1
|
Chen H, Xiang Y. The Accelerating Loss of Resilience in Suburban Woodlands Can Largely Be Attributed to the Changes in Urban Precipitation Patterns. GLOBAL CHANGE BIOLOGY 2024; 30:e17548. [PMID: 39440462 DOI: 10.1111/gcb.17548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/16/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Vegetation resilience holds significant importance for stabilizing ecosystem service functions in a changing climate. While global land surface vegetation resilience changes have been extensively studied, the impact of urbanization on the resilience of suburban woodlands remains inadequately understood. In this study, we utilized two critical slowing down (CSD) indicators, namely lag-one autocorrelation (LOA) and variance (VA), to assess the vegetation resilience, its long-term trends, and influencing factors in suburban woodlands across 1356 cities worldwide. The recovery rates estimated by LOA (r r 1 $$ {r}_{r_1} $$ ) and VA (r r 2 $$ {r}_{r_2} $$ ) showed close alignment in suburban woodlands with low suburban forest coverage (SFC) areas (correlation coefficient (r) = 0.95). However, a notable divergence was observed in areas with high SFC (r = 0.73). Suburban woodlands with high SFC typically exhibited lower recovery rate estimates, thus indicating greater vegetation resilience compared to areas with lower SFC. From 1986 to 2022, the recovery rates of suburban woodland areas in over 83% of the cities demonstrated a significant upward trend, with an average of 3.23 × 10-3 year-1 for bothr r 1 $$ {r}_{r_1} $$ andr r 2 $$ {r}_{r_2} $$ , signifying a widespread decline in vegetation resilience. The accelerating pace of urbanization led to higher rising rates ofr r 1 $$ {r}_{r_1} $$ andr r 2 $$ {r}_{r_2} $$ during 2010-2022 (5.11 × 10-3 year-1) compared to 1986-1999 (0.49 × 10-3 year-1). The notable decrease in resilience of forestland was primarily attributed to reduced precipitation in urban suburbs, which can be explained by urbanization-induced heat island and building barrier effects, causing a shift of precipitation center from urban suburbs to central cities. In summary, this study revealed that urbanization diminishes the vegetation resilience of urban suburban woodlands by altering urban precipitation patterns. These findings underscore the necessity of augmenting water availability in urban suburbs to restore resilience in these woodlands, thereby enhancing their ecosystem service value.
Collapse
Affiliation(s)
- Han Chen
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
- Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin, China
| | - Yuhui Xiang
- Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
2
|
Konings AG, Rao K, McCormick EL, Trugman AT, Williams AP, Diffenbaugh NS, Yebra M, Zhao M. Tree species explain only half of explained spatial variability in plant water sensitivity. GLOBAL CHANGE BIOLOGY 2024; 30:e17425. [PMID: 39005206 DOI: 10.1111/gcb.17425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024]
Abstract
Spatiotemporal patterns of plant water uptake, loss, and storage exert a first-order control on photosynthesis and evapotranspiration. Many studies of plant responses to water stress have focused on differences between species because of their different stomatal closure, xylem conductance, and root traits. However, several other ecohydrological factors are also relevant, including soil hydraulics, topographically driven redistribution of water, plant adaptation to local climatic variations, and changes in vegetation density. Here, we seek to understand the relative importance of the dominant species for regional-scale variations in woody plant responses to water stress. We map plant water sensitivity (PWS) based on the response of remotely sensed live fuel moisture content to variations in hydrometeorology using an auto-regressive model. Live fuel moisture content dynamics are informative of PWS because they directly reflect vegetation water content and therefore patterns of plant water uptake and evapotranspiration. The PWS is studied using 21,455 wooded locations containing U.S. Forest Service Forest Inventory and Analysis plots across the western United States, where species cover is known and where a single species is locally dominant. Using a species-specific mean PWS value explains 23% of observed PWS variability. By contrast, a random forest driven by mean vegetation density, mean climate, soil properties, and topographic descriptors explains 43% of observed PWS variability. Thus, the dominant species explains only 53% (23% compared to 43%) of explainable variations in PWS. Mean climate and mean NDVI also exert significant influence on PWS. Our results suggest that studies of differences between species should explicitly consider the environments (climate, soil, topography) in which observations for each species are made, and whether those environments are representative of the entire species range.
Collapse
Affiliation(s)
- Alexandra G Konings
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Krishna Rao
- Department of Earth System Science, Stanford University, Stanford, California, USA
- Watershed, Inc., San Francisco, California, USA
| | - Erica L McCormick
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Anna T Trugman
- Department of Geography, University of California, Santa Barbara, California, USA
| | - A Park Williams
- Department of Geography, University of California, Los Angeles, California, USA
| | - Noah S Diffenbaugh
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Marta Yebra
- Fenner School of Environment & Society, The Australian National University, Canberra, Australian Capital Territory, Australia
- School of Engineering, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Meng Zhao
- Department of Earth and Spatial Science, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
3
|
Gazol A, Valeriano C, Colangelo M, Ibáñez R, Valerio M, Rubio-Cuadrado Á, Camarero JJ. Growth of tree (Pinus sylvestris) and shrub (Amelanchier ovalis) species is constrained by drought with higher shrub sensitivity in dry sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170539. [PMID: 38296069 DOI: 10.1016/j.scitotenv.2024.170539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
We lack understanding of how variable is radial growth of coexisting tree and shrub species, and how growth is constrained by drought depending on site aridity. Here, we compared the radial growth of two widespread and coexisting species, a winter deciduous shrub (Amelanchier ovalis Medik.) and an evergreen conifer tree (Pinus sylvestris L.). We sampled four sites in Northeastern Spain subjected to different aridity levels and used dendrochronological methods to quantify growth patterns and responses to climate variables. The growth of the two species varied between regions, being lower in the driest sites. The first-order autocorrelation (growth persistence) was higher in more mesic sites but without clear differences between species. Tree and shrub growth negatively responded to elevated summer temperatures and positively to spring-summer precipitation and wet conditions. However, negative growth responses of the shrub to drought were only observed in the two driest sites in contrast to widespread responses of the tree. Abrupt growth reductions were common in the drier sites, but resilience indices show that the two species rapidly recovered pre-drought growth levels. The lower growth synchrony of the shrub as compared to the tree can be due to the multistemmed architecture, fast growth and low stature of the shrub. Besides, the high dependency of the shrub growth on summer rainfall can explain why drought limitations were only apparent in the two driest sites. In any case, results point out to the dendrochronological potential of shrubs, which is particularly relevant giving its ability to inhabit woodlands and treeless regions under harsh climatic conditions. Nevertheless, further research is required to elucidate the capacity of shrub species to tolerate drought, as well as to understand how shrubs thrive in water- and cold-limited environments.
Collapse
Affiliation(s)
- Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, E-50192 Zaragoza, Spain.
| | - Cristina Valeriano
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, E-50192 Zaragoza, Spain
| | - Michele Colangelo
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università della Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Ricardo Ibáñez
- Departamento de Biología Ambiental, Facultad de Ciencias, Universidad de Navarra, Pamplona 31008, Navarra, Spain
| | - Mercedes Valerio
- Departamento de Biología Ambiental, Facultad de Ciencias, Universidad de Navarra, Pamplona 31008, Navarra, Spain; Department of Botany, Faculty of Sciences, University of South Bohemia, Na Zlaté stoce 1, 370 05 České Budějovice, Czech Republic
| | - Álvaro Rubio-Cuadrado
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, E-50192 Zaragoza, Spain
| |
Collapse
|
4
|
Puchi PF, Dalmonech D, Vangi E, Battipaglia G, Tognetti R, Collalti A. Contrasting patterns of water use efficiency and annual radial growth among European beech forests along the Italian peninsula. Sci Rep 2024; 14:6526. [PMID: 38499662 PMCID: PMC11350120 DOI: 10.1038/s41598-024-57293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/16/2024] [Indexed: 03/20/2024] Open
Abstract
Tree mortality and forest dieback episodes are increasing due to drought and heat stress. Nevertheless, a comprehensive understanding of mechanisms enabling trees to withstand and survive droughts remains lacking. Our study investigated basal area increment (BAI), and δ13C-derived intrinsic water-use-efficiency (iWUE), to elucidate beech resilience across four healthy stands in Italy with varying climates and soil water availability. Additionally, fist-order autocorrelation (AR1) analysis was performed to detect early warning signals for potential tree dieback risks during extreme drought events. Results reveal a negative link between BAI and vapour pressure deficit (VPD), especially in southern latitudes. After the 2003 drought, BAI decreased at the northern site, with an increase in δ13C and iWUE, indicating conservative water-use. Conversely, the southern sites showed increased BAI and iWUE, likely influenced by rising CO2 and improved water availability. In contrast, the central site sustained higher transpiration rates due to higher soil water holding capacity (SWHC). Despite varied responses, most sites exhibited reduced resilience to future extreme events, indicated by increased AR1. Temperature significantly affected beech iWUE and BAI in northern Italy, while VPD strongly influenced the southern latitudes. The observed increase in BAI and iWUE in southern regions might be attributed to an acclimation response.
Collapse
Affiliation(s)
- Paulina F Puchi
- Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Via Madonna Alta 128, 06128, Perugia, Italy.
- Institute of Bioeconomy, Italian National Research Council (CNR-IBE), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy.
| | - Daniela Dalmonech
- Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Via Madonna Alta 128, 06128, Perugia, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Elia Vangi
- Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Via Madonna Alta 128, 06128, Perugia, Italy
| | - Giovanna Battipaglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'L. Vanvitelli', Caserta, Italy
| | - Roberto Tognetti
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100, Bolzano, Italy
| | - Alessio Collalti
- Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Via Madonna Alta 128, 06128, Perugia, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| |
Collapse
|
5
|
Hogan JA, Domke GM, Zhu K, Johnson DJ, Lichstein JW. Climate change determines the sign of productivity trends in US forests. Proc Natl Acad Sci U S A 2024; 121:e2311132121. [PMID: 38227667 PMCID: PMC10823222 DOI: 10.1073/pnas.2311132121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024] Open
Abstract
Forests are integral to the global land carbon sink, which has sequestered ~30% of anthropogenic carbon emissions over recent decades. The persistence of this sink depends on the balance of positive drivers that increase ecosystem carbon storage-e.g., CO2 fertilization-and negative drivers that decrease it-e.g., intensifying disturbances. The net response of forest productivity to these drivers is uncertain due to the challenge of separating their effects from background disturbance-regrowth dynamics. We fit non-linear models to US forest inventory data (113,806 plot remeasurements in non-plantation forests from ~1999 to 2020) to quantify productivity trends while accounting for stand age, tree mortality, and harvest. Productivity trends were generally positive in the eastern United States, where climate change has been mild, and negative in the western United States, where climate change has been more severe. Productivity declines in the western United States cannot be explained by increased mortality or harvest; these declines likely reflect adverse climate-change impacts on tree growth. In the eastern United States, where data were available to partition biomass change into age-dependent and age-independent components, forest maturation and increasing productivity (likely due, at least in part, to CO2 fertilization) contributed roughly equally to biomass carbon sinks. Thus, adverse effects of climate change appear to overwhelm any positive drivers in the water-limited forests of the western United States, whereas forest maturation and positive responses to age-independent drivers contribute to eastern US carbon sinks. The future land carbon balance of forests will likely depend on the geographic extent of drought and heat stress.
Collapse
Affiliation(s)
- J. Aaron Hogan
- Department of Biology, University of Florida, Gainesville, FL32611
| | - Grant M. Domke
- Northern Research Station, United States Department of Agriculture Forest Service, Saint Paul, MN55108
| | - Kai Zhu
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI48109
| | - Daniel J. Johnson
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL32611
| | | |
Collapse
|