collapse
|
33
|
Markkula I, Turunen M, Rasmus S. A review of climate change impacts on the ecosystem services in the Saami Homeland in Finland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:1070-1085. [PMID: 31539939 DOI: 10.1016/j.scitotenv.2019.07.272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
The aim of this work is (i) to review the recent studies on weather and climate change in Finnish Sápmi and to present the literature review findings alongside our survey on the observations made by local reindeer herders on the same phenomena, and, further, (ii) to review the impacts of climate change on the ecosystem services (ES) in Finnish Sápmi. The focus of the study is on the impacts of climate change on those habitat, provisioning and cultural ecosystem services which are interconnected with the Saami way of life as Indigenous people and thus support the continuity of their culture. In the holistic world view of Arctic Indigenous peoples, material culture and non-material culture are not separated, and there is no boundary between nature and culture. However, cultural and spiritual meanings of ecosystems, species and landscapes are rarely taken into account in scientific research on ecosystems services. Our review indicates that mostly negative impacts of climate warming on ecosystems and traditional livelihoods are to be expected in Sápmi. The most profound negative impacts will be on palsa mire and fell ecosystems, in particular snowbeds, snow patches and mountain birch forests. Consequently, changes in ecosystems may erode cultural meanings, stories, memories and traditional knowledge attached to them and affect the nature-based traditional livelihoods. In a situation where our rapidly changing climate is affecting the foundations of the nature-based cultures, the present review can provide a knowledge base for developing adaptation actions and strategies for local communities and Indigenous peoples to cope with changes caused by climate change and other drivers.
Collapse
Affiliation(s)
- Inkeri Markkula
- Arctic Centre, University of Lapland, POB 122, FI-96101 Rovaniemi, Finland
| | - Minna Turunen
- Arctic Centre, University of Lapland, POB 122, FI-96101 Rovaniemi, Finland.
| | - Sirpa Rasmus
- Arctic Centre, University of Lapland, POB 122, FI-96101 Rovaniemi, Finland
| |
Collapse
|
34
|
Harvey AC, Quintela M, Glover KA, Karlsen Ø, Nilsen R, Skaala Ø, Sægrov H, Kålås S, Knutar S, Wennevik V. Inferring Atlantic salmon post-smolt migration patterns using genetic assignment. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190426. [PMID: 31824688 PMCID: PMC6837218 DOI: 10.1098/rsos.190426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Understanding migratory patterns is important for predicting and mitigating unwanted consequences of environmental change or anthropogenic challenges on vulnerable species. Wild Atlantic salmon undergo challenging migrations between freshwater and marine environments, and the numbers of salmon returning to their natal rivers to reproduce have declined over several decades. Mortality from sea lice linked to fish farms within their seaward migration routes is proposed as a contributing factor to these declines. Here, we used 31 microsatellite markers to establish a genetic baseline for the main rivers in the Hardangerfjord, western Norway. Mixed stock analysis was used to assign Atlantic salmon post-smolts caught in trawls in 2013-2017 back to regional reporting units. Analyses demonstrated that individuals originating from rivers located in the inner region of the fjord arrived at the outer fjord later than individuals from middle and outer fjord rivers. Therefore, as post-smolts originating from inner rivers also have to migrate longer distances to exit the fjord, these data suggest that inner fjord populations are more likely to be at risk of mortality through aquaculture-produced sea lice, and other natural factors such as predation, than middle or outer fjord populations with earlier exit times and shorter journeys. These results will be used to calibrate models estimating mortality from sea lice on wild salmon for the regulation of the Norwegian aquaculture industry.
Collapse
Affiliation(s)
- A. C. Harvey
- Institute of Marine Research (IMR), Bergen, Norway
| | - M. Quintela
- Institute of Marine Research (IMR), Bergen, Norway
| | - K. A. Glover
- Institute of Marine Research (IMR), Bergen, Norway
- Institute of Biology, University of Bergen, Bergen, Norway
| | - Ø. Karlsen
- Institute of Marine Research (IMR), Bergen, Norway
| | - R. Nilsen
- Institute of Marine Research (IMR), Tromsø, Norway
| | - Ø. Skaala
- Institute of Marine Research (IMR), Bergen, Norway
| | - H. Sægrov
- Rådgivende Biologer AS, Bergen, Norway
| | - S. Kålås
- Rådgivende Biologer AS, Bergen, Norway
| | - S. Knutar
- Institute of Marine Research (IMR), Bergen, Norway
| | - V. Wennevik
- Institute of Marine Research (IMR), Bergen, Norway
| |
Collapse
|
35
|
Staudinger MD, Mills KE, Stamieszkin K, Record NR, Hudak CA, Allyn A, Diamond A, Friedland KD, Golet W, Henderson ME, Hernandez CM, Huntington TG, Ji R, Johnson CL, Johnson DS, Jordaan A, Kocik J, Li Y, Liebman M, Nichols OC, Pendleton D, Richards RA, Robben T, Thomas AC, Walsh HJ, Yakola K. It's about time: A synthesis of changing phenology in the Gulf of Maine ecosystem. FISHERIES OCEANOGRAPHY 2019; 28:532-566. [PMID: 31598058 PMCID: PMC6774335 DOI: 10.1111/fog.12429] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 02/01/2019] [Accepted: 03/08/2019] [Indexed: 05/08/2023]
Abstract
The timing of recurring biological and seasonal environmental events is changing on a global scale relative to temperature and other climate drivers. This study considers the Gulf of Maine ecosystem, a region of high social and ecological importance in the Northwest Atlantic Ocean and synthesizes current knowledge of (a) key seasonal processes, patterns, and events; (b) direct evidence for shifts in timing; (c) implications of phenological responses for linked ecological-human systems; and (d) potential phenology-focused adaptation strategies and actions. Twenty studies demonstrated shifts in timing of regional marine organisms and seasonal environmental events. The most common response was earlier timing, observed in spring onset, spring and winter hydrology, zooplankton abundance, occurrence of several larval fishes, and diadromous fish migrations. Later timing was documented for fall onset, reproduction and fledging in Atlantic puffins, spring and fall phytoplankton blooms, and occurrence of additional larval fishes. Changes in event duration generally increased and were detected in zooplankton peak abundance, early life history periods of macro-invertebrates, and lobster fishery landings. Reduced duration was observed in winter-spring ice-affected stream flows. Two studies projected phenological changes, both finding diapause duration would decrease in zooplankton under future climate scenarios. Phenological responses were species-specific and varied depending on the environmental driver, spatial, and temporal scales evaluated. Overall, a wide range of baseline phenology and relevant modeling studies exist, yet surprisingly few document long-term shifts. Results reveal a need for increased emphasis on phenological shifts in the Gulf of Maine and identify opportunities for future research and consideration of phenological changes in adaptation efforts.
Collapse
Affiliation(s)
- Michelle D. Staudinger
- Department of the Interior Northeast Climate Adaptation Science CenterAmherstMassachusetts
- Department of Environmental ConservationUniversity of Massachusetts AmherstAmherstMassachusetts
| | | | | | | | - Christine A. Hudak
- Department of Ecology, Center for Coastal StudiesProvincetownMassachusetts
| | | | - Antony Diamond
- University of New BrunswickFrederictonNew BrunswickCanada
| | - Kevin D. Friedland
- NOAA, Northeast Fisheries Science Center, National Marine Fisheries ServiceNarragansettRhode Island
| | - Walt Golet
- Gulf of Maine Research InstitutePortlandMaine
- School of Marine SciencesUniversity of MaineOronoMaine
| | | | | | | | - Rubao Ji
- Department of BiologyWoods Hole Oceanographic InstitutionWoods HoleMassachusetts
| | - Catherine L. Johnson
- Fisheries and Oceans Canada, Bedford Institute of OceanographyDartmouthNova ScotiaCanada
| | - David Samuel Johnson
- Virginia Institute of Marine ScienceCollege of William and MaryGloucester PointVirginia
| | - Adrian Jordaan
- Department of Environmental ConservationUniversity of Massachusetts AmherstAmherstMassachusetts
| | - John Kocik
- NOAA, Northeast Fisheries Science Center, National Marine Fisheries ServiceOronoMaine
| | - Yun Li
- Department of BiologyWoods Hole Oceanographic InstitutionWoods HoleMassachusetts
- College of Marine ScienceUniversity of South FloridaSt. PetersburgFlorida
| | - Matthew Liebman
- Office of Ecosystem Protection, US EPA New EnglandBostonMassachusetts
| | - Owen C. Nichols
- Department of Ecology, Center for Coastal StudiesProvincetownMassachusetts
| | - Daniel Pendleton
- Anderson Cabot Center for Ocean Life, New England Aquarium, Central WharfBostonMassachusetts
| | - R. Anne Richards
- Population Dynamics BranchNOAA Northeast Fisheries Science CenterWoods HoleMassachusetts
| | - Thomas Robben
- Connecticut Ornithological AssociationFairfieldConnecticut
| | | | - Harvey J. Walsh
- NOAA, Northeast Fisheries Science Center, National Marine Fisheries ServiceNarragansettRhode Island
| | - Keenan Yakola
- Department of Environmental ConservationUniversity of Massachusetts AmherstAmherstMassachusetts
| |
Collapse
|
36
|
Bernard B, Mandiki SNM, Duchatel V, Rollin X, Kestemont P. A temperature shift on the migratory route similarly impairs hypo-osmoregulatory capacities in two strains of Atlantic salmon (Salmo salar L.) smolts. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1245-1260. [PMID: 31190261 DOI: 10.1007/s10695-019-00666-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Anthropogenic use of water systems may cause temperature fluctuations between tributaries and large rivers for which physiological population related-effects on osmoregulatory capacity of Atlantic salmon are not well described. We simulated the downstream route in the case of the River Meuse basin to investigate the impact of a 5 °C temperature shift during smoltification on hypo-osmoregulatory capacities of smolts. Three temperature regimes were tested: control temperature-treatment (T1) without temperature shift, early (T2) or late (T3) temperature shift-treatment. Moreover, fish were subjected to seawater challenge during and after the downstream migration peak time. Two allochtonous strains were used: Loire-Allier (LA) and Cong (CG). Without temperature shift (T1), significant differences between the strains were noticed in the peak date and maximum activity of gill Na+/K+ATPase as well as in plasma sodium and potassium concentrations. For early (T2) and late (T3) temperature shift-treatments, gill Na+/K+ATPase activity, plasma osmolality and ion concentrations were negatively influenced in both strains. After salinity challenge, the highest osmolality was measured in smolts subjected to the temperature shift. Predictably circulating levels of GH and IGF-1 changed over the smolting period but they did not explain the observed modifications in hypo-osmoregulatory abilities whatever the population. The results show a negative impact of a temperature shift on hypo-osmoregulatory capacities of smolts regardless of population differences in smoltification timing under conditions without temperature shift. The resilience of such physiological impact was sustained at least for 1 week, comforting the role of high temperature in influencing the rate of changes occurring during smoltification. Therefore, favouring the downstream migration to help smolts reach the sea faster may mitigate the impact of a rapid temperature increase.
Collapse
Affiliation(s)
- Bernoît Bernard
- Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Syaghalirwa N M Mandiki
- Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium.
| | - Victoria Duchatel
- Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
- Veterinary and Agrochemical Research Center, Groeselenberg 99, 1180, Uccle, Belgium
| | - Xavier Rollin
- Service Public de Wallonie-DGARNE-DNF-Service de la Pêche, 7 Avenue Prince de Liège, 5100, Jambes, Belgium
| | - Patrick Kestemont
- Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| |
Collapse
|
37
|
Shi KP, Dong SL, Zhou YG, Li Y, Gao QF, Sun DJ. RNA-seq reveals temporal differences in the transcriptome response to acute heat stress in the Atlantic salmon (Salmo salar). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:169-178. [PMID: 30861459 DOI: 10.1016/j.cbd.2018.12.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 01/01/2023]
Abstract
Acute heat stress is common in aquaculture and can affect diverse physiological processes in fish; however, different species of fish have various mechanisms for heat stress adaptation. In this study, we profiled the transcriptome responses of the Atlantic salmon (Salmo salar) to heat stress at 23 °C for 6 or 24 h, compared with that of fish at a normal temperature of 13 °C. The liver was selected as the target tissue for this analysis. A total of 243 and 88 genes were differentially expressed after 6 and 24 h of heat stress, respectively. Of these, only 22 were common to both time points, and most of these common genes were molecular chaperones such as heat shock cognate 71 kDa protein and heat shock protein 90-alpha. Genes such as activating transcription factor 6, calreticulin, protein disulfide isomerase A3, and protein kinase R-like endoplasmic reticulum kinase-eukaryotic initiation factor 2-alpha were only up-regulated after 6 h of heat stress; most of these genes are involved in the endoplasmic reticulum stress pathway. Indeed, endoplasmic reticulum stress was identified at 6 h but not at 24 h, suggesting that stress response plays an important role in the adaptation of Atlantic salmon to acute heat stress. Other up-regulated genes at 6 h were related to the insulin and nucleotide oligomerization domain-like receptor signaling pathways, which directly eliminate misfolded proteins and sustain sugar and lipid homeostasis. At 24 h, heat stress influenced the expression of steroid and terpenoid backbone biosynthesis, which may influence the sexual development and differentiation of Atlantic salmon. Overall, our results elucidate the transcriptome mechanisms that contribute to short-term heat tolerance in the liver of Atlantic salmon.
Collapse
Affiliation(s)
- Kun-Peng Shi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Shuang-Lin Dong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Yan-Gen Zhou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qin-Feng Gao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Da-Jiang Sun
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
38
|
Jarić I, Lennox RJ, Kalinkat G, Cvijanović G, Radinger J. Susceptibility of European freshwater fish to climate change: Species profiling based on life-history and environmental characteristics. GLOBAL CHANGE BIOLOGY 2019; 25:448-458. [PMID: 30417977 DOI: 10.1111/gcb.14518] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/12/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Climate change is expected to strongly affect freshwater fish communities. Combined with other anthropogenic drivers, the impacts may alter species spatio-temporal distributions and contribute to population declines and local extinctions. To provide timely management and conservation of fishes, it is relevant to identify species that will be most impacted by climate change and those that will be resilient. Species traits are considered a promising source of information on characteristics that influence resilience to various environmental conditions and impacts. To this end, we collated life-history traits and climatic niches of 443 European freshwater fish species and compared those identified as susceptible to climate change to those that are considered to be resilient. Significant differences were observed between the two groups in their distribution, life history, and climatic niche, with climate-change-susceptible species being distributed within the Mediterranean region, and being characterized by greater threat levels, lesser commercial relevance, lower vulnerability to fishing, smaller body and range size, and warmer thermal envelopes. Based on our results, we establish a list of species of highest priority for further research and monitoring regarding climate-change susceptibility within Europe. The presented approach represents a promising tool to efficiently assess large groups of species regarding their susceptibility to climate change and other threats, and to identify research and management priorities.
Collapse
Affiliation(s)
- Ivan Jarić
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Robert J Lennox
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Gregor Kalinkat
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Gorčin Cvijanović
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Johannes Radinger
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- GRECO, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| |
Collapse
|
39
|
Bordeleau X, Hatcher BG, Denny S, Whoriskey FG, Patterson DA, Crossin GT. Nutritional correlates of the overwintering and seaward migratory decisions and long-term survival of post-spawning Atlantic salmon. CONSERVATION PHYSIOLOGY 2019; 7:coz107. [PMID: 31879564 PMCID: PMC6919299 DOI: 10.1093/conphys/coz107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/31/2019] [Accepted: 12/06/2019] [Indexed: 05/04/2023]
Abstract
Despite the importance of iteroparity (i.e. repeated spawning) for the viability of Atlantic salmon populations, little is known about the factors influencing the migratory behaviour and survival prospect of post-spawned individuals (kelts). To test the hypothesis that post-spawning nutritional condition underlies differences in spatiotemporal aspects of the habitat use and survival of migrating Atlantic salmon kelts, we physiologically sampled and acoustically tagged 25 individuals from the Middle River, Nova Scotia in autumn 2015. Kelts were subsequently tracked within their natal river during the winter months, and as far as 650 km away along known migration pathways towards the Labrador Sea and Greenland. Some kelts were detected nearly 2 years later, upon their return to the natal river for repeat spawning. Overall, kelts in poor or depleted post-spawning nutritional state (i.e. low body condition index or plasma triglyceride level): (i) initiated down-river migration earlier than higher condition kelts; (ii) experienced higher overwinter mortality in the natal river; (iii) tended to spend greater time in the estuary before moving to sea and (iv) did not progress as far in the marine environment, with a reduced probability of future, repeat spawning. Our findings suggest that initial differences in post-spawning condition are carried through subsequent migratory stages, which can ultimately affect repeat-spawning potential. These results point to the importance of lipid storage and mobilisation in Atlantic salmon kelts for mediating post-spawning migratory behaviour and survival.
Collapse
Affiliation(s)
- X Bordeleau
- Department of Biology, Dalhousie University, 1355 Oxford Street, P.O. Box 15000, Halifax, NS B3H 4R2, Canada
- Corresponding author: Department of Biology, Dalhousie University, 1355 Oxford Street, P.O. Box 15000, Halifax, NS B3H 4R2, Canada.
| | - B G Hatcher
- Bras d'Or Institute for Ecosystem Research, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1M 1A2, Canada
| | - S Denny
- Unama'ki Institute of Natural Resources, 4102 Shore Rd, Eskasoni, NS B1W 1C2, Canada
| | - F G Whoriskey
- Ocean Tracking Network, Dalhousie University, 1355 Oxford Street, P.O. Box 15000, Halifax, NS B3H 4R2, Canada
| | - D A Patterson
- Fisheries and Oceans Canada, Cooperative Research Management Institute, Resource and Environmental Management, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - G T Crossin
- Department of Biology, Dalhousie University, 1355 Oxford Street, P.O. Box 15000, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
40
|
Jonsson B, Jonsson N. Egg incubation temperature affects the timing of the Atlantic salmon Salmo salar homing migration. JOURNAL OF FISH BIOLOGY 2018; 93:1016-1020. [PMID: 30259996 DOI: 10.1111/jfb.13817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/22/2018] [Indexed: 05/25/2023]
Abstract
Here, we show that adult Atlantic salmon Salmo salar returned about 2 weeks later from the feeding areas in the North Atlantic Ocean to the Norwegian coast, through a phenotypically plastic mechanism, when they developed as embryos in c. 3°C warmer water than the regular incubation temperature. This finding has relevance to changes in migration timing caused by climate change and for cultivation and release of S. salar.
Collapse
Affiliation(s)
- Bror Jonsson
- Norwegian Institute for Nature Research, Landscape Ecology Department, Oslo, Norway
| | - Nina Jonsson
- Norwegian Institute for Nature Research, Landscape Ecology Department, Oslo, Norway
| |
Collapse
|
41
|
García-Vega A, Sanz-Ronda FJ, Fernandes Celestino L, Makrakis S, Leunda PM. Potamodromous brown trout movements in the North of the Iberian Peninsula: Modelling past, present and future based on continuous fishway monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1521-1536. [PMID: 30021318 DOI: 10.1016/j.scitotenv.2018.05.339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 05/25/2023]
Abstract
Brown trout uses river flow and thermal regimens as main stimuli for initiating and maintaining behavioral reactions such as migration and spawning. Therefore, anthropogenic alterations on these factors may have strong impacts on its populations. The aim of this work is to understand these consequences by assessing potamodromous brown trout movements in the past and present, and to model future responses. For this, brown trout movements in a fishway in the Marin River (Bidasoa basin, Northern Iberian Peninsula) have been monitored from 2008 to 2017. Random forest regression has been used to assess the influence of environmental variables on brown trout movements and to model the response under hypothetical climatic and hydrological scenarios. Results show that brown trout uses the fishway during the whole year, with more upstream movements during the spawning season. The model is able to predict accurately the timing and number of migrants. Its use under hypothetical climate change and flow regulation scenarios shows a delay in the migration time. Therefore, modelling using large time series can be a powerful tool to define management and conservation strategies and prepare compensation measures for future scenarios.
Collapse
Affiliation(s)
- Ana García-Vega
- Department of Hydraulics and Hydrology, University of Valladolid, Avenida de Madrid 44, Campus La Yutera, 34004 Palencia, Spain.
| | - Francisco Javier Sanz-Ronda
- Department of Hydraulics and Hydrology, University of Valladolid, Avenida de Madrid 44, Campus La Yutera, 34004 Palencia, Spain.
| | - Leandro Fernandes Celestino
- Grupo de Pesquisa em Tecnologia em Ecohidráulica e Conservação de Recursos Pesqueiros e Hídricos - GETECH, Universidade Estadual do Oeste do Paraná, Jardim Santa Maria, Toledo, Brazil.
| | - Sergio Makrakis
- Grupo de Pesquisa em Tecnologia em Ecohidráulica e Conservação de Recursos Pesqueiros e Hídricos - GETECH, Universidade Estadual do Oeste do Paraná, Jardim Santa Maria, Toledo, Brazil.
| | - Pedro M Leunda
- Gestión Ambiental de Navarra, S.A. Calle Padre Adoain, 219 bajo, 31015 Pamplona/Iruña, Spain.
| |
Collapse
|
42
|
Myksvoll MS, Sandvik AD, Albretsen J, Asplin L, Johnsen IA, Karlsen Ø, Kristensen NM, Melsom A, Skardhamar J, Ådlandsvik B. Evaluation of a national operational salmon lice monitoring system-From physics to fish. PLoS One 2018; 13:e0201338. [PMID: 30063759 PMCID: PMC6067748 DOI: 10.1371/journal.pone.0201338] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/14/2018] [Indexed: 11/18/2022] Open
Abstract
The Norwegian government has decided that the aquaculture industry shall grow, provided that the growth is environmentally sustainable. Sustainability is scored based on the mortality of wild salmonids caused by the parasitic salmon lice. Salmon lice infestation pressure has traditionally been monitored through catching wild sea trout and Arctic char using nets or traps or by trawling after Atlantic salmon postsmolts. However, due to that the Norwegian mainland coastline is nearly 25 000 km, complementary methods that may be used in order to give complete results are needed. We have therefore developed an operational salmon lice model, which calculates the infestation pressure all along the coast in near real-time based on a hydrodynamical ocean model and a salmon lice particle tracking model. The hydrodynamic model generally shows a negative temperature bias and a positive salinity bias compared to observations. The modeled salmon lice dispersion correlates with measured lice on wild salmonids caught using traps or nets. This allows for using two complementary data sources in order to determine the infestation pressure of lice originating from fish farms on wild salmonids, and thereby provide an improved monitoring system for assessing risk and sustainability which forms the basis for knowledge-based advice to management authorities.
Collapse
Affiliation(s)
| | | | | | - Lars Asplin
- Institute of Marine Research, Bergen, Norway
| | | | | | | | - Arne Melsom
- Norwegian Meteorological Institute, Oslo, Norway
| | | | | |
Collapse
|
43
|
Tao J, He D, Kennard MJ, Ding C, Bunn SE, Liu C, Jia Y, Che R, Chen Y. Strong evidence for changing fish reproductive phenology under climate warming on the Tibetan Plateau. GLOBAL CHANGE BIOLOGY 2018; 24:2093-2104. [PMID: 29331066 DOI: 10.1111/gcb.14050] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/17/2017] [Accepted: 12/22/2017] [Indexed: 05/26/2023]
Abstract
Phenological responses to climate change have been widely observed and have profound and lasting effects on ecosystems and biodiversity. However, compared to terrestrial ecosystems, the long-term effects of climate change on species' phenology are poorly understood in aquatic ecosystems. Understanding the long-term changes in fish reproductive phenology is essential for predicting population dynamics and for informing management strategies, but is currently hampered by the requirement for intensive field observations and larval identification. In this study, a very low-frequency sampling of juveniles and adults combined with otolith measurements (long axis length of the first annulus; LAFA) of an endemic Tibetan Plateau fish (Gymnocypris selincuoensis) was used to examine changes in reproductive phenology associated with climate changes from the 1970s to 2000s. Assigning individual fish to their appropriate calendar year class was assisted by dendrochronological methods (crossdating). The results demonstrated that LAFA was significantly and positively associated with temperature and growing season length. To separate the effects of temperature and the growing season length on LAFA growth, measurements of larval otoliths from different sites were conducted and revealed that daily increment additions were the main contributor (46.3%), while temperature contributed less (12.0%). Using constructed water-air temperature relationships and historical air temperature records, we found that the reproductive phenology of G. selincuoensis was strongly advanced in the spring during the 1970s and 1990s, while the increased growing season length in the 2000s was mainly due to a delayed onset of winter. The reproductive phenology of G. selincuoensis advanced 2.9 days per decade on average from the 1970s to 2000s, and may have effects on recruitment success and population dynamics of this species and other biota in the ecosystem via the food web. The methods used in this study are applicable for studying reproductive phenological changes across a wide range of species and ecosystems.
Collapse
Affiliation(s)
- Juan Tao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Australian Rivers Institute, Griffith University, Brisbane, Qld, Australia
| | - Dekui He
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Mengla, China
| | - Mark J Kennard
- Australian Rivers Institute, Griffith University, Brisbane, Qld, Australia
| | - Chengzhi Ding
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, China
| | - Stuart E Bunn
- Australian Rivers Institute, Griffith University, Brisbane, Qld, Australia
| | - Chunlong Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yintao Jia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Rongxiao Che
- Environmental Futures Research Institute, Griffith University, Brisbane, Qld, Australia
| | - Yifeng Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Australian Rivers Institute, Griffith University, Brisbane, Qld, Australia
| |
Collapse
|
44
|
Kristoffersen AB, Qviller L, Helgesen KO, Vollset KW, Viljugrein H, Jansen PA. Quantitative risk assessment of salmon louse-induced mortality of seaward-migrating post-smolt Atlantic salmon. Epidemics 2017; 23:19-33. [PMID: 29233546 DOI: 10.1016/j.epidem.2017.11.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/26/2017] [Accepted: 11/29/2017] [Indexed: 10/18/2022] Open
Abstract
The Norwegian government recently implemented a new management system to regulate salmon farming in Norway, aiming to promote environmentally sustainable growth in the aquaculture industry. The Norwegian coast has been divided into 13 production zones and the volume of salmonid production in the zones will be regulated based on salmon lice effects on wild salmonids. Here we present a model for assessing salmon louse-induced mortality of seaward-migrating post-smolts of Atlantic salmon. The model quantifies expected salmon lice infestations and louse-induced mortality of migrating post-smolt salmon from 401 salmon rivers draining into Norwegian coastal waters. It is assumed that migrating post-smolts follow the shortest path from river outlets to the high seas, at constant progression rates. During this migration, fish are infested by salmon lice of farm origin according to an empirical infestation model. Furthermore, louse-induced mortality is estimated from the estimated louse infestations. Rivers draining into production zones on the West Coast of Norway were at the highest risk of adverse lice effects. In comparison, rivers draining into northerly production zones, along with the southernmost production zone, were at lower risk. After adjusting for standing stock biomass, estimates of louse-egg output varied by factors of up to 8 between production zones. Correlation between biomass adjusted output of louse infestation and densities of farmed salmon in the production zones suggests that a large-scale density-dependent host-parasite effect is a major driver of louse infestation rates and parasite-induced mortality. The estimates are sensitive to many of the processes in the chain of events in the model. Nevertheless, we argue that the model is suited to assess spatial and temporal risks associated with farm-origin salmon lice.
Collapse
Affiliation(s)
| | - Lars Qviller
- The Norwegian Veterinary Institute, PB. 750 Sentrum, N-0106 Oslo, Norway
| | - Kari Olli Helgesen
- The Norwegian Veterinary Institute, PB. 750 Sentrum, N-0106 Oslo, Norway
| | - Knut Wiik Vollset
- Uni Research Environment, LFI-Freshwater Biology, Nygårdsporten 112, N-5006 Bergen, Norway
| | | | | |
Collapse
|
45
|
Gosselin JL, Zabel RW, Anderson JJ, Faulkner JR, Baptista AM, Sandford BP. Conservation planning for freshwater-marine carryover effects on Chinook salmon survival. Ecol Evol 2017; 8:319-332. [PMID: 29321874 PMCID: PMC5756849 DOI: 10.1002/ece3.3663] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 02/03/2023] Open
Abstract
Experiences of migratory species in one habitat may affect their survival in the next habitat, in what is known as carryover effects. These effects are especially relevant for understanding how freshwater experience affects survival in anadromous fishes. Here, we study the carryover effects of juvenile salmon passage through a hydropower system (Snake and Columbia rivers, northwestern United States). To reduce the direct effect of hydrosystem passage on juveniles, some fishes are transported through the hydrosystem in barges, while the others are allowed to migrate in-river. Although hydrosystem survival of transported fishes is greater than that of their run-of-river counterparts, their relative juvenile-to-adult survival (hereafter survival) can be less. We tested for carryover effects using generalized linear mixed effects models of survival with over 1 million tagged Chinook salmon, Oncorhynchus tshawytscha (Walbaum) (Salmonidae), migrating in 1999-2013. Carryover effects were identified with rear-type (wild vs. hatchery), passage-type (run-of-river vs. transported), and freshwater and marine covariates. Importantly, the Pacific Decadal Oscillation (PDO) index characterizing cool/warm (i.e., productive/nonproductive) ocean phases had a strong influence on the relative survival of rear- and passage-types. Specifically, transportation benefited wild Chinook salmon more in cool PDO years, while hatchery counterparts benefited more in warm PDO years. Transportation was detrimental for wild Chinook salmon migrating early in the season, but beneficial for later season migrants. Hatchery counterparts benefited from transportation throughout the season. Altogether, wild fish could benefit from transportation approximately 2 weeks earlier during cool PDO years, with still a benefit to hatchery counterparts. Furthermore, we found some support for hypotheses related to higher survival with increased river flow, high predation in the estuary and plume areas, and faster migration and development-related increased survival with temperature. Thus, pre- and within-season information on local- and broad-scale conditions across habitats can be useful for planning and implementing real-time conservation programs.
Collapse
Affiliation(s)
- Jennifer L Gosselin
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
| | - Richard W Zabel
- Northwest Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration Seattle WA USA
| | - James J Anderson
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
| | - James R Faulkner
- Northwest Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration Seattle WA USA
| | | | - Benjamin P Sandford
- Northwest Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration Pasco WA USA
| |
Collapse
|
46
|
Lysenko LA, Kantserova NP, Kaivarainen EI, Krupnova MY, Nemova NN. Skeletal muscle protease activities in the early growth and development of wild Atlantic salmon ( Salmo salar L.). Comp Biochem Physiol B Biochem Mol Biol 2017; 211:22-28. [DOI: 10.1016/j.cbpb.2017.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 10/19/2022]
|
47
|
Jonsson B, Jonsson M, Jonsson N. Influences of migration phenology on survival are size-dependent in juvenile Atlantic salmon (Salmo salar). CAN J ZOOL 2017. [DOI: 10.1139/cjz-2016-0136] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-distance migratory species can reduce mortality risks by synchronizing the migration event and create confusion by swamping predators with high densities. To reduce confusion, predators are known to primarily select aberrant prey. We hypothesized that at the start of their sea sojourn, particularly small and large Atlantic salmon (Salmo salar L., 1758) would spread the risk by also migrating at other times of the year. Based on data from the Norwegian river Imsa between 1976 and 2015, we found that juveniles, 14–19 cm in total length, started their sea sojourn during a short period between late April and early June. However, more than 20% of fish 13 cm or shorter migrated downstream between October and March, whereas 55% of fish 20 cm or longer migrated downstream between July and September. The regular-sized, spring-migrating juveniles had 2–3 times higher survival at sea than similar-sized conspecifics migrating to sea at other times of the year. The survival at sea for smaller juveniles was not improved by migration in spring relative to winter, and the survival of the largest juveniles was similar in spring and summer. Thus, the migration phenology appears adapted to survival in a high-risk environment by changing the timing according to their sizes.
Collapse
Affiliation(s)
- B. Jonsson
- Norwegian Institute for Nature Research, Gaustadalléen 21, N-0349 Oslo, Norway
| | - M. Jonsson
- Department of Physics, University of Oslo, P.O. Box 1048, Blindern, N-0316 Oslo, Norway
| | - N. Jonsson
- Norwegian Institute for Nature Research, Gaustadalléen 21, N-0349 Oslo, Norway
| |
Collapse
|
48
|
Peiman KS, Birnie-Gauvin K, Midwood JD, Larsen MH, Wilson ADM, Aarestrup K, Cooke SJ. If and when: intrinsic differences and environmental stressors influence migration in brown trout (Salmo trutta). Oecologia 2017; 184:375-384. [PMID: 28488214 DOI: 10.1007/s00442-017-3873-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 04/22/2017] [Indexed: 11/30/2022]
Abstract
Partial migration is a common phenomenon, yet the causes of individual differences in migratory propensity are not well understood. We examined factors that potentially influence timing of migration and migratory propensity in a wild population of juvenile brown trout (Salmo trutta) by combining experimental manipulations with passive integrated transponder telemetry. Individuals were subjected to one of six manipulations: three designed to mimic natural stressors (temperature increase, food deprivation, and chase by a simulated predator), an injection of exogenous cortisol designed to mimic an extreme physiological challenge, a sham injection, and a control group. By measuring length and mass of 923 individuals prior to manipulation and by monitoring tagged individuals as they left the stream months later, we assessed whether pre-existing differences influenced migratory tendency and timing of migration, and whether our manipulations affected growth, condition, and timing of migration. We found that pre-existing differences predicted migration, with smaller individuals and individuals in poor condition having a higher propensity to migrate. Exogenous cortisol manipulation had the largest negative effect on growth and condition, and resulted in an earlier migration date. Additionally, low-growth individuals within the temperature and food deprivation treatments migrated earlier. By demonstrating that both pre-existing differences in organism state and additional stressors can affect whether and when individuals migrate, we highlight the importance of understanding individual differences in partial migration. These effects may carry over to influence migration success and affect the evolutionary dynamics of sub-populations experiencing different levels of stress, which is particularly relevant in a changing world.
Collapse
Affiliation(s)
- Kathryn S Peiman
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| | - Kim Birnie-Gauvin
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Jonathan D Midwood
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Martin H Larsen
- DTU AQUA, National Institute of Aquatic Resources, Section for Freshwater Fisheries Ecology, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark.,Danish Centre for Wild Salmon, Brusgårdsvej 15, 8960, Randers, Denmark
| | - Alexander D M Wilson
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kim Aarestrup
- DTU AQUA, National Institute of Aquatic Resources, Section for Freshwater Fisheries Ecology, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|
49
|
Pasanen L, Laukkanen-Nevala P, Launonen I, Prusov S, Holmström L, Niemelä E, Erkinaro J. Extraction of sea temperature in the Barents Sea by a scale space multiresolution method – prospects for Atlantic salmon. J Appl Stat 2016. [DOI: 10.1080/02664763.2016.1252731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Leena Pasanen
- Department of Mathematical Sciences, University of Oulu, Oulu, Finland
| | | | - Ilkka Launonen
- Department of Mathematical Sciences, University of Oulu, Oulu, Finland
| | - Sergey Prusov
- Knipovich Polar Research Institute of Marine Fisheries and Oceanography, Murmansk, Russia
| | - Lasse Holmström
- Department of Mathematical Sciences, University of Oulu, Oulu, Finland
| | - Eero Niemelä
- Natural Resources Institute Finland, Oulu, Finland
| | | |
Collapse
|
50
|
van Leeuwen CHA, Museth J, Sandlund OT, Qvenild T, Vøllestad LA. Mismatch between fishway operation and timing of fish movements: a risk for cascading effects in partial migration systems. Ecol Evol 2016; 6:2414-25. [PMID: 27110352 PMCID: PMC4834326 DOI: 10.1002/ece3.1937] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 01/20/2023] Open
Abstract
Habitat fragmentation is a growing problem worldwide. Particularly in river systems, numerous dams and weirs hamper the movement of a wide variety of species. With the aim to preserve connectivity for fish, many barriers in river systems are equipped with fishways (also called fish passages or fish ladders). However, few fishways provide full connectivity. Here we hypothesized that restricted seasonal opening times of fishways can importantly reduce their effectiveness by interfering with the timing of fish migration, for both spring- and autumn-spawning species. We empirically tested our hypothesis, and discuss the possible eco-evolutionary consequences of affected migration timing. We analyzed movements of two salmonid fishes, spring-spawning European grayling (Thymallus thymallus) and autumn-spawning brown trout (Salmo trutta), in Norway's two largest river systems. We compared their timing of upstream passage through four fishways collected over 28 years with the timing of fish movements in unfragmented river sections as monitored by radiotelemetry. Confirming our hypothesis, late opening of fishways delayed the migration of European grayling in spring, and early closure of fishways blocked migration for brown trout on their way to spawning locations during late autumn. We show in a theoretical framework how restricted opening times of fishways can induce shifts from migratory to resident behavior in potamodromous partial migration systems, and propose that this can induce density-dependent effects among fish accumulating in lower regions of rivers. Hence, fragmentation may not only directly affect the migratory individuals in the population, but may also have effects that cascade downstream and alter circumstances for resident fish. Fishway functionality is inadequate if there is a mismatch between natural fish movements and fishway opening times in the same river system, with ecological and possibly evolutionary consequences for fish populations.
Collapse
Affiliation(s)
- Casper H A van Leeuwen
- Department of Biosciences Centre for Ecological and Evolutionary Synthesis (CEES) University of Oslo Post Office Box 1066 Blindern 0316 Oslo Norway
| | - Jon Museth
- Norwegian Institute for Nature Research (NINA) Fakkelgården 2624 Lillehammer Norway
| | - Odd T Sandlund
- Norwegian Institute for Nature Research (NINA) Høgskoleringen 9 7036 Trondheim Norway
| | - Tore Qvenild
- The Environment Agency Hedmark County Statens hus Parkgata 36 2306 Hamar Norway
| | - L Asbjørn Vøllestad
- Department of Biosciences Centre for Ecological and Evolutionary Synthesis (CEES) University of Oslo Post Office Box 1066 Blindern 0316 Oslo Norway
| |
Collapse
|