1
|
Lim J, Wehmeyer H, Heffner T, Aeppli M, Gu W, Kim PJ, Horn MA, Ho A. Resilience of aerobic methanotrophs in soils; spotlight on the methane sink under agriculture. FEMS Microbiol Ecol 2024; 100:fiae008. [PMID: 38327184 PMCID: PMC10872700 DOI: 10.1093/femsec/fiae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024] Open
Abstract
Aerobic methanotrophs are a specialized microbial group, catalyzing the oxidation of methane. Disturbance-induced loss of methanotroph diversity/abundance, thus results in the loss of this biological methane sink. Here, we synthesized and conceptualized the resilience of the methanotrophs to sporadic, recurring, and compounded disturbances in soils. The methanotrophs showed remarkable resilience to sporadic disturbances, recovering in activity and population size. However, activity was severely compromised when disturbance persisted or reoccurred at increasing frequency, and was significantly impaired following change in land use. Next, we consolidated the impact of agricultural practices after land conversion on the soil methane sink. The effects of key interventions (tillage, organic matter input, and cover cropping) where much knowledge has been gathered were considered. Pairwise comparisons of these interventions to nontreated agricultural soils indicate that the agriculture-induced impact on the methane sink depends on the cropping system, which can be associated to the physiology of the methanotrophs. The impact of agriculture is more evident in upland soils, where the methanotrophs play a more prominent role than the methanogens in modulating overall methane flux. Although resilient to sporadic disturbances, the methanotrophs are vulnerable to compounded disturbances induced by anthropogenic activities, significantly affecting the methane sink function.
Collapse
Affiliation(s)
- Jiyeon Lim
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Helena Wehmeyer
- Nestlè Research, Route du Jorat 57, CH 1000 Lausanne 26, Switzerland
| | - Tanja Heffner
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Meret Aeppli
- Environmental Engineering Institute IIE-ENAC, Laboratory SOIL, Ecole Polytechnique Fédérale de Lausanne (EPFL), Valais Wallis, CH 1950 Sion, Switzerland
| | - Wenyu Gu
- Environmental Engineering Institute IIE-ENAC, Laboratory MICROBE, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland
| | - Pil Joo Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Marcus A Horn
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Adrian Ho
- Nestlè Research, Route du Jorat 57, CH 1000 Lausanne 26, Switzerland
| |
Collapse
|
2
|
Ogle SM, Breidt FJ, Del Grosso S, Gurung R, Marx E, Spencer S, Williams S, Manning D. Counterfactual scenarios reveal historical impact of cropland management on soil organic carbon stocks in the United States. Sci Rep 2023; 13:14564. [PMID: 37666947 PMCID: PMC10477333 DOI: 10.1038/s41598-023-41307-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
Natural climate solutions provide opportunities to reduce greenhouse gas emissions and the United States is among a growing number of countries promoting storage of carbon in agricultural soils as part of the climate solution. Historical patterns of soil organic carbon (SOC) stock changes provide context about mitigation potential. Therefore, our objective was to quantify the influence of climate-smart soil practices on SOC stock changes in the top 30 cm of mineral soils for croplands in the United States using the DayCent Ecosystem Model. We estimated that SOC stocks increased annually in US croplands from 1995 to 2015, with the largest increase in 1996 of 16.6 Mt C (95% confidence interval ranging from 6.1 to 28.2 Mt CO2 eq.) and the lowest increase in 2015 of 10.6 Mt C (95% confidence interval ranging from - 1.8 to 22.2 Mt C). Most climate-smart soil practices contributed to increases in SOC stocks except for winter cover crops, which had a negligible impact due to a relatively small area with cover crop adoption. Our study suggests that there is potential for enhancing C sinks in cropland soils of the United States although some of the potential has been realized due to past adoption of climate-smart soil practices.
Collapse
Affiliation(s)
- Stephen M Ogle
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, 80523, USA.
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 80523, USA.
| | - F Jay Breidt
- Department of Statistics, Colorado State University, Fort Collins, CO, 80253, USA
- Department of Statistics and Data Science, NORC at the University of Chicago, 55 East Monroe Street, Chicago, IL, 60603, USA
| | - Stephen Del Grosso
- USDA-Agricultural Research Service, SMSBRU, Fort Collins, CO, 80256, USA
| | - Ram Gurung
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ernie Marx
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 80523, USA
| | - Shannon Spencer
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 80523, USA
| | - Stephen Williams
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 80523, USA
| | - Dale Manning
- Department of Agricultural and Resource Economics, Colorado State University, Fort Collins, CO, 80253, USA
| |
Collapse
|
3
|
Heyl K, Ekardt F, Roos P, Garske B. Achieving the nutrient reduction objective of the Farm to Fork Strategy. An assessment of CAP subsidies for precision fertilization and sustainable agricultural practices in Germany. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1088640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Farm to Fork Strategy of the EU aims at sustainable food systems. One objective of the Strategy is to reduce nutrient losses by at least 50% resulting in at least 20% less fertilizer use by 2030. To this end, Member States are expected to extend digital precision fertilization and sustainable agricultural practices through the Common Agricultural Policy. In this context, this article applies a qualitative governance analysis which aims to assess the extent to which the measures proposed by the Farm to Fork Strategy, i.e., digital precision fertilization and sustainable agricultural practices, contribute to the nutrient objective of the Farm to Fork Strategy. The article analyses how these measures are implemented through the Common Agricultural Policy in Germany and Saxony. Results show that the nutrient objective of the Farm to Fork Strategy itself offers shortcomings. Germany offers some, yet overall limited, support for sustainable agricultural practices and digital precision fertilization. Hence, the Common Agricultural Policy will to a limited extend only contribute to the objective of the Strategy. The results furthermore highlight some general shortcomings of digitalization as sustainability strategy in the agricultural sector including typical governance issues (rebound and enforcement problems), and point to the advantages of quantity-based policy instruments.
Collapse
|
4
|
A Cooperative-Dominated Model of Conservation Tillage to Mitigate Soil Degradation on Cultivated Land and Its Effectiveness Evaluation. LAND 2022. [DOI: 10.3390/land11081223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sustainable agricultural production systems are important for ensuring food security. However, they are severely threatened by soil degradation and carbon emissions resulting from traditional farming practices. A cooperative-dominated conservation tillage model attempts to mitigate these issues, yet it is not clear how this model has been implemented and how well it performs in practice. This study takes Lishu County in Jilin Province in Northeast China as a case study to explore the implementation of a cooperative-dominated conservation tillage (CDCT) model and its practical effectiveness. In contrast to the traditional production model, this model uses cooperatives as the direct managers of cultivated land and promotes the construction of new production units and large-scale and mechanized operations to standardize the application of conservation tillage technology in agricultural production. Scientific research institutes, governments, and enterprises are supporters of cooperatives, empowering them in terms of technology, capital, products, and services. The evaluation results show that, unlike the traditional production model, which caused a decrease in the soil organic carbon content, the organic carbon content of the topsoil of cultivated land under this model increased by an average of 6.17% after 9 years of conservation tillage application. Furthermore, the soil structural stability index of the cultivated land increased from 3.35% to 3.69%, indicating that the degree of soil structural degradation was alleviated to a certain extent. The CDCT model effectively enhanced the operational efficiency and fertilizer use efficiency, and the carbon footprint of maize production was also reduced by 15.65% compared to the traditional production model. In addition, the total production cost was reduced by 1449 CNY/ha and profit increased by 2599 CNY/ha on average, indicating higher economic returns under the CDCT model due to increased yields and lower input costs. Farmers who are freed from agricultural production activities by transferring their farmland can also gain two types of income—land revenue and labor wagesi—thus mproving their living conditions. The CDCT model can deliver multigoal benefits and be of great value in its extension to other regions. This study may provide lessons for the sustainable use of cultivated land in China and other developing countries, contributing to agricultural development with lower environmental costs.
Collapse
|
5
|
Reducing Tillage Affects Long-Term Yields but Not Grain Quality of Maize, Soybeans, Oats, and Wheat Produced in Three Contrasting Farming Systems. SUSTAINABILITY 2022. [DOI: 10.3390/su14020631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Reducing tillage has been widely promoted to reduce soil erosion, maintain soil health, and sustain long-term food production. The effects of reducing tillage on crop nutritional quality in organic and conventional systems, however, has not been widely explored. One possible driver of crop nutritional quality might be the changing soil nitrogen (N) availability associated with reduced tillage in various management systems. To test how reducing tillage affects crop nutritional quality under contrasting conventional and organic farming systems with varied N inputs, we measured nutritional quality (protein, fat, starch, ash, net energy, total digestible nutrients, and concentrations of Ca, K, Mg, P, and S) of maize, wheat, oats, and soybeans harvested from a long-term trial comprised of three farming systems under two tillage regimes: a conventional grain system (CNV); a low-input organic grain system (LEG); and an organic, manure-based grain + forage system (MNR) under conventional full-tillage (FT) and reduced-till (RT) management. Although maize and wheat yields were 10–13% lower under RT management, grain quality metrics including protein, fat, starch, energy, and mineral concentrations were not significantly affected by reducing tillage. Differences in nutrient quality were more marked between farming systems: protein levels in maize were highest in the MNR system (8.1%); protein levels in soybeans were highest in the LEG system (40.4%); levels of protein (12.9%), ash (2.0%), and sulfur (1430 ppm) in wheat were highest in the CNV system, and oat quality was largely consistent between the LEG and MNR systems. As grain quality did not significantly respond to reducing tillage, other management decisions that affect nutrient availability appear to have a greater effect on nutrient quality.
Collapse
|
6
|
Liao X, Yao Q, Wan X, Wang J, Li Z. Theoretical basis and technical path for the regional all-for-one customization model of black soil granary. JOURNAL OF GEOGRAPHICAL SCIENCES 2022; 32:2147-2169. [PMCID: PMC9641686 DOI: 10.1007/s11442-022-2041-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/27/2022] [Indexed: 11/01/2023]
Abstract
The black soil area in Northeast China serves as a “ballast” to ensure China’s food security. Unreasonable development and utilization lead to serious black soil degradation in some areas and affect regional food production and economic and social development. In the context of the intensification of the contradiction between food supply and demand worldwide, we should pay more attention to the overall situation of regional sustainable development and seek for systematic, scientific, and economic solutions. This study establishes a regional all-for-one customization model of black soil granary on the basis of the regional system of human—land relationship, customized and accurate management, agricultural system theory, and agricultural informatization with the guidance of integrated geography concept. The aim of this regional all-for-one customization model is to systematically diagnose the key problems and leading factors of black soil degradation and determine a solution that combines the commonness and individuality of black soil protection from the perspective of multiscale linkage, multifactor coupling, and multitechnology cooperation. The regional all-for-one customization model of black soil granary integrates the two perspectives of “regional” and “customization” into the protection and comprehensive utilization of black soil for the first time. It adopts zoning, grading, and classification as the main strategy and big data and artificial intelligence as the main technical approaches. This model constructs three strategies of different scales by combining the “satellite—air—ground—network” 3D monitoring system and the all-for-one customization platform driven by big data and artificial intelligence. First, the “implementing strategies by regions” are implemented at the regional scale to formulate the regional agricultural resource allocation scheme and agricultural zoning, which can provide strategies to protect and utilize black soil effectively. Second, the “determining strategies in accordance with villages” are implemented at the village scale to formulate a black soil protection and utilization model for different categories of villages, which can promote the organic integration of black soil protection and rural revitalization. Third, a “one strategy for one field” concept is applied at the field scale to provide accurate strategies for soil restoration and yield improvement in a fixed, quantitative, and regular manner. Multiscale integrated demonstration and scheme verification of the regional all-for-one customization model of black soil granary are conducted in Qiqihar City at three scales, namely, region, village, and field, to solve the key issues in black soil protection and utilization and form a replicable and popularized system solution, thereby providing a model for the sustainable development of Chinese and global black soil agriculture. The proposed regional all-for-one customization model of black soil granary has important theoretical and practical value in promoting the high-quality development of regional agriculture and rural revitalization, and provides a demonstration model of land protection and utilization for the black soil area in China and the whole world.
Collapse
Affiliation(s)
- Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qixing Yao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaoming Wan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jieyong Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zehong Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|