1
|
Braziunas KH, Rammer W, De Frenne P, Díaz-Calafat J, Hedwall PO, Senf C, Thom D, Zellweger F, Seidl R. Microclimate temperature effects propagate across scales in forest ecosystems. LANDSCAPE ECOLOGY 2025; 40:37. [PMID: 39912094 PMCID: PMC11790809 DOI: 10.1007/s10980-025-02054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
Context Forest canopies shape subcanopy environments, affecting biodiversity and ecosystem processes. Empirical forest microclimate studies are often restricted to local scales and short-term effects, but forest dynamics unfold at landscape scales and over long time periods. Objectives We developed the first explicit and dynamic implementation of microclimate temperature buffering in a forest landscape model and investigated effects on simulated forest dynamics and outcomes. Methods We adapted the individual-based forest landscape and disturbance model iLand to use microclimate temperature for three processes [decomposition, bark beetle (Ips typographus L.) development, and tree seedling establishment]. We simulated forest dynamics with or without microclimate temperature buffering in a temperate European mountain landscape under historical climate and disturbance conditions. Results Temperature buffering effects propagated from local to landscape scales. After 1,000 simulation years, average total carbon and cumulative net ecosystem productivity were 2% and 21% higher, respectively, and tree species composition differed in simulations including versus excluding microclimate buffering. When microclimate buffering was included, Norway spruce (Picea abies (L.) Karst.) increased by 9% and European beech (Fagus sylvatica L.) decreased by 12% in mean basal area share. Some effects were amplified across scales, such as a mean 16% decrease in local-scale bark beetle development rates resulting in a mean 45% decrease in landscape-scale bark beetle-caused mortality. Conclusions Microclimate effects on forests scaled nonlinearly from stand to landscape and days to millennia, underlining the utility of complex simulation models for dynamic upscaling in space and time. Microclimate temperature buffering can alter forest dynamics at landscape scales. Supplementary Information The online version contains supplementary material available at 10.1007/s10980-025-02054-8.
Collapse
Affiliation(s)
- Kristin H. Braziunas
- Ecosystem Dynamics and Forest Management Group, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Present Address: School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195 USA
| | - Werner Rammer
- Ecosystem Dynamics and Forest Management Group, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Pieter De Frenne
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, 9090 Melle-Gontrode, Belgium
| | - Joan Díaz-Calafat
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, 234 56 Alnarp, Sweden
| | - Per-Ola Hedwall
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, 234 56 Alnarp, Sweden
| | - Cornelius Senf
- Earth Observation for Ecosystem Management, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Dominik Thom
- Ecosystem Dynamics and Forest Management Group, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Chair of Silviculture, Institute of Silviculture and Forest Protection, TUD Dresden University of Technology, 01737 Tharandt, Germany
| | | | - Rupert Seidl
- Ecosystem Dynamics and Forest Management Group, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Berchtesgaden National Park, 83471 Berchtesgaden, Germany
| |
Collapse
|
2
|
Hess SS, Burns DA, Boudinot FG, Brown-Lima C, Corwin J, Foppert JD, Robinson GR, Rose KC, Schlesinger MD, Shuford RL, Bradshaw D, Stevens A. New York State Climate Impacts Assessment Chapter 05: Ecosystems. Ann N Y Acad Sci 2024; 1542:253-340. [PMID: 39652386 DOI: 10.1111/nyas.15203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The people of New York have long benefited from the state's diversity of ecosystems, which range from coastal shorelines and wetlands to extensive forests and mountaintop alpine habitat, and from lakes and rivers to greenspaces in heavily populated urban areas. These ecosystems provide key services such as food, water, forest products, flood prevention, carbon storage, climate moderation, recreational opportunities, and other cultural services. This chapter examines how changes in climatic conditions across the state are affecting different types of ecosystems and the services they provide, and considers likely future impacts of projected climate change. The chapter emphasizes how climate change is increasing the vulnerability of ecosystems to existing stressors, such as habitat fragmentation and invasive species, and highlights opportunities for New Yorkers to adapt and build resilience.
Collapse
Affiliation(s)
| | - Douglas A Burns
- New York Water Science Center, United States Geological Survey, Troy, New York, USA
| | - F Garrett Boudinot
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Carrie Brown-Lima
- Department of Natural Resources and the Environment, Cornell University, Ithaca, New York, USA
| | - Jason Corwin
- Department of Indigenous Studies, University at Buffalo, Buffalo, New York, USA
| | - John D Foppert
- Department of Forestry, Paul Smith's College, Paul Smiths, New York, USA
| | - George R Robinson
- Department of Biological Sciences, State University of New York at Albany, Albany, New York, USA
| | - Kevin C Rose
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Matthew D Schlesinger
- New York Natural Heritage Program, State University of New York College of Environmental Science and Forestry, Albany, New York, USA
| | | | - Drake Bradshaw
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Amanda Stevens
- New York State Energy Research and Development Authority, Albany, New York, USA
| |
Collapse
|
3
|
Fu R, Cao C, Liu L, Zhu H, Malghani S, Yu Y, Liao Y, Delgado-Baquerizo M, Li X. Limited dependence on soil nitrogen fixation as subtropical forests develop. Microbiol Res 2024; 285:127757. [PMID: 38759379 DOI: 10.1016/j.micres.2024.127757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/14/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Soil nitrogen (N) fixation, driven by microbial reactions, is critical to support the entrance of nitrogen in nutrient poor and pioneer ecosystems. However, how and why N fixation and soil diazotrophs evolve as forests develop remain poorly understood. Here, we used a 60-year forest rewilding chronosequence and found that soil N fixation activity gradually decreased with increasing forest age, experiencing dramatic drops of 64.8% in intermediate stages and 93.0% in the oldest forests. Further analyses revealed loses in diazotrophic diversity and a significant reduction in the abundance of important diazotrophs (e.g., Desulfovibrio and Pseudomonas) as forest develops. This reduction in N fixation, and associated shifts in soil microbes, was driven by acidification and increases in N content during forest succession. Our results provide new insights on the life history of one of the most important groups of soil organisms in terrestrial ecosystems, with consequences for understanding the buildup of nutrients as forest soil develops.
Collapse
Affiliation(s)
- Ruoxian Fu
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China; College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Chaoyang Cao
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China; College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Li Liu
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China; College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Hongguang Zhu
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China; College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Saadat Malghani
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen 1017, Denmark
| | - Yuanchun Yu
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China; College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yangwenke Liao
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China; College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Xiaogang Li
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China; College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Jiang X, Li T, Hai X, Zheng X, Wang Z, Lyu F. Integrated behavior and transcriptomic analysis provide valuable insights into the response mechanisms of Dastarcus helophoroides Fairmaire to light exposure. Front Physiol 2023; 14:1250836. [PMID: 38107477 PMCID: PMC10722319 DOI: 10.3389/fphys.2023.1250836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023] Open
Abstract
Light traps have been widely used to monitor and manage pest populations, but natural enemies are also influenced. The Dastarcus helophoroides Fairmaire is an important species of natural enemy for longhorn beetles. However, the molecular mechanism of D. helophoroides in response to light exposure is still scarce. Here, integrated behavioral, comparative transcriptome and weighted gene co-expression network analyses were applied to investigate gene expression profiles in the head of D. helophoroides at different light exposure time. The results showed that the phototactic response rates of adults were 1.67%-22.5% and females and males displayed a negative phototaxis under different light exposure [6.31 × 1018 (photos/m2/s)]; the trapping rates of female and male were influenced significantly by light exposure time, diel rhythm, and light wavelength in the behavioral data. Furthermore, transcriptome data showed that a total of 1,052 significantly differentially expressed genes (DEGs) were identified under different light exposure times relative to dark adaptation. Bioinformatics analyses revealed that the "ECM-receptor interaction," "focal adhesion," "PI3K-Akt signaling," and "lysosome" pathways were significantly downregulated with increasing light exposure time. Furthermore, nine DEGs were identified as hub genes using WGCNA analysis. The results revealed molecular mechanism in negative phototactic behavior response of D. helophoroides under the light exposure with relative high intensity, and provided valuable insights into the underlying molecular response mechanism of nocturnal beetles to light stress.
Collapse
Affiliation(s)
- Xianglan Jiang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Tengfei Li
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaoxia Hai
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiang Zheng
- Laboratory of Enzyme Preparation, Hebei Research Institute of Microbiology Co., Ltd., Baoding, Hebei, China
| | - Zhigang Wang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Fei Lyu
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
5
|
Osborne P, Aquilué N, Mina M, Moe K, Jemtrud M, Messier C. A trait-based approach to both forestry and timber building can synchronize forest harvest and resilience. PNAS NEXUS 2023; 2:pgad254. [PMID: 37649582 PMCID: PMC10465084 DOI: 10.1093/pnasnexus/pgad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 09/01/2023]
Abstract
Along with forest managers, builders are key change agents of forest ecosystems' structure and composition through the specification and use of wood products. New forest management approaches are being advocated to increase the resilience and adaptability of forests to climate change and other natural disturbances. Such approaches call for a diversification of our forests based on species' functional traits that will dramatically change the harvested species composition, volume, and output of our forested landscapes. This calls for the wood-building industry to adapt its ways of operating. Accordingly, we expand the evaluation of the ecological resilience of forest ecosystems based on functional diversification to include a trait-based approach to building with wood. This trait-based plant-building framework can illustrate how forecasted forest changes in the coming decades may impact and guide decisions about wood-building practices, policies, and specifications. We apply this approach using a fragmented rural landscape in temperate southeastern Canada. We link seven functional groups based on the ecological traits of tree species in the region to a similar functional grouping of building traits to characterize the push and pull of managing forests and wood buildings together. We relied on a process-based forest landscape model to simulate long-term forest dynamics and timber harvesting to evaluate how various novel management approaches will interact with the changing global environment to affect the forest-building relationships. Our results suggest that adopting a whole system, plant-building approach to forests and wood buildings, is key to enhancing forest ecological and timber construction industry resilience.
Collapse
Affiliation(s)
- Peter Osborne
- Peter Guo-hua Fu School of Architecture, McGill University, Montreal, QC, Canada H2Z 1H5
| | - Núria Aquilué
- Centre for Forest Research, Université du Québec à Montréal, Montréal, QC, Canada H2L 2C4
- Forest Science and Technology Centre of Catalonia (CTFC), Crta. de St. Llorenç de Morunys, km 2. 25280 Solsona, Spain
| | - Marco Mina
- Centre for Forest Research, Université du Québec à Montréal, Montréal, QC, Canada H2L 2C4
- Institute for Alpine Environment, Eurac Research, Bozen/Bolzano 39100, Italy
| | - Kiel Moe
- College of Architecture, Design and Construction, Auburn University, Auburn, AL 36849, USA
| | - Michael Jemtrud
- Peter Guo-hua Fu School of Architecture, McGill University, Montreal, QC, Canada H2Z 1H5
| | - Christian Messier
- Centre for Forest Research, Université du Québec à Montréal, Montréal, QC, Canada H2L 2C4
- Institut des Sciences de la Forêt Tempérée, Université du Québec en Outaouais, Ripon, QC, Canada J0V 1V0
| |
Collapse
|
6
|
Liang Y, Gustafson EJ, He HS, Serra-Diaz JM, Duveneck MJ, Thompson JR. What is the role of disturbance in catalyzing spatial shifts in forest composition and tree species biomass under climate change? GLOBAL CHANGE BIOLOGY 2023; 29:1160-1177. [PMID: 36349470 DOI: 10.1111/gcb.16517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Mounting evidence suggests that climate change will cause shifts of tree species range and abundance (biomass). Abundance changes under climate change are likely to occur prior to a detectable range shift. Disturbances are expected to directly affect tree species abundance and composition, and could profoundly influence tree species spatial distribution within a geographical region. However, how multiple disturbance regimes will interact with changing climate to alter the spatial distribution of species abundance remains unclear. We simulated such forest demographic processes using a forest landscape succession and disturbance model (LANDIS-II) parameterized with forest inventory data in the northeastern United States. Our study incorporated climate change under a high-emission future and disturbance regimes varying with gradients of intensities and spatial extents. The results suggest that disturbances catalyze changes in tree species abundance and composition under a changing climate, but the effects of disturbances differ by intensity and extent. Moderate disturbances and large extent disturbances have limited effects, while high-intensity disturbances accelerate changes by removing cohorts of mid- and late-successional species, creating opportunities for early-successional species. High-intensity disturbances result in the northern movement of early-successional species and the southern movement of late-successional species abundances. Our study is among the first to systematically investigate how disturbance extent and intensity interact to determine the spatial distribution of changes in species abundance and forest composition.
Collapse
Affiliation(s)
- Yu Liang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Eric J Gustafson
- Institute for Applied Ecosystem Studies, Northern Research Station, USDA Forest Service, Rhinelander, Wisconsin, USA
| | - Hong S He
- School of Natural Resources, University of Missouri, Columbia, Missouri, USA
- School of Geographical Sciences, Northeast Normal University, Changchun, China
| | | | | | | |
Collapse
|
7
|
Mina M, Messier C, Duveneck MJ, Fortin M, Aquilué N. Managing for the unexpected: Building resilient forest landscapes to cope with global change. GLOBAL CHANGE BIOLOGY 2022; 28:4323-4341. [PMID: 35429213 PMCID: PMC9541346 DOI: 10.1111/gcb.16197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 01/21/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Natural disturbances exacerbated by novel climate regimes are increasing worldwide, threatening the ability of forest ecosystems to mitigate global warming through carbon sequestration and to provide other key ecosystem services. One way to cope with unknown disturbance events is to promote the ecological resilience of the forest by increasing both functional trait and structural diversity and by fostering functional connectivity of the landscape to ensure a rapid and efficient self-reorganization of the system. We investigated how expected and unexpected variations in climate and biotic disturbances affect ecological resilience and carbon storage in a forested region in southeastern Canada. Using a process-based forest landscape model (LANDIS-II), we simulated ecosystem responses to climate change and insect outbreaks under different forest policy scenarios-including a novel approach based on functional diversification and network analysis-and tested how the potentially most damaging insect pests interact with changes in forest composition and structure due to changing climate and management. We found that climate warming, lengthening the vegetation season, will increase forest productivity and carbon storage, but unexpected impacts of drought and insect outbreaks will drastically reduce such variables. Generalist, non-native insects feeding on hardwood are the most damaging biotic agents for our region, and their monitoring and early detection should be a priority for forest authorities. Higher forest diversity driven by climate-smart management and fostered by climate change that promotes warm-adapted species, might increase disturbance severity. However, alternative forest policy scenarios led to a higher functional and structural diversity as well as functional connectivity-and thus to higher ecological resilience-than conventional management. Our results demonstrate that adopting a landscape-scale perspective by planning interventions strategically in space and adopting a functional trait approach to diversify forests is promising for enhancing ecological resilience under unexpected global change stressors.
Collapse
Affiliation(s)
- Marco Mina
- Centre for Forest ResearchUniversité du Québec à MontréalMontréalQCCanada
- Institute for Alpine EnvironmentEurac ResearchBozen/BolzanoItaly
| | - Christian Messier
- Centre for Forest ResearchUniversité du Québec à MontréalMontréalQCCanada
- Institut des Sciences de la Forêt TempéréeUniversité du Québec en OutaouaisRiponQCCanada
| | - Matthew J. Duveneck
- Harvard ForestHarvard UniversityPetershamMassachusettsUSA
- Liberal Arts DepartmentNew England ConservatoryBostonMassachusettsUSA
| | - Marie‐Josée Fortin
- Department of Ecology and EvolutionUniversity of TorontoTorontoOntarioCanada
| | - Núria Aquilué
- Centre for Forest ResearchUniversité du Québec à MontréalMontréalQCCanada
- Forest Sciences and Technology Centre of Catalonia CTFCSolsonaSpain
| |
Collapse
|