1
|
Knowles JF, Bjarke NR, Badger AM, Berkelhammer M, Biederman JA, Blanken PD, Bretfeld M, Burns SP, Ewers BE, Frank JM, Hicke JA, Lestak L, Livneh B, Reed DE, Scott RL, Molotch NP. Bark beetle impacts on forest evapotranspiration and its partitioning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163260. [PMID: 37028665 DOI: 10.1016/j.scitotenv.2023.163260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/10/2023] [Accepted: 03/31/2023] [Indexed: 05/27/2023]
Abstract
Insect outbreaks affect forest structure and function and represent a major category of forest disturbance globally. However, the resulting impacts on evapotranspiration (ET), and especially hydrological partitioning between the abiotic (evaporation) and biotic (transpiration) components of total ET, are not well constrained. As a result, we combined remote sensing, eddy covariance, and hydrological modeling approaches to determine the effects of bark beetle outbreak on ET and its partitioning at multiple scales throughout the Southern Rocky Mountain Ecoregion (SRME), USA. At the eddy covariance measurement scale, 85 % of the forest was affected by beetles, and water year ET as a fraction of precipitation (P) decreased by 30 % relative to a control site, with 31 % greater reductions in growing season transpiration relative to total ET. At the ecoregion scale, satellite remote sensing masked to areas of >80 % tree mortality showed corresponding ET/P reductions of 9-15 % that occurred 6-8 years post-disturbance, and indicated that the majority of the total reduction occurred during the growing season; the Variable Infiltration Capacity hydrological model showed an associated 9-18 % increase in the ecoregion runoff ratio. Long-term (16-18 year) ET and vegetation mortality datasets extend the length of previously published analyses and allowed for clear characterization of the forest recovery period. During that time, transpiration recovery outpaced total ET recovery, which was lagged in part due to persistently reduced winter sublimation, and there was associated evidence of increasing late summer vegetation moisture stress. Overall, comparison of three independent methods and two partitioning approaches demonstrated a net negative impact of bark beetles on ET, and a relatively greater negative impact on transpiration, following bark beetle outbreak in the SRME.
Collapse
Affiliation(s)
- John F Knowles
- Department of Earth and Environmental Sciences, California State University, Chico, CA, USA.
| | - Nels R Bjarke
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Andrew M Badger
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Max Berkelhammer
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Joel A Biederman
- Southwest Watershed Research Center, USDA Agricultural Research Service, Tucson, AZ, USA
| | - Peter D Blanken
- Department of Geography, University of Colorado Boulder, Boulder, CO, USA
| | - Mario Bretfeld
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Sean P Burns
- Department of Geography, University of Colorado Boulder, Boulder, CO, USA; National Center for Atmospheric Research, Boulder, CO, USA
| | - Brent E Ewers
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, USA
| | - John M Frank
- Rocky Mountain Research Station, USDA Forest Service, Fort Collins, CO, USA
| | - Jeffrey A Hicke
- Department of Earth and Spatial Sciences, University of Idaho, Moscow, ID, USA
| | - Leanne Lestak
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| | - Ben Livneh
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO, USA; Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - David E Reed
- Environmental Science, University of Science and Arts of Oklahoma, Chickasha, OK, USA
| | - Russell L Scott
- Southwest Watershed Research Center, USDA Agricultural Research Service, Tucson, AZ, USA
| | - Noah P Molotch
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
2
|
Gu H, Qiao Y, Xi Z, Rossi S, Smith NG, Liu J, Chen L. Warming-induced increase in carbon uptake is linked to earlier spring phenology in temperate and boreal forests. Nat Commun 2022; 13:3698. [PMID: 35760820 PMCID: PMC9237039 DOI: 10.1038/s41467-022-31496-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/21/2022] [Indexed: 11/11/2022] Open
Abstract
Under global warming, advances in spring phenology due to rising temperatures have been widely reported. However, the physiological mechanisms underlying the advancement in spring phenology still remain poorly understood. Here, we investigated the effect of temperature during the previous growing season on spring phenology of current year based on the start of season extracted from multiple long-term and large-scale phenological datasets between 1951 and 2018. Our findings indicate that warmer temperatures during previous growing season are linked to earlier spring phenology of current year in temperate and boreal forests. Correspondingly, we observed an earlier spring phenology with the increase in photosynthesis of the previous growing season. These findings suggest that the observed warming-induced earlier spring phenology is driven by increased photosynthetic carbon assimilation in the previous growing season. Therefore, the vital role of warming-induced changes in carbon assimilation should be considered to accurately project spring phenology and carbon cycling in forest ecosystems under future climate warming. The mechanisms underlying plant phenological shifts are debated. Here, based on phenological observations and ecosystem flux and climate data, Gu and colleagues provide evidence that warming-enhanced photosynthesis in a growing season contributes to earlier spring phenology in the following year in temperate and boreal forests.
Collapse
Affiliation(s)
- Hongshuang Gu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuxin Qiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhenxiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lei Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China. .,Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
3
|
Peltier DMP, Guo J, Nguyen P, Bangs M, Wilson M, Samuels-Crow K, Yocom LL, Liu Y, Fell MK, Shaw JD, Auty D, Schwalm C, Anderegg WRL, Koch GW, Litvak ME, Ogle K. Temperature memory and non-structural carbohydrates mediate legacies of a hot drought in trees across the southwestern USA. TREE PHYSIOLOGY 2022; 42:71-85. [PMID: 34302167 DOI: 10.1093/treephys/tpab091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Trees are long-lived organisms that integrate climate conditions across years or decades to produce secondary growth. This integration process is sometimes referred to as 'climatic memory.' While widely perceived, the physiological processes underlying this temporal integration, such as the storage and remobilization of non-structural carbohydrates (NSC), are rarely explicitly studied. This is perhaps most apparent when considering drought legacies (perturbed post-drought growth responses to climate), and the physiological mechanisms underlying these lagged responses to climatic extremes. Yet, drought legacies are likely to become more common if warming climate brings more frequent drought. To quantify the linkages between drought legacies, climate memory and NSC, we measured tree growth (via tree ring widths) and NSC concentrations in three dominant species across the southwestern USA. We analyzed these data with a hierarchical mixed effects model to evaluate the time-scales of influence of past climate (memory) on tree growth. We then evaluated the role of climate memory and the degree to which variation in NSC concentrations were related to forward-predicted growth during the hot 2011-2012 drought and subsequent 4-year recovery period. Populus tremuloides exhibited longer climatic memory compared to either Pinus edulis or Juniperus osteosperma, but following the 2011-2012 drought, P. tremuloides trees with relatively longer memory of temperature conditions showed larger (more negative) drought legacies. Conversely, Pinus edulis trees with longer temperature memory had smaller (less negative) drought legacies. For both species, higher NSC concentrations followed more negative (larger) drought legacies, though the relevant NSC fraction differed between P. tremuloides and P. edulis. Our results suggest that differences in tree NSC are also imprinted upon tree growth responses to climate across long time scales, which also underlie tree resilience to increasingly frequent drought events under climate change.
Collapse
Affiliation(s)
- Drew M P Peltier
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Jessica Guo
- Communications and Cyber Technologies, University of Arizona, Tucson, AZ 85721, USA
| | - Phiyen Nguyen
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Michael Bangs
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Michelle Wilson
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Kimberly Samuels-Crow
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Larissa L Yocom
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Yao Liu
- Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Michael K Fell
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - John D Shaw
- USDA Forest Service, Rocky Mountain Research Station, Ogden, UT 84401, USA
| | - David Auty
- School of Forestry, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Christopher Schwalm
- Woods Hole Research Center, Falmouth, MA 02540, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - William R L Anderegg
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - George W Koch
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Marcy E Litvak
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Kiona Ogle
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
4
|
Wion AP, Pearse IS, Rodman KC, Veblen TT, Redmond MD. The effects of ENSO and the North American monsoon on mast seeding in two Rocky Mountain conifer species. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200378. [PMID: 34657459 PMCID: PMC8520773 DOI: 10.1098/rstb.2020.0378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 11/12/2022] Open
Abstract
We aimed to disentangle the patterns of synchronous and variable cone production (i.e. masting) and its relationship to climate in two conifer species native to dry forests of western North America. We used cone abscission scars to reconstruct ca 15 years of recent cone production in Pinus edulis and Pinus ponderosa, and used redundancy analysis to relate time series of annual cone production to climate indices describing the North American monsoon and the El Niño Southern Oscillation (ENSO). We show that the sensitivity to climate and resulting synchrony in cone production varies substantially between species. Cone production among populations of P. edulis was much more spatially synchronous and more closely related to large-scale modes of climate variability than among populations of P. ponderosa. Large-scale synchrony in P. edulis cone production was associated with the North American monsoon and we identified a dipole pattern of regional cone production associated with ENSO phase. In P. ponderosa, these climate indices were not strongly associated with cone production, resulting in asynchronous masting patterns among populations. This study helps frame our understanding of mast seeding as a life-history strategy and has implications for our ability to forecast mast years in these species. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Andreas P. Wion
- Graduate Degree Program in Ecology and Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523‐1472, USA
| | - Ian S. Pearse
- US Geological Survey, Fort Collins Science Center, Fort Collins, CO 80526, USA
| | - Kyle C. Rodman
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI 53706, USA
| | - Thomas T. Veblen
- Department of Geography, University of Colorado, Boulder, CO 80302, USA
| | - Miranda D. Redmond
- Graduate Degree Program in Ecology and Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523‐1472, USA
| |
Collapse
|
5
|
Peltier DMP, Guo J, Nguyen P, Bangs M, Gear L, Wilson M, Jefferys S, Samuels-Crow K, Yocom LL, Liu Y, Fell MK, Auty D, Schwalm C, Anderegg WRL, Koch GW, Litvak ME, Ogle K. Temporal controls on crown nonstructural carbohydrates in southwestern US tree species. TREE PHYSIOLOGY 2021; 41:388-402. [PMID: 33147630 DOI: 10.1093/treephys/tpaa149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
In trees, large uncertainties remain in how nonstructural carbohydrates (NSCs) respond to variation in water availability in natural, intact ecosystems. Variation in NSC pools reflects temporal fluctuations in supply and demand, as well as physiological coordination across tree organs in ways that differ across species and NSC fractions (e.g., soluble sugars vs starch). Using landscape-scale crown (leaves and twigs) NSC concentration measurements in three foundation tree species (Populus tremuloides, Pinus edulis, Juniperus osteosperma), we evaluated in situ, seasonal variation in NSC responses to moisture stress on three timescales: short-term (via predawn water potential), seasonal (via leaf δ13C) and annual (via current year's ring width index). Crown NSC responses to moisture stress appeared to depend on hydraulic strategy, where J. osteosperma appears to regulate osmotic potentials (via higher sugar concentrations), P. edulis NSC responses suggest respiratory depletion and P. tremuloides responses were consistent with direct sink limitations. We also show that overly simplistic models can mask seasonal and tissue variation in NSC responses, as well as strong interactions among moisture stress at different timescales. In general, our results suggest large seasonal variation in crown NSC concentrations reflecting the multiple cofunctions of NSCs in plant tissues, including storage, growth and osmotic regulation of hydraulically vulnerable leaves. We emphasize that crown NSC pool size cannot be viewed as a simple physiological metric of stress; in situ NSC dynamics are complex, varying temporally, across species, among NSC fractions and among tissue types.
Collapse
Affiliation(s)
- Drew M P Peltier
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Jessica Guo
- Geology and Geophysics, University of Utah, Salt Lake City, UT 84112, USA
| | - Phiyen Nguyen
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Michael Bangs
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Linnea Gear
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Michelle Wilson
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Stacy Jefferys
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Kimberly Samuels-Crow
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Larissa L Yocom
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Yao Liu
- Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Michael K Fell
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - David Auty
- School of Forestry, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Christopher Schwalm
- Woods Hole Research Center, Falmouth, MA 02540, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - William R L Anderegg
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - George W Koch
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Marcy E Litvak
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Kiona Ogle
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|